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The mapping ofthe SUn group transformation in Grassmann number space into unitary 
normally ordered and antinormally ordered Fermi operator realizations in Hilbert space are 
investigated. The unitary Fermi operators are evaluated in fermion coherent state 
representation using the "integration within ordered product" technique for a fermionic 
system. Some new Fermi operator identities are thus obtained. 

I. INTRODUCTION 

The SUn group has been widely applied to many fields 
of modern physics as a symmetry. For example, the SU3 

group is used for classifying elementary particles in strong 
interaction. 1 In quantum mechanics the three-dimensional 
isotropic harmonic oscillator possesses the SU3 symmetry 
and thus is used in studying the nuclear shell model. The 
unitary unimodular group can also be used to develop the 
coherent states theory. 2 The SU 2 conserved-charge coherent 
state is given by Ref. 3, a construction of the SU3 charged 
and hypercharged coherent states is shown in Ref. 4, and the 
quasicoherent state for the unitary group is obtained in Ref. 
5. In this paper we shall present a so-called normally ordered 
Fermi operator realization of the SUn group by using the 
fermion coherent state6 and the "integration within ordered 
product" (lWOP) technique for a fermion system. The 
IWOP technique7 for the boson system has been shown to be 
quite useful in studying a variety of problems in quantum 
mechanics and quantum optics. 8

,9 Weare naturally chal
lenged to generalize the IWOP technique to the fermionic 
case. In Sec. II we briefly elucidate this technique and with 
its use we reform the completeness relation of the fermion 
coherent state as a normal product form. In Sec. III, using 
the coherent state representation, we map an SUn transfor
mation in Grassmann number space into the Fermi unitary 
operator in Hilbert space. Some identities regarding the nor
mal product expansion of the Fermi unitary operators are 
thus obtained. The antinormal product expansion ofthe Fer
mi unitary operators is discussed in Sec. IV. 

II. PRELIMINARIES 

The fermion coherent state defined in Ref. 6 is of a qual
itatively different kind than the boson coherent state2 in that 
the basic label variables are Grassmann numbers. All such 
variables anticommute among themselves. Let a; 
(i = 1,2, ... ,n) be Grassmann numbers; they are the eigenval
ues of the following eigenvector equation: 

a;la;) =a;la;),la;) =e-(I/2)a,uI (10); + 10;a;) 

= e - (I/2)a,u, + oraliO); , (2.1) 

where a; are Fermi annihilation operators, a; 10); = 0, 11); 
= a;IO);. Here a; are Fermi creation operators satisfying 

(2.2) 

Consistency requires that a; anticommutes with a; and aT. 
The adjoint state is defined as 

( 1
- (01 -(I12)a,a l +a,a, 

a; -; e , (2.3) 

which is not a proper mathematical adjoint because a; is 
independent of a;, but as Ref. 2 mentions, one can neverthe
less refer to it as such. Consistency also demands that 

a;aj + ap; = 0, aja; + a;aj = 0, ajaT + aT a j = ° . 
(2.4) 

The fermion coherent state possesses the nonorthogonal and 
completeness relations 

(a:la;) = exp[ -! a;a; -! a;a; + a;a;] , (2.5) 

fda; da;la;)(a; I = 1, (2.6) 

where we used the integration rule for the Grassmann 
numbers 

fda; = fda; = 0, fda; a; = fda; a; = I . 

(2.7) 

In Ref. 7 we succeeded in recasting the overcompleteness 
relation of the boson coherent state into a normal form and 
thus found a variety of applications of it. 10,11 Similarly, we 
can put (2.6) into a normally ordered form by using 

t 
10);;(01 = 1-10;;01 = 1 - alai = :e- olol

: (2.8) 

and generalizing the IWOP technique to the fermion system. 
In sharp contrast to the boson case, where any two Bose 
operators commute with each other within a normal prod
uct, any two Fermi operators anticommute with each other 
within a normal product. For instance, 

(2.9) 

Based on property (2.9) and (2.4) we can conclude that a 
Grassmann number-Fermi operator (GFO) pair commutes 
with another GFO pair; for example, 

(2.10) 

Because of (2.9) and (2.10) we have the following rule: A 
normal product of Fermi operators can be integrated or dif
ferentiated with respect to nonoperator variables; if the vari
able is a Grassmann number, the integration is performed 
according to the Berezin formula (2.7) and l2 
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In daj da j exp[ -? ajAjpj + I (aj5j + tjaj)] 
I I,j I 

= detA exp[?t;(A -1)ij5j ], (2.11) 
I.} 

where tj and 5j are also Grassmann numbers, while A is a 
complex-valued matrix, as mentioned in Ref. 2. This is 
called the IWOP technique for a fermion system. With the 
use of (2.11) and the IWOP technique we are able to reform 
the completeness relation (2.6) as the normally ordered 
form 

I daj dajlaj)(ajl = I daj daj:exp[ - ajaj + araj 

+ aja j - araj ]: = 1 , (2.12) 

which is essential to the following discussions. 

Ill. MAPPING OF SUn GROUP INTO HILBERT SPACE OF 
FERMI OPERATORS 

Consider the n-dimensional defining representation of 
SUn, where the matrices are denoted by [u ij ]. The defining 
requirement of these matrices is that they are unitary and of 
determinant 1, e.g., 

(3.1 ) 

Using the fermion coherent state we define an operator cor
responding to every u: 

u= I I;I daj da j lua) (ai, 

(3.2) 

U'U= I I;I da; da;lu'(i')(a'1 I I;I da; dajlua)(al 

lua) = 

Using the IWOP technique we integrate (3.2) to obtain 

or 

where 1 is an nXn unit matrix. Equation (3.2) indicates 
that for every u of the SUn group there exists a normally 
ordered exponential Fermi operator which is the mapping of 
u. Let u' be another element of the SUn group. As a result of 
(3.5) we have 

U'U= :exp[ot(u' -1)0]: :exp[ot(u -1)0]:. (3.6) 

On the other hand, from the original definition (3.1) of u 
and using the IWOP technique we obtain 

= In da; da; daj dajlu'(i')(al exp[~ (- ~a;a; - ~ajaj + ~ a;uijaj )] 
j 1 2 2 } 

Comparing (3.6) and (3.7) we obtain the multiplication 
rule for normally ordered exponential Fermi operators: 
:exp[ot(u' -1)0]: :exp[ot(u -1)0]: 

= :exp[ot(u'u - 1)0]:. (3.8) 

In particular, when u - I = u', Eq. (3.8) leads to 
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l:exp[ot(U- 1 -1)0]: :exp[ot(u -1)0]: = 1. 

It then follows that 

(3.7) 

(3.9) 

:exp[ot(u- I -1)0]: = U- I = I I;I daj dajlu-1a) (al· 
(3.10) 
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Owing to the Grassmann integration measure II; da; da; 
being invariant under U transformation, e.g., det U = 1, we 
can prove U defined by (3.2) as being unitary via 

ut = I Q: da; da; 1m (ual 

(3.11 ) 

In particular, if the matrices uij are in the vicinity of the 
identity matrix O'l' e.g., 

uij =oij + l!.uij' 

where l!.uij are traceless, anti-Hermitian infinitesimal matri
ces, (3.4) in this case reduces to 

U = :exp[~ a;l!.Uijaj ]:. 
I,) 

From (3.8) and (3.11) we conclude that the normally or
dered form (3.4) makes up a realization of the SUn group. 
We now prove that U can be further put into the following 
form: 

U = III da; da; Iua)(al = exp[i ~ a; vijaj ] , U = eiV. 
E ld 

(3.12) 

Proof: Let us recall the well-known result that every n
dimensional unitary matrix can be diagonalized by means of 
a similar transformation with a unitary matrix. Thus U can 
be written as 

U = eiV, vt = V, Tr V = 0, (3.13 ) 

where V is a traceless, Hermitian matrix characterized by 
n2 

- 1 independent real parameters. Using the operator 
identities 

and 

[AB,C] = A {C,B} - {C,A }B 

eA Be - A = B + [A,B ] + (1/2!)[A, [A,B]] 

+ (1/3!) [A,[A, [A,B]]] + ... 

(3.14 ) 

(3.15 ) 

we calculate the following transformation generated by the 
unitary operator S=expUl:;,ja;Vijaj ): 

( 3.16) 

By noticing 
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S 10" '0) = 10" '0) (3.17) 

and the fermion coherent state's completeness relation 
(2.10), as well as (3.16) and (3.17), we obtain 

S = I Q: da; da; S la)(al = I Q: da; da; S 

xexp [ ~ a;a;]s -110" '0) (alexp [ - ~ + a;a;] 

= I Q. da; da;:exp[ ~ ( - a;a; + ~ aJ(eiV)jia; 

+ a;a; - a;a;)]: = :exp[~ a;(eiV - l)ijaj ]: , 

I,) 

(3.18 ) 

which is a new Fermi operator identity. Comparing (3.18) 
with (3.4) we obtain (3.12). As an example ofthe new for
mula (3.18), we consider the generators of the SU2 group 
(n = 2), 

-I) (1 ° ' U
z 

= ° 
and the following Fermi operators: 

°),(3.19) 
-1 

T{3=~(atai)u{3(:J, /3= (x,y,z). (3.20) 

It is easily seen from (3.19) and (3.20) that Tx , Ty, and Tz 

satisfy SU 2 algebra. Now the operator exp U.,pTy ), as a conse
quence of (3.18), is expressed as the following normal prod
uct form: 

N.T {t t (COS(.,p12) - 1 sin(.,p12) )(a l )} e Y = :exp (a a2 ) • : 
I _ sm(.,p12) cos(.,p12) - 1 a2 

(3.21 ) 

where we have used 

eU/ 2 )a,if' = (COS(.,p12) Sin(.,p12») , 
- sin(.,p12) cos(.,p12) 

To confirm the validity of (3.21), we first expand expU.,pTy ) 
using its normal product exponential form since any two 
Fermi operators anticommute with each other within: : ; 
this processing can be easily carried out and the power series 
terminates at the third term, e.g., 

(3.22) 
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On the other hand, using the anticommutative relation (2.2) 
we can also expand exp(hpTy) = .I: = 0 (lIn!) Ut/JTy)n to 
obtain the same result as (3.22). As a consequence of ( 3.22 ) 
we have 

/,pTYa e - i,pTy = a cos i... - a sin i... 
I I 2 2 2' 

ei,pTYa e - i,pTy = a cos i... + a sin i... . 
2 2 2 I 2 

(3.23 ) 

Similarly, using (3.20) and (3.12) we have 

ei,pTx 
= FVI dai dai I e(i/2),pu{:)) ((:) I 

_ . { t t (COS(t/J/2) - I isin(t/J/2) J(a l)} . - .exp (a l a2 ) • •• 
ism(t/J12) cos(t/J12) - a2 

(3.24) 

The expansion of the rhs of (3.24) can be readily done, e.g., 

/,pTx = 1+ i(aTa2 + aia l )sin(t/J/2) 

+ (aTa la2ai + aia2alaT> [cos(t/J12) - I]. 
(3.25 ) 

It is worthwhile pointing out that for n>3, as far as the ex
I 

pansion of U = expU.I;.ja;Vijaj ) as a power series is con
cerned, the exponential normal product form (3.4) of U is 
very convenient and useful because any two Fermi operators 
anticommute with each other within a normally ordered 
product and one need not pay attention to the anticommut
ing rule (2.2) in one's calculation of the expansion. 

IV. ANTI NORMAL EXPANSION OF U 

In this section we show that the unitary operator U has 
the following antinormal product form: 

U = exp[i ~ a;Vijaj ] = : exp[~ a;O- e-iV)ijaj ] . , 
I,} I.j 

(4.1 ) 
where: : denotes the antinormal product. 

Proof: From (2.2), (2.3), and (2.6) we know that an 
antinormally ordered Fermi operator can be expressed as 

: G(a l,a2, .. ·,an;aT ,aL .. ·,a~): 

= f I;I dai dai G(al,a2, .. ·,an;al,a2, .. ·;an) Ia)(al· 
(4.2) 

Thus the rhs of ( 4.1) can be put into the following form: 

rhs of (4.1) = f I}. da; da; exp{.t: a i [8ij - (e- iV)ij ]aj } la) (al 

== f I;I dai da;: exp{~[ - ~ ai(e-iV)ijaj + a;a; + a;ai - a;ai ]) : 

= det(e- iV): exp{~ aT[ (eiV)ij - 8ij ]aj } : = (3.4), 
'.J 

(4.3) 

which completes the proof. Also, (4.1) is a new Fermi opera
tor identity. From (4.1) and (3.8) it follows that 

: exp[at(l- u,-I)a] : : exp[at(l- u-I)a] 

(4.4 ) 

which makes up the antinormally ordered Fermi operator 
realization of SU n . 

In summary, by generalizing the IWOP technique to the 
fermion system and exploiting the properties of the fermion 
coherent state we can see that the transformation u of the 
group SUn in Grassmann number space is mapped to the 
normally ordered unitary operator U in one-to-one corre
spondence fashion, which makes up a normally ordered Fer
mi operator representation of the group SUn (a normally 
ordered Bose operator representation of SUn is given in Ref. 
13 ). In addition, the IWOP technique makes the fermion 
coherent state more useful in obtaining new Fermi operator 
identities. 
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An unbounded observable whose mean value at some state changes discontinuously under the 
action of a *-weakly continuous one-parameter symmetry group is exhibited. Also, a sufficient 
condition for differentiability of a mean value of a not necessarily bounded observable that 
evolves under the action of a *-weakly continuous one-parameter automorphism group is 
given. 

I. INTRODUCTION 

The main objective of the present paper is to exhibit a 
C *-algebra ~ generated, as a C *-algebra, by two families 
(U(t»IER and (V(t»IER of unitaries, and a state m over ~ 
such that if (S)"" 11"""0,,,) is the GNS representation of~ 
associated with m, where S) '" is a Hilbert space, 11"", is a repre
sentation of ~ in S)"" and O",ES)w is a cyclic vector for 11"", 
such that 

meA) = (11"", (A)O""O",) (AE~), 

then (11"",(U(t»)IER and (11"w(V(t»)IER are one-parameter 
strongly continuous unitary groups in S)", with correspond
ing infinitesimal generators id and ifJ), and there exists a 
dense subspace iP of S)", contained in the domains of d and 
fJ) such that 

(d(iP) UfJ) (iP»ciP, 

(11"",( U(t) HiP) U11" ",(V(t) )(iP» C iP, 

for each tER, 0", is in iP, and the function 

t -+ (fJ)11" "'( U(t) )0""11",,,( U(t) )0",) 

is bounded in no open subset ofR. It will be obvious from the 
construction that ~ may be interpreted as an algebra of ob
servables of a quantum mechanical system of one degree of 
freedom, the von Neumann algebra W1 generated by 11"", (~) 
as the algebra of observables at the state m (cf. Ref. I, p. 
122), and the one-parameter group (1"')IER of *-automor· 
phisms of W1, defined by 

1", (A) = 11"",(U( - t»A11"w(U(t» (AEW1, tER) 

as a *-weakly continuous symmetry group of the system. 
Then fJ) , being affiliated with W1, will be an unbounded ob
servable whose mean value at m evolves unboundedly and 
hence discontinuously under the action of ( 1", ) IER. In con
nection with this construction a problem arises as follows. 
Let (U(t) »IER and (V(t»IER be two one-parameter strongly 
continuous unitary groups on a Hilbert space H with corre
sponding infinitesimal generators iA and iB. Suppose that 
there exists a dense subspace D of H contained in the do
mains of A and B such that (A(D) UB(D»CD and 
(U(t)(D)UV(t)(D»CD, for each tER. Suppose, more
over, that all the functions t-+(BU(t)qJ, U(t)qJ) (qJED) are 
locally bounded. Are these functions then actually contin
uous? While we may not be able to resolve that problem, we 
shall present a result suggesting an answer in the affirmative. 

II. THE CONSTRUCTION 

The construction to follow is a modification of a con
struction from Ref. 2. 

Let CO' (R) be the space of all complex infinitely many 
times differentiable functions on R with compact support. 

For each integer n>2,let qJn be a non-negative function 
in CO' (R), with support in (2n, 2n + 3 - n), such that 
qJ ~k), I, for k,n, let, moreover, 

I/In(x) =n8;lqJn(x-2·3- n) (xER), 

where 

8n = L qJ! (x)dx. 

[Notice that 8n in Ref. 2 is taken to be(S RqJ: (x)dxr 12.] Put 
00 00 

qJ = L qJn and 1/1 = L I/In· 
n=2 n=2 

Let Do be the set of all functions of the form 
m 

(k)( ) II i'j.p(x-sj ) X-+qJ x-u e 
j= 1 

(Sj,tj,UER, kENU,{O} mEN), 

and let D be the set of all functions that can be represented as 
sums of an element of CO' (R) and an element of the linear 
space spanned by Do. Notice that qJ is an element of D. 

LetL 2(R) be the Hilbert space of all (classes of) com
plex square integrable functions on R, endowed with scalar 
product < ... ) and the corresponding norm 11·112. 

It is easy to see that D is a dense linear subspace of 
L 2 (R). Let A and B be two linear operators in L 2 (R) defined 
on D by setting 

A/= if' and B/= 1/1/ (fED). 

A minor modification of an argurpent from Ref. 2 shows that 
(1) A and B are essentially self-adjoint; (2) the one-param
eter strongly continuous unitary groups (U(t»IER and 
(V(t»IER generated by the closures of iA and i1B, respective
ly, take the form 

(U(t)f)(x) =/(x - t), (V(t)f)(x) = ei'r/J(x>j(x) 

[fEL 2(R), t,xER]; 

and (3) (A(D) UB(D»CDand (U(t) (D) U V(t) (D»CD, 
for each fER. 
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Let 2I be the C *-subalgebra of the C*-algebra of all lin
ear bounded operators in L 2(R) generated by (U(t) )IER and 
(V(t»IER' Let {Pr: reN} be a dense subset ofR. Define a state 
w over 2I by setting 

00 

w(A) = L 2- rlicpI12-2(AU(Pr)cp,U(Pr)CP) (AE2I). 
r~ 1 

Let (Sj"" 1T"" 0",) be the GNS representation of2I associat
ed with w. Taking into account that, for any A,BE2I and any 
tER, 

(1T "'( U(t»1T '" (A )0",,1T '" (B)O",) 

= w(B *U(t)A) 

= I 2- rlicpIi2- 2(U(t)AU(Pr)cp,BU(Pr)CP), 
r= I 

and that {1T '" (A )0",: AE2I} is dense in Sj"" it follows that the 
group (1T",(U(t»)IER is weakly and hence strongly contin
uous. Similarily, the group (1T ",(V(t») IER is strongly contin
uous. Let d and flJ be the infinitesimal generators of 
(1T "'( U(t») IER and (1T ",(V(t») left' respectively. 

In view of (3), for any AE2I and any s,tER, 

d n 

=-w(A *V(t)U(s» 
dt n 

00 

= L 2- rllcplb- 2(BnV(t)U(Pr)cp,AU(Pr)CP)· 
r=O 

Now the closedness of differentiation and the cyclicity of 0", 
imply that the function t-+ 1T ",(V(t»1T "'( U(s»O", is infinite
ly many times weakly differentiable and hence infinitely 
many times strongly differentiable. In particular, for each 
sER, 1T",(U(S»)n", is in the domain of flJ and, moreover, 

(B1T ",(U(S»)n",,1T ",(U(s»O",) 
00 

= L 2- rllcpI12-2(BU(s+Pr)cp,U(s+Pr)CP)' (2.1) 
r~ 1 

Given a linear operator T in a Hilbert sp~ce, let T<O) 
denote the identity operator and let T<l) denote T. 

Proceeding along the same lines as above, we prove 
that for any sl, ... ,sn,t1, ... ,tnER and any 
i1, ... ,in,j], ... ,jn,k], ... ,kn,/], ... ,/nE {O,!}, the vector 

d(i')1T ",(U(SI »(j,) flJ (k')1T "'( V(tl) )(/,) X ... X d(i") 1T "'( U(sn) )(j,,) flJ (k") 1T ",(V(tn) )(/n) 

is well defined and, for each AE2I, 

(d(i')1T "'( U(SI »(j,) flJ (k')1T ",(V(tl »(/,) X ... X d(in) 1T "'( U(sn »(j") flJ (k") 1T ",(V(tn) f")O",,1T '" (A )0",) 

= I 2 -rllcp 112- 2(A(i')U(SI)(j')B(k,) V(tl)(/') X ... XA(i")U(sn )(j")B(kn)V(tn ) (/")U(Pr)CP,AU(t)cp ). 
,.=1 

It is easy to see that the linear space .QJ spanned by all such 
vectors contains 0", is dense in Sj", and contained in the 
domains of d and flJ, and, moreover, satisfies 

(d(.QJ) U flJ (.QJ »C.QJ 

and 
(1T "'( U(t»(.QJ) U1T "'( V(t»(.QJ» C.QJ, 

for each tER. 
Now, turning back to (2.1), we see that, for any r,mEN, 

(flJ1T",(U( - Pr + 2· 3 - m»O""1T,,,(U( - Pr + 2· 3 - m»o",) 

;>2 - rllcp Ib- 2(BU(2' 3 - m)cp,U(2' 3 - m)cp ). 

Reasoning as in Ref. 2, we conclude that the right-hand side 
of the latter inequality does not exceed 2 - rlicp 112- 2m. Since 
{ - Pr: reN} is dense in R, it follows that the function 

t-+ (flJ1T "'( U(t»O",,1T '" (U(t) )0",) 

is bounded in no open subset of R. 

III. A DIFFERENTIABILIty CONDITION 

In this section, we shall prove the following theorem. 
Theorem 3.1: Let D be a dense linear subspace of a Hil

bert space H. Let A and B be two linear operators in H de
fined on Dsuch that (i) (A(D)UB(D»CD; (ii) A is essen
tially self-adjoint and B is symmetric; and (iii) the closure of 
iA generates a one-parameter strongly continuous unitary 
group (U(t»IER such that U(t)(D) CD, for each tER, and, 
for each cpED, the function 
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(s,t) -+(BU(s)cp,U(t)cp) 

is bounded in an open neighborhood of (0,0). Then, for any 
cp,t/JED, the function 

(s,t) -+(BU(s)cp,U(t)t/J) 

is infinitely many times differentiable in H2. 
Proof: Let cp,t/JED. In view of (i), (iii), and the polariza

tion identity, there exist 8> 0 and M> 0 such that 

I (BU(x)Acp,U(y)At/J) I <M, (3.1) 

whenever Ixl <8 and Iyl <8. Since 

U(w)/-/=i iW 

U(x)A/dx (WER, feD), 

it follows that, for any s,tER, 

(BU(s)cp - Bcp,U(t)t/J - t/J) 

= - i L(BU(S)CP - Bcp,U(y)At/J)dy 

= - i L(U(S)cp - cp,BU(y)At/J)dy 

= L [f(U(X)ACP,BU(Y)At/J)dX ]dY 

= f [f(BU(X)ACP,U(Y)At/J)dX ]dY. 

Hence, in view of (3.1), for lsi <8 and It 1<8, 

(BU(s)cp - Bcp,U(t)t/J - t/J), M lsi < It I· 

Jan Rusinek 

(3.2) 
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Now, for any s,tER, 

(BU(s)tp,U(t)t/J) - (Btp,t/J) 

= (BU(s)tp - Btp,U(t)t/J - t/J) + (BU(s)tp - Btp,t/J) 

+ (Btp,U(t)t/J - t/J) 

= (BU(s)tp - Btp,U(t)t/J - t/J) + (U(s)tp - tp,Bt/J) 

+(Btp,U(t)t/J-t/J). (3.4) 

The latter identity jointly with Eq. (3.3) and the fact that 
(U(t»/ER is strongly continuous show that the function 
(s,t) --(BU(s)tp,U(t)t/J) is continuous at (0,0). Replacing 
tp by U(x)tp and t/Jby U(y)t/J (x,yeR), we see that the func
tion (s,t) --(BU(s)tp,U(t)t/J) is continuous everywhere. 

Now, on account of (3.2), continuity of the function 
(s,t) -- (BU(s)tp, U(t)t/J) ensures differentiability of the func
tion 
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(s,t) --(BU(s)tp - Btp,U(t)t/J - t/J). 

Since, clearly, both functions s--(U(s)tp - tp,Bt/J) and 
t -- (Bt/J, U( t) t/J - t/J) are differentiable, it follows from (3.4) 
that the function (s,t) --(BU(s)tp,U(t)t/J) is differentiable. 
Continuing the process, we finally arrive at the conclusion 
that the function (s,t) --(BU(s)tp,U(t)t/J) is differentiable 
infinitely many times. 

The proof is complete. 

'0. Bratteli and D. W. Robinson, Operator Algebras and Quantum Statisti
cal Mechanics I (Springer, New York, 1979). 

2J. Rusinek, "Noncommuting unitary groups and local boundedness," 
Proc. Am. Math. Soc. 101, 283 (1987). 
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Kronecker products, minuscule representations, and polynomial Identities 
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(Received 2 Februrary 1989; accepted for publication 16 August 1989) 

The special role of the highest long and highest short roots in the derivation of extremum 
properties of the weights of irreducible representations of semisimple Lie algebras is pointed 
out. These properties are used to give an intrinsic and unifying reformulation, as well as a new 
proof of Klimyk's theorem on Kronecker products [Ukrain. Mat. Z. 18,19 (1966)]. This new 
form of Klimyk's theorem reveals the special position of the minuscule representations in 
Kronecker products; as an immediate consequence, the explicit formula for the Kronecker 
product of an arbitrary representation with a minuscule representation is obtained. Explicit 
expressions for the weights of the minuscule representations are given. New derivations of 
theorems of Dynkin [Trudy Mosk. Obsch. 1, 39 (1952)] and Feingold [Proc. Am. Math. Soc. 
70, 109 (1978)] on Kronecker products, as well as the necessary condition for a Kronecker 
product to decompose in two irreducible components are obtained. The proofs are based on a 
theorem of Parthasarathy, Ranga Rao, and Varadarajan [Ann. Math. 85, 383 (1967)]. 

I. INTRODUCTION 

The irreducible representations of semisimple Lie alge
bras are known to satisfy specific polynomial identities. 1 

There is a close connection between the identities satisfied by 
a representation and its Kronecker products with other rep
resentations. An immediate connection between tensorial 
identities and Kronecker products is given by the Wigner
Eckart theorem; we will be reminded of another connection 
in what follows. 

The existence of polynomial identities satisfied by the 
generators of representations of classical Lie algebras2 has 
received a simple mathematical explanation in an unpub
lished paper by Hannabuss.3 Subsequent specifications by 
Kostant4 and Okubo5 have led to a method for the determin
ation of the identities satisfied by a given irreducible repre
sentation of a semisimple Lie algebra. 

The point of the method is the remark that given two 
irreducible L modules (A) and (0) of highest weights A 
and 0, respectively, of a semisimple Lie algebra L of rank n, 
the operator 

n 

tJ An == L ei ® e
i 

i~l 

(Ll ) 

defined on (A) ® (0) commutes with the corresponding 
representation of L and is expressible as a function of the 
second-degree Casimir operators c2{(A) ® (0», c2«A», 
and C2«0». In formula (Ll), {eo i= 1,2, ... ,n} denotes a 
basis inL and {ei

, i = 1,2, ... n}is the basis dual to {eJ. When 
no confusion is possible, we shall use the same notation for 
an L module and the corresponding representation, i.e., de
note by (A) either the representation with highest weight A 
or the associated L module. 

Taking the matrix elements of the minimal polynomial 
satisfied by tJ An with respect to the basis vectors of the L 
module (0) say, one obtains polynomial identities for the 
corresponding representation of L on (A). 

In previous papers,6,7 we deduced all the pairs 
{ (A) , ( 0 ) } of irreducible representations of classical Lie al-

gebras for which this method leads to identities of the second 
degree: This is equivalent to finding all pairs {( A), (O)} for 
which the Kronecker product (A) ® (0) decomposes into 
two irreducible components. 

The determination of these pairs was the result of suc
cessively solving the following problems. 7 

(i) Find all second-degree irreducible tensors TLM in 
the enveloping algebra U(L) of a classical semisimple Lie 
algebra L which vanish on irreducible representations of L, 
i.e., find all primitive ideals in U(L) generated by second
degree polynomials. (The tensor TLM transforms under the 
representation of L with the highest weight M.) 

(ii) Having determined the tensors TLM , find all the 
representations (A) (of highest weight A) which annulate 

TLM • 

(iii) Select among these "solutions" of the equations 
TLM = 0 those pairs (A), (0) for which the Kronecker 
product (A) ® (0) decomposes into two irreducible compo
nents. 

In this way, we obtained the following remarkable prop
erty6,7: The necessary condition for a Kronecker product 
(A) ® (0) to decompose into two irreducible components is 
that one of the factors be a minuscule representation. The 
property is rank-independent. 

An irreducible representation (A) of highest weight A 
is called a minuscule representation if every one of its 
weights can be obtained by the actions on A of the Weyl 
group of L; the highest weight A is then called a minuscule 
weight.s Otherwise stated, a representation is minuscule if 
the set of its weights is a unique orbit of the Weyl group. 
(Other equivalent definitions are shown in Sec. II D.) 

This extreme simplicity of the weight diagram of a min
iscule representation (A) leads to special properties for the 
Kronecker products of (A) with other representations and 
for the polynomial identities related to these Kronecker 
products. One of the aims of the present article is to point out 
some of these properties. 

The property of the minuscule representations stated 
above that needed the solving of the chain of problems (i)-
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TABLE I. Elements that characterizes the Kronecker products (A) ® (n) whose Clebsch-Gordan series are of length 2. In column 4 k is an arbitrary 
positive integer. 

265 

Lie algebras 
L 

Dn 

Cn 

Eo 

C; 

d; 

C
V

j 

d V
; 

c; 

d; 

C
V

i 

d V
; 

C; 

c; 

Dynkin diagrams and 
coefficients of the 

highest long roots (c;), 

highest short roots (d;), 

and the corresponding 
coroots (cv;.d v;). 

1 2 

0--0-
n-l n 
-0-0 

1 2 n-l n 
0-0-'" -O=Fo 

2 2 2 

1 

2 2 

2 2 2 

1 2 n-l n 
cr-O- ... -~O 
2 2 2 

2 2 

2 2 2 

n-l 
2 n-2 0 

/1 
0-0- ... -0 

2~; 2 

3 4 5 6 
0-0-0-0-0 

2 
213 

2 

2 

(c; = d; = cV
; = d V

;) 

I 3 4 567 
cr-O-O-O-O-O 

~ 2 3 214 3 2 

o 
2 

(c; =d; =cv; =dv;) 

3 4 567 8 
o-o-?-o-O~-O 

2 4 216 5 4 3 2 

o 
3 
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Minuscule weights 

A 
(d v; = 1) 

An _, 

An 

A, 

Ao 

Okubo partners 
n 

k= 1,2, ... 

kA; (i = 1,2, ... ,n) 

kA"kA n 

kA"kA n 

kA;(i= 1,2, ... ,n) 

kAn 
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TABLE I. (Continued). 

Lie algebras 
L 

Dynkin diagrams and 
coefficients of the 

highest long roots (c,), 

highest short roots (dj ), 

and the corresponding 
coroots (cv"d V

j ). 

1 2 3 4 

0-0+0-0 
cj 2 3 4 2 

d j 2 3 2 

cV
; 2 3 2 

d V
j 2 4 3 2 

1 2 
C$O 

Cj 3 2 

d j 2 

cV
; 2 

d V
j 2 3 

(iii), also pretends a direct proof; our initial aim was to ob
tain such a proof. The proof is given in Sec. V and uses a 
result attributed to Parthasarathy, Ranga Rao, and Vara
darajan9 which we shall call the PRV theorem. 

For each minuscule weight A the "Okubo partner" n,5,7 

for which (A) ® (n) decomposes into two irreducible com
ponents, has also been determined; each minuscule weight A 
admits as Okubo partners n a set {mA;. m = 1,2, ... } of in
teger multiples of well-determined fundamental weights A;, 
which are tabulated in Table I. 

The existence of Okubo partners of the form mA; 
(m = 1,2, ... ) is essential in problems of the classicallimit of 
second-degree identities satisfied by quantum realization of 
semisimple Lie algebras.6 

A number of results emerged as by-products of this 
study; They are perhaps as interesting as the initial question. 
Let us quote them briefly. 

(i) We point out the special role played by the highest 
long and highest short roots in the derivation of extremum 
properties for the set of weights of an irreducible representa
tion (Sec, III). 

(ii) We obtain an intrinsic and unifying reformulation, 
as well as a new proof for Klimyk's theorem 10 on Kronecker 
products (Sec. IV). These proofs are based on the special 
role played by the highest long and highest short roots and 
therefore have a more intrinsic connection with the basic 
concepts of Lie algebra, avoiding the use ofWeyl's formula 
for the characters. 

(iii) This reformulation of Klimyk's theorem reveals 
the special position of the minuscule representations in 
Kronecker products; as an immediate consequence, it has 
led to the explicit formula for the Kronecker product of an 
arbitrary representation with a minuscule representation 
(Sec. IV B). 

(iv) The highest weights of the irreducible components 
of the Clebsch-Gordan series of the Kronecker product 
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Minuscule weights 
A 

(d V
j = 1) 

Okubo partners 
n 

k= 1,2, ... 

between a minuscule and an arbitrary representation of 
highest weight A are those dominant weights that result 
from a translation with the vector A of the weight diagram of 
the minuscule representation. Therefore, we give explicit 
general formulas for the sets of weights of the minuscule 
representations for the classical Lie algebras (Appendix A) 
and enumerate these sets of weights for the exceptional Lie 
algebras (Appendix B). 

(v) A new derivation of Dynkin's theorem concerning 
the existence of a well-defined second highest representation 
in the Clebsch-Gordan series of the Kronecker product of 
any pair of nontrivial irreducible representations ll has been 
obtained (Sec. IV D), as well as a new derivation of Fein
gold's theorem!2 on Kronecker products for which a slight 
generalization has been given (Sec. IV C). Both proofs use 
the PR V theorem. 

To conclude this introduction we would like to com
ment on the special role plyaed by minuscule weights in sev
eral mathematical problems in which Kronecker products 
and polynomial identities in U(L) are involved. 

For these mathematical problems, minuscule represen
tations playa sort of minimizing role: They satisfy identities 
of second (minimum) degree and are factors in the nontri
vial Kronecker products which decompose in Clebsch-Gor
dan series of minimal length. 

Let us also remark that the minuscule weights classify 
the congruence classes of representations!3 which play an 
important role in Kronecker products. !4 

In addition to the algebraic aspects mentioned thus far 
let us also mention the geometric problems to which minus
cule representations are related. For instance, in Ref. 15, 
Cavalli et al. studied the manifolds of coherent states genera
ted from the highest weight vectors of irreducible represen
tations of compact complex semisimple Lie groups: Their 
study pointed out that the manifold of coherent states gener
ated from the highest weight vector of an irreducible repre-
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sentation (A) is a Cartan Hermitian symmetric spacel6 

iff{ A) is the Okubo partner of a minuscule representation. 
This property of the coherent states-the quantum 

states most closely related to the classical ones-is to be con
nected to the property of the Okubo partners of the minus
cule representations to possess highest weights that are in
teger multiples of well-defined fundamental weights. From 
the identities satisfied by these representations (with highest 
weights of the type rnAj) it is possible to derive identities 
satisfied by Poisson bracket realizations by taking the limit 
for rn .... 00.

6 

In Ref. 17 Sakane and Takeuchi have studied the em
bedding of compact complex manifolds in projective spaces, 
which are representation spaces of semisimpleLie groups, 
and identified the Hermitian symmetric spaces of semisim
pIe groups of the compact type: such symmetric spaces exist 
only for those semisimple Lie algebras for which minuscule 
representations exist; they are associated with the Okubo 
partners of the corresponding minuscule representations. 
These Hermitian symmetric spaces are proved to be de
scribed by quadrics. 

Finally, let us remark that the representation spaces of 
minuscule representations serve as auxiliary spaces in the 
Yang-Baxter-Zamolodchikov-Faddeev method for the 
construction of completely integrable systems. IS,19 

In recent years, we assisted at a revival of the problem of 
the determination of the Kronecker products of irreducible 
representations, the story of which is too long to be traced 
here.20 This revival of interest is probably explained by the 
feeling of the existence of deep connections between the 
Kronecker products of the irreducible representations of a 
Lie algebra, coadjoint orbits, algebraic manifolds, and primi
tive ideals in the enveloping algebra. 

II. NOTATIONS AND DEFINITIONS 

A. General notations 

Let L be a complex semisimple Lie algebra of rank n; H 
be a Cartan subalgebra of L (dim H = n); H * be the dual 
space of H; R be the root system of L relative to H; p be the 
sum of the positive roots; andBbea base of simple roots ai' 
a 2, ... ,an • In addition, let (,) be the nondegenerate bilinear 
form on H induced by the Cartan-Killing form; 

II all ==~ (a,a), be the length of the root aER; a V == 2a/ (a,a), 
be the coroot of a; andR v=={aVlaER}, bethecoroot system 
of L. Let A + denote the set of dominant weights of L and AI' 
A2 , ... ,An be the fundamental weights in A + defined by 

(Aj,aV) ==2(Aj>aj )/(aj>aj ) = ~ij' (2.1) 

We have 
n 

p= L A j • 

;=1 

Simple roots and fundamental weights are related by 
n 

a j = L (aj,aVj)Aj , (2.2) 
j=1 

where (aj>aVj ) are the elements of the Cartan matrix of L. 
Any weight A. is expressible in terms of the fundamental 
weights 
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n 

A. = L (A.,aVj)Aj. (2.3) 
j= I 

For any dominant weight AEA + we denote by (A) the irre
ducible representation with highest weight A and by II (A) 
the set {A.} of weights of representation (A). 

B. Highest long and highest short roots 

For a given semisimple Lie algebra one of the following 
cases occur. 

(i) The system of roots divides into two sybsystems: 
long roots and short roots, where the lengths of the roots in 
each subsystem are equal. This happens for the algebras B n , 

en' F4 , and G2• For each of these algebras two roots are 
dominant weights: the highest long root a hl and the highest 
short root a hs ' The other long (short) roots are obtained by 
acting on ahl (ahs) with the elements of the Weyl group. We 
haveahl >ahs ' For these algebrasR v#R anda\/{a\s) are 
the highest short (long) roots of R v:a\s > a\/' 

(ii) All the roots of the algebra are of equal length, i.e., 
lIaj II = Ilaj II for any i,j. In this case there exists only one root 
which is also a dominant weight: the highest (long) root. In 
this case a hl = a hs and lIah/l12 = 2. Hence 

(2.4) 

and R v = R. The algebras An' D n' E6 , E7, and Es are of type 
(ii). 

The roots a hl , a hs can be expressed as linear combina
tions of the simple roots a j (i = 1,2, ... ,n): 

n 

ahl = L cjaj, 
;= 1 

Similarly, 

n 

n 

a hs = L djaj. 
j=4 

n 
v ~ v v a hi = £.J C ja j' v ~ dV v a hs = £.J ja j' 

j=1 j=4 

(2.5) 

(2.6) 

The sets of coefficients Cj, d j, CVj' and d Vj for the algebrasBn' 
en' F4 , and G2 and Cj = dj = CVj = dV;for An' Dn, E6 , E7 , 

and Es are pointed out in column 2 of Table I. It is easy to 
prove that for any of the algebras Bn , en' F4, and G2, Cj >dj 
and dVj>cVj. 

C. Dynkin portrait of a representation 

Dynkin21 proved that any weight A.EII (A) of an irredu
cible finite-dimensional representation ( A ) of highest 
weight A can be written as 

(2.7) 

withajeB. 
In the following we shall frequently use the "Dynkin 

portrait," of a representation (A), meaning the pattern con
taining all the weights of II (A) linked by simple roots: Two 
weights A. and f.l (A. > f.l) are said to be linked by the simple 
root aj' or to be aj-linked, if A. - f.l = a j. This property is 
represented graphically by 

(2.8) 

An "a j string of length p" of the representation (A) is a 
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subset ofII(A) composed ofp + 1 aj-linked weights in the 
Dynkin portrait of (A), 

a; Qj at at 

A.max =..1. 1 -> ..1.2 -> ••• ->A.p -> A.p+ 1 =A.min , (2.9) 

and such that there does not exist in the Dynkin portrait of 
(A) a set of aj-linked weights containing it. A weight A. j of 
the a j string (2.9) that is not one of its extreme elements 
(A.min .A.max ) is said to be "traversed" by this a j string. 

Let A. be a weight belonging to an a j string. The follow
ing property is well known. S 

Proposition 2.1: Let AEA+, A.EII(A), and ajeB. Let 
pj (A.) and qj (A.) be the maximum non-negative integers for 
which 

A. + pj(A.)a;EII(A), A. - qj(A.)ajEII(A). (2.10) 

Then 

(A.,aV;) =qj(A.) -Pj(A.). 0(2.11) 

In particular, for the extreme elements of the a j string 
(2.9) (oflengthp), thevaluespj andq; are 

p;(A. I) = 0, qj(A. I ) = p; 

p;(A.p+1 ) =P, qj(A.p+ l ) =0, 

from which 

(2.12) 

(A.I,a~) = p, (A.p+ 1 ,a~) = - p. (2.13) 

Corollary 2.2: The extreme elements in an a; string of 
length p have expressions of the form 

A.max = pA; + L PkAk (PkeZ), 
k#; 

A. min = - pA; + L p' kAk (p' keZ ). 
k #; 

(2.14 ) 

Corollary 2.3: The highest length of a string in the Dyn
kin portrait of a representation of highest weight A is 

(2.15 ) 

;= 1,2, ... n 

The Dynkin portrait of a representation (A) splits into 
layers: the k th layer contains the weightsA.EII (A) for which 
~k; = k, with the integers k; defined by Eq. (2.7). 

The number oflayers of the Dynkin portrait of represen
tation (A) is equal toll 

T(A) = k max (A) = 1 + L ca. (A), (2.16) 
a"eB 

where ca. (A) are the coefficients in the decomposition 

A = L ca.(A)ak' (2.17) 
akEB 

Dynkin portraits are "spindle shaped." II For self-contragre
dient representations the weights of a Dynkin portrait that 
are symmetric with respect to the "middle of the spindle" 
have opposite signs. 

D. Minuscule weights and representations 

(i) The dominant weight A is minuscule iff all the 
weights of the representation (A) [i.e., all A.EII (A)] belong 
to a unique orbit of the Weyl group. 

(ii) The dominant weight A is minuscule iff all the 
weights of the representation (A) have the same length. 

(iii) The dominant weight A is minuscule iff for any 
A.EII(A) and any aeB 

(A.,aV)E{ - 1,0, n, (2.18) 

i.e., for any A.EII(A) the coefficients C; in the development 
(2.3) can take only the values 0, ± 1. 

(iv) The dominant weight A is minuscule iff 

(A,a\s) = 1. (2.19) 

(v) The dominant weight A is minuscule if it is a funda
mental weight Aj for which [cf, the notations introduced in 
Eqs. (2.6)] 

, d V
; = 1. (2.20) 

The set of the minuscule weights for the semisimple Lie 
algebras is pointed out in column 3 of Table I. 

Definition (iii) and Corollary 2.3 imply that the Dynkin 
portrait of a minuscule representation contains only a 
strings of length p = 1. In other terms, for a minuscule repre
sentation (A) any weight A.EII (A) is either the beginning or 
the end of an a j string. These properties allow us to deter
mine for any weight of a minuscule representation the 
strings to which they belong, i.e., for which they are either 
the beginning or the end. For instance, in the Dynkin por
trait of representation (A7) of E7 the weight 
- A3 + A4 - A6 + A7 has the a; links 

a 3,," ,/a6 

- A3 + A4 - A6 + A7 . 

III. INEQUALITIES FOR THE WEIGHTS OF A 
REPRESENTATION 

In this section we point out that the highest long and 
highest short roots are useful in the derivation of extremum 
properties for the set of weights of an irreducible representa
tion (A) of a semisimple Lie algebra L. 

Proposition 3.1: For any weight A.EII(A) and for any 
long (short) root aj of L, 

I (A.,aV
j ) I.;;; (A,a\/(hs) ), (3.1) 

where ahl(hs) denotes the highest long or the highest short 
root of L if aj is a long or short root, respectively. 

Proof: The difference A - A. is a linear combination of 
simple roots with non-negative coefficients [Eq. (2.7)]. Ob
serving that a\/' a\sEA +, we obtain 

(A.,a\/)';;; (A,a\/)' (A.,a\s)';;; (A,aV hs)' (3.2) 

For dominant weights (A.EA +) the proof is immediate be
cause for any long (short) root a we have [writing 
a\/(hs) ..." aV in the form (2.7)] 

A minuscule weight is a dominant weight A character- (A.,a
V

).;;; (A.,a
v 
hl( hs) ), (3.3) 

ized by any of the following equivalent properties.s from which 
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(3.4) 

Let us now assume that A~A + . Then there exists a dominant 
weight A + EA + and an element W of the Weyl group W such 
that 

A+=WA (3.5) 

and Eqs. (3.2) can be written for A+. To complete the proof 
it is sufficient to prove that for a = long (short) root the 
inequality 

I (A,aV
) I < (A+,a\/(hs) ) (3.6) 

holds. For any such a there exists an element waEW for 
which 

(3.7) 

Relation (3.6), which has to be proved, therefore becomes 

I (waa,a\/(hs) ) I < (A+,a\/(hs) ). (3.8) 

IfwaAEA + the property A+ =WAEA + requires the equality 
sign in (3.8) and Wa = w. 

The nontrivial case to be considered is 

waA~A+ 

and we have to prove that for those W'EW for which 

W'A+ = WaA 

we have 

I (w'A+,a\/(hs) ) 1< (A+,a\/(hs) ) 

for any A+EA +. If 

(w'A+,av h/(hs) ) >0, 

then from 

A+ - w'A+ = ~kaiaj, (kaiEZ+, ajEB), 

and a V h/(hs) EA + the inequality (3.11) follows. 
Assume now 

(w'A+,a\/(hs» <0. 

Then 

I (w'A+,a\/(hs» 1= - (w'A+,a\/(hs» 

= (sah/(hS) w' A + ,av h/(hs) ) 

(3.9) 

(3.10) 

( 3.11) 

( 3.12) 

(3.13) 

(3.14) 

(3.15 ) 

where Sa is the Weyl reflection associated with the root 
hl(ks} 

ah/(hs)' The proof is complete. 0 
Comment: We have observed that Proposition 3.1 can 

also be obtained by combining Lemmas 2, 4, and 5 in Ref. 12. 
It has also been rediscovered in Ref. 17 (Lemma 3.6). 

The present formulation seems to be more transparent 
than the previous ones; we have included our proof for the 
sake of clarity and self-consistency. 

Remark 1: The highest bound (A,aV h/(hs) ) for I (A,aV j) I 
is effectively attained, i.e., for any representation (A) there 
exists a weight AEll(A) for which the equality in Eq. (3.1) 
holds. 

Remark 2: For the fundamental representations Aj of 
any ofthe classical Lie algebrasA n , Bn, Cn, andDn we have 
(Aj,aV hi) < (AjOav hs) <2. 
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Proposition 3.2: Let AEll (A) and let a j be a simple root. 
Let A + pj (A )aj and A - qj (A )aj be the maximum and the 
minimum elements, respectively, of an a j string through A. 
The non-negative integers pj (A) and qj (A) satisfy the rela
tions 

(3.16 ) 

if a j is a long (short) root and ah/(hs) has the same meaning 
as given previously. 

Proof: Let us observe that 

A + pj(A)ajEll(A), A - qj(A)ajEll(A). (3.17) 

Therefore, in Eq. (3.1) we can consider A + pj (A )aj in
stead of A. Recalling that (aj,aV j) = 2'Pj(A»0, qj(A»O, 
and taking into account Eq. (2.11), we obtain 

(A,a\/(hs) ) > I (A,aV j) + 2pj (A) I 
= (A,aV j) + 2Pj(A) = Pj(A) + qj(A). (3.18) 

o 
Corollary 3.3: For any AEll(A) and any long (short) 

simple root a j the following inequalitites hold: 

(3.19) 

Proposition 3.4 gives sharper higher bounds for pj (A) 

and q/(A). 
Proposition 3.4: Let (A) be an irreducible representation 

of a semisimple Lie algebra L. For any weight AEll (A) and 
for any long (short) root a j of L the inequalities 

Pj(A)<U«A,a\/(hs» - (A,aV j»], (3.20) 

(3.21 ) 

hold, where [x 1 denotes the largest integer with the property 
x-[xl<l. 

Proof' Equation (3.20) results directly from Eq. (3.18). 
Let us introduce in Eq. (3.1) A - qj(A)aj instead of A. We 
obtain the following relations, similar to Eqs. (3.18): 

I (A,aVj) - 2qj(A)1 = - (Pj(A) + qj(A» 

(3.22) 

from which Eq. (3.21) follows. 0 
Application: Let us observe that for any semisimple Lie 

algebra aVhl<avhs' Hence, if A is a minuscule weight, be
cause the expression of a v hi as a linear combination of simple 
coroots [ (2.6) 1 has non-negative integer coefficients, we ob
tain from Eq. (2.19) that 

(3.23) 

From the property (2.18) of the minuscule weights we ob
tain, usingEqs. (3.20) and (3.21), that 

if (A,aVj) =0, then Pj(A) =qj(A) =0; 

if (A,aVj) = 1, then Pj(A) = 0, qj(A) = 1; 

if (A,aVj) = - 1, then Pj(A) = 1, qj(A) = O. 

We thus prove the remarks that conclude Sec. II D. 
Proposition 3.5: Letaj be a long (short) root of the semi

simple Lie algebra L; let A, OEA + be dominant weights of L 
with the property 

(O+p,aVj) = (O,aV
j ) + l>(A,av

hs(hS» (3.24) 
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and let AEII (A) be a weight of representation (A) such that 

(A + O,aV
j ) >0. (3.25) 

Then 

Pj(A).;;;(O,aV j ), (3.26) 

qj(A)';;;(A + O,aVj)' (3.27) 

Proot From Eqs. (3.24) and (3.25) we obtain 

(O,aV
j ) +!>!«A,a\/(hs» - (A,aV

;). (3.28) 

Taking the integer part of both sides ofEq. (3.28) and using 
Eq. (3.20) we obtain the first inequality. The second in
equality results from using Eq. (2.11). 0 

Remark 3: The sharper result (3.20) leads to a sharper 
inequality than the use of inequalities (3.24) and (3.19). 

IV. KRONECKER PRODUCTS 

The present section points out the role of the highest 
long and highest short roots in several theorems concerning 
Kronecker products. The extremum properties for the 
weights of a representation, which have been derived in Sec. 
III, will be essential for the proofs of these theorems. 

Another result that will intervene in the proofs is the 
PRY theorem on Kronecker products.9 The proof of the 
PRY theorem does not appeal to Weyl's formula for the 
characters; the theorem is transparent and easy to apply. 

With the aid of these instruments we shall give simple 
proofs to several important theorems of Klimyk,1O Fein
goldl2 (in a slightly more general formulation), and Dyn
kin.11 

A. The PRV theorem. 

Let L be a semisimple Lie algebra of rank n; let H be a 
Cartan subalgebra of L; and, for each simple root a j of L, let 
ha be the element of H defined by the equality a j (hu) 

, J 

= (aj,aV
j ). Let xa,' Ya" h.u" i = 1,2, ... ,n be the generators 

of L satisfying the relations 

[hu"xuj ] = (aj,a
V j )XUj' 

[ hu" YUj] = - (aj,aV j )YuJ' (4.1 ) 

[Xu" Yu,] = hu" [XU" Yuj ] = 0, if i# j. 
We shall state the PRY theorem in the formulation giv

en in Ref. 22 and using the notations introduced in Sec. II A. 
The PRY theorem: Let (A) and (0) be finite-dimen

sional irreducible L modules of the semisimple Lie algebra L 
of rank n. Let (A,A.) be the subspace of the weight vectors of 
weight A in (A) and let (O,A,A) be the subspace of (A,A) 
defined by 

i= 1,2, ... ,n}. (4.2) 

Then the Clebsch-Gordan reduction of the tensor product 
module (A) ® (0) may be written as 
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(A) ® (0) = EB (dim(O,A,A.»(A + 0) 0(4.3) 
,len(A) 

A +OeA+ 

Let us remark that the dimension of the space (A,A.) is 
the internal multiplicity of the weight AEII(A); the PRY 
theorem states that the external multiplicity ofthe irreduci
ble compoennt (A + 0) of the Kronecker product 
(A) ® (0) is equal to the dimension of the subspace 
(O,A,A) of (A,A). 

B. Klimyk's theorem1o 

For a generic Kronecker product (A) ® (0) in the con
ditions of the PR V theorem the inequality 

dim ( O,A,A ) .;;; dim ( A,A ) ( 4.4 ) 

holds. The following question a~ses. 
What condition ensures that the inequality (4.4) be

comes an equality for all the weights AEII (A) for which 

A + OEA +, (4.5) 

i.e., under what condition does the value of the external mul
tiplicity dim (O,A,A.) coincide with the internal multiplicity 
dim(A,A)? 

From the definition of the coefficients pj (A) it is clear 
that 

X/,(,l)v#o, x/'(,l) + IV = O. 

Thus in order to have 

dim(O,A,A.) = dim(A,A.) 

it is sufficient that for all i = 1,2, ... ,n, we have 

Pj(A).;;;(O,aV j ). 

(4.6) 

(4.7) 

(4.8) 

However, the inequality (4.8) issatisifed (Proposition 3.5) 
for any a j = long (short) simple root provided that 

(O,aV
j ) + 1> (A,avh/(hS) ). (4.9) 

We can thus state the following proposition. 
Proposition 4.1: Let A and 0 be two dominant weights of 

a semisimple Lie algebra L which possess the property 

(0 + p,aV j»(A,avh/(hS) } (4.10) 

for any long (short) simple root a j of L. Then the Kronecker 
product (A) ® (0) admits the decomposition 

(A) ® (0) = EB m A (A)(A + 0), ( 4.10 
-ten(A) 

,l+OeA+ 

where m A (A) = dim (A,A) is the internal multiplicity of the 
weightAEII(A). 0 

Proposition 4.1 is a different formulation of a theorem 
attributed to Klimyk. 10 

Indeed, Klimyk's theorem 10 states that the equality 
( 4.11) holds provided that 

A + 0 + pEA +, [for any AEII(A)], (4.12) 

i.e., provided that A + 0 + P is a dominant weight. Condi
tion (4.12) may also be written as 

(A. + n + p,aV
j ) >O[for any ,1,EII (A) and 

any i = 1,2, ... ,n]. 
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However, from condition (4.10) and Proposition 3.1 we ob
tain 

(4.14 ) 

from which Eq. (4.12) follows. 
Let us now prove that, conversely, Eq. (4.10) results 

from Eq. (4.12), i.e., from the validity of the inequalities 

(.0. + p,aV ;» - (A,aV
;) (4.13') 

for any AeII(A) and any i = 1,2, ... n: The validity of Eq. 
(4.13') for any AeII(A) implies that 

(4.15 ) 

Equation (4.15) proves the perfect equivalence between 
Proposition 3.6 and Klimyk's theorem. 10 

Remark 1: For each particular type of classical Lie alge
bras, Klimyk has deduced explicit expressions for condition 
( 4.12). Similar expressions for the exceptional Lie algebras 
have been found by Zaccaria. 23 Equation (4.10) represents a 
unified form for all these conditions. 

The following proposition is important for its applica
tions 

Proposition 4.2: If (A) is a minuscule representation of a 
simisimple Lie algebra L, then condition (4.10) is satisfied 
for any finite-dimensional irreducible representation (.0.) of 
L. 

Proof: Minuscule representations are characterized 
[Sec. lID, (iv)] by the equation (A,a\.) = 1. Recalling 
Eq. (3.24), the inequality (4.10) becomes 

(.0. +p,aV
;) = (n,aV

;) + 1>1, (4.16) 

which is satisfied for any AeA + . 0 
Remark 2: Equation (4.10) and its consequence Eq. 

(4.16) show that the termp introduced by Klimyk in Eq. 
(4.12) is essential for pointing out the special role played by 
minuscule weights in Kronecker products. 

Corollary 4.3: The Kronecker product (A) ® (.0.), in 
which (A) is a minuscule representation and (.0.) is a finite
dimensional irreducible representation of a semisimple Lie 
algebra, decomposes into a Clebsch-Gordan series contain
ing the irreducible representations which have as highest 
weights the set of weights 

{A. + nIAeII(A)}nA +, (4.17) 

i.e., the dominant weights that result by translating with .0. 
the weight diagram of representation (A). All the compo
nents of the Clebsch-Gordan series have multiplicity 1. 

Remark 3: Formula (4.17) for a Kronecker product in 
which one of the factors is a minuscule representation has 
also been pointed out by KasS.24 

Explicit expressions for the sets of weights II (A) for all 
semisimple Lie algebras that possess minuscule weights are 
given in Appendices A and B. 

Comment: The following PR V conjecture has recently 
been proved by Kumar25

: His proof makes use of the alge
braic geometry of Schubert varieties. 

The PR V conjectures25
: Let L be a finite-dimensional 

complex semisimple Lie algebra with the associated Weyl 
group Wand let (A) and (.0.) be two finite-dimensional 
irreducible representations of L with highest weights A and 
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.0., respectively. Then for any we W the irreducible represen

tation ( .0. + wA) occurs with a mulitplicity of at least 1 in 
the product (A) ® (.0.). We have denoted 

.0. + wA = {n + wAlweW}nA +. (4.18) 

In other terms, the PRY conjecture states that 

NCG (A,n»#{ .0. + wAlweW}, ( 4.19) 

where #{M} denotes the cardinal number of the set M and 
NCG (A,n) the number of terms in the Clebsch-Gordan se
ries of (A) ® (.0.). 

Let us now remark that for AMW = minuscule weight 
Corollary (3.8) of Klimyk's theorem lO shows that 

(4.20) 

i.e., that in this case the inequality of the PRY conjecture 
becomes an equality. 

C. Feingold's theorem 

The PR V theorem and the inequalities for the weights of 
a representation, as derived in Sec. III, can also be used to 
give a simple proof for the following theorem attributed to 
Feingold. 12 

Theorem: Let L be a semisimple Lie algebra of rank n. 
Let A, .0. be dominant weights of L (A,neA +) and let (A), 
(.0.) be the corresponding irreducible representations. Let us 
assume that for the long (short) simple root a; of L, 

(n,aV
;) > (A,a\/(hs) ). (4.21 ) 

Then if 

(A)®(n)= Ell mr·(r) (4.22) 
reA+ 

[mr = mulitplicity of the representation (r)], we also have 

(A)®(n+A;)= Ell mr·(r+A;). (4.23) 
reA+ 

Proof: The PR V theorem enables us to write the Kron
ecker product (A) ® (.0.) using Eqs. (4.3) and (4.2). To 
derive Eq. (4.24) we have to prove that the Clebsch-Gordan 
series 

(A) ® (.0. + A;) = Ell (dim(n + A;,A,A» 
AEII(A) 

A + 0.+ A,EA+ 

(4.24) 

has the same number of distinct terms as the Clebsch-Gor
dan series (4.3) and the same multiplicities, i.e., that 

{AeII(A) IA + neA +} = {AeII(A) IA + .0. + A;eA +} 
(4.25) 

and 

dim(n + Ai'A,A) = dim(n,A,A) (4.26) 

for any AeII(A), for which A + neA + and A + n + A; 
eA+. 

Let us first prove Eq. (4.25); to do that we shall prove 
that if condition (4.21) is satisfied and if 

(A + n,aV
j ) <0 (4.27) 

for any j = 1,2, ... ,n, then 
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(4.28) 

for any j. For the labelsj#i the two inequalities are equiva
lent. Let us assume that j = i and suppose that inequality 
(4.27) is true and inequality (4.28) is false, i.e., assume that 

(A. + 0 + A;,aV
;) = O. (4.29) 

Let us observe that from Eqs. (4.29) and (2.11) we obtain 

(O,aV
;) =p;(,,1,) -q;(,,1,) -l';;;p;(,,1,)';;;(A,a\/(hS»' (4.30) 

in contradiction with Eq. (4.22). 
Let us now prove that Eq. (4.21) leads to Eq. (4.25), 

i.e., that for the simple root a; for which Eq. (4.21) holds, 

{VE(A).) Ix; (0 + Ai + p,aYi>v = O} 

={VE(A).)lx~o+p,aY,) v=O}. (4.31) 

For this simple root a;, 

(0 + p, + A;.aV
;) > (O,aV;);> (A,a\/(hs) );>p;(,,1,), (4.32) 

i.e., for this value of ithe two sets in Eq. (4.31) are equal. 0 
Remark 4: Feingold's theorem 12 has also been obtained 

by Sakane and Takeuchi (Ref. 17, Theorem 3.4). 
Let us assume that in Eqs. (4.21) and (4.22) we take 

A = O. In this case, Eq. (4.21) can hold only as an equality: 

(A,aV
;) = (A,a\/(hs»' (4.33) 

with a; = long (short) simple root. The equality (4.33) can 
be considered as an equation determining the pairs {a;.A} 
which satisfy it. 

It is remarkable that the weights A that are solutions of 
Eq. (4.33) are the "Okubo partners"S,7 of the minuscule 
weights and -for the algebras B~ and Cn - also the minus
cule weights themselves. For the reader's convenience we 
recall that the "Okubo partner" of a minuscule representa
tion (A) is a finite-dimensional representation (0) such 
that the Kronecker product (A) ® (0) decomposes into 
two irreducible components. 

Equation (4.33) has been discussed by Sakane and Ta
keuchi 17 in connection with the problem of the determina
tion of the Kahler manifolds, which are Hermitian symmet
ric spaces and are embedded into a projective space by 
second-degree polynomial defining equations. 

In connection with this problem, let us observe that the 
Okubo partners that resulted above as solutions of Eq. 
(4.33) have been found by Cavalli et al. IS as solutions of the 
problem of embedding the Hermitian symmetric spaces as 
orbits of the highest weight vector of an irreducible represen
tation of a compact semisimple Lie group. Feingold's 
theorem 12 admits the following immediate generalization. 

Proposition 4.4: As before, let A and 0 be dominant 
weights of the semisimple Lie algebra L and let Eq. (4.22) 
describe the decomposition of the Kronecker product ofthe 
representations (A) and (0) in irreducible components. If 
for a long (short) root a; of L the inequality (4.21) is satis
fied, then for an kEZ + , the following decomposition holds: 

(A)®(O+k;)= $ m(r)(r+kA;). (4.34) 
reA + 

Proof: If the dominant weights A and 0 satisfy the in
equality (4.21), then A and 0 + kA; (kEZ +) will satisfy it 
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as well: The proof of Eq. (4.34) is identical to the proof of 
Eq. (4.23). 

Assume now that A is a minuscule weight, i.e., that 
(A,aV hi) = (A,aV hs) = 1. We obtain the following corollary 
to Feingold's theorem. 12 

Corollary 4.5: Let L be a semisimple Lie algebra of rank 
n and let A be a minuscule weight of L. Let OEA + be a 
dominant weight of L subject to the condition (O,aV;);> 1, 
but otherwise arbitrary. Then if the Kronecker product 
(A) ® (0) admits the decomposition ( 4.22), the Kronecker 
product (A) ® (0 + kA;) admits the decomposition (4.34) 
for any i = 1,2, ... n and for any kEZ +. In particular, assum
ing that 0 is the fundamental weight A; and A is a minuscule 
weight, condition (4.21) is satisfied, so that the decomposi
tion 

(A)®(A;)= $ mr(r) (4.35 ) 
reA + 

implies the validity, forany i = 1,2, ... ,n of the decomposition 

(4.36) 

D. Dynkln's theorem11 

In this section we point out that the PR V theorem can be 
used to prove the following result attributed to Dynkin,l1 
which gives the expression of (the highest weight of) a repre
sentation-different from the Cartan (stretched) represen
tation-and which is contained in any product of two irredu
cible representations (A) and (0) of a semisimple Lie 
algebra. 

The importance of Dynkin's result is that the Cartan 
and Dynkin representations are the only irreducible repre
sentations that appear in the Kronecker product of any non
trivial two irreducible representations of any semisimple Lie 
algebra. In other words, if the Clebsch-Gordan series of a 
Kronecker product (A) ® (0) has length 2, then this series 
is composed of the Cartan and Dynkin representations only. 

Let us state (a part of) Dynkin's theorem. 
Theorem II: Let (A) and (0) be two finite-dimensional 

irreducible representations of a semisimple Lie algebra L, 
which are labeled by the dominant weights A and 0, respec
tively. Let a l,a2, ... ,ak be a system of simple roots of L which 
"connects" the highest weights A and 0, i.e., which pos
sesses the properties 

(A,aV
I) #0, (A,aV

2) ='" = (A,a\) =0, (4.37) 

(a;.aV
; + I ) #0, (i = 1,2, ... ,k - 1), 

(a;.aV
j ) = 0, if j> i + 1 (for any i), 

(O,aV
I) = (0,aV

2) = ... = (O,a\_I) = 0, 

(O,aV
k ) #0. 

(4.38 ) 

(4.39) 

(4.40) 

(4.41) 

Then the Kronecker product (A) ® (0) contains the repre
sentation (0 + A'), where A' is the weight defined by 

A'=A-al-a2-"'-ak' (4.42) 

The multiplicity of the representation (0 + A') in the de
composition of (A) ® (0) is 1. 
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We shall call 0 + A' a Dynkin weight and (0 + A') a 
Dynkin representation. 

The proof of the theorem will use the following lemma, 
attributed to Dynkin and the PR V theorem. 

Lemma ll
: Let (A) be a finite-dimensional irreducible 

representation with highest weight A, v A the corresponding 
highest weight vector, and a l ,a2, ••• ,ak a chain of simple 
roots with the properties (4.37)-(4.39). Then using the no
tations (4.1), we have 

(4.43 ) 

and 

(4.44) 

ifthe permutation (i1,i2, ••• ,ik ) =1= (1,2, ... ,k). 0 
It is easy to see that the weight A' En (A) defined by Eq. 

(4.42) has internal multiplicity equal to 1. The weight 
( 4.42) results by applying a product of Weyl reflections 
(which conserves the internal multiplicity) to the highest 
weight. 

Let us also observe that the coefficients Pi (A') associat
ed [cf. Eq. (2.10)] totheweightA'definedbyEq. (4.42) 
have the values 

PI(A') = P2(A') = .. 'Pk-I (A') = 0, (4.45) 

Pk(A') = 1, (4.46) 

Pk+I(A') =Pk+2(A') = ... =Pn(A') =0. (4.47) 

Using the commutation relations (4.1) we obtain 

xak(YakYak_' "'Ya,vA ) 

= - (ak-t,a\)Yak_,Yak_2 "'Ya,vA =1=0 (4.48) 

because of Eq. (4.39). Again using Eqs. (4.1) we obtain 

X2 (Y Y "'Y v ) -0 (4.49) ak ak ak~ I at A - • 

This proves Eq. (4.46). Equations (4.45) and (4.47) result, 
in a similar way, from using Eqs. (4.1), (4.39), and (4.44). 

Let us now consider the weight A' defined by Eqs. 
(4.37)-( 4.42); let (A,A') be its weight vectors subspace (cf. 
Sec. IV A). We have to prove that for any VE(A,A'), 

({} + p,aVj) 0 Ii . 1 2 
Xj v =, or any J = , , ... ,n. (4.50) 

Forj < k Eq. (4.41) leads to 

(0 + p,aV

j ) = 1 (4.51) 

and the equalities ( 4.45) imply that Xj v = 0 for 
j = 1,2, ... ,k - 1. Let us consider j = k and observe that be
cause (O,a\) =1=0, we obtain 

(0+p,a\»2 (4.52) 

and, since Pk (A') = 1, this implies 

({} + p,a
V 

k) 0 
X k V= . (4.53 ) 

Finally, for j> k, Eqs. (4.47) hold and since in this case 
(0 + p,aV

j ) > 1, Eq. (4.50) is again satisfied and the proof is 
complete. 0 

V. KRONECKER PRODUCTS WITH MINUSCULE 
REPRESENTATIONS 

The minimum length of the Clebsch-Gordan series of 
the Kronecker product of two nondegenerate finite-dimen-
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sional irreducible representations of a semisimple Lie alge
bra is 2. As already stated, the Clebsch-Gordan series of 
length 2 contain only the two "standard" representations: 
the Cartan and the Dynkin representations. 

It is also to be expected that the Kronecker factors lead
ing to Clebsch-Gordan decompositions oflength 2 be repre
sentations with remarkable properties. 

In the present section we prove that for a classical Lie 
algebra, the number Nco (A,O) of terms in the Clebsch
Gordan series of a Kronecker product (A ® (0) attains the 
minimum Nco (A,O) = 2 if A is a minuscule weight and 0 
is an integer multiple of a fundamental weight associated 
with the minuscule weight A and called its "Okubo partner." 

Proposition 5.1: (i) If a Kronecker product (A) ® (0) 
of two finite-dimensional irreducible representations of a 
classical semisimple Lie algebra decomposes into two irre
ducible components, then one of the factors is a minuscule 
representation. 

(ii) ForthealgebrasBn , Cn , andDn the Okubo partners 
(0) associated with the minuscule representations (A) are 
shown in Table II. 

Similar results are valid for the algebras of type An; they 
result from the direct application of the multiplication of 
Young tableaux and are pointed out in Table I. 

The proof of Proposition 5.1 is based on the following 
lemmas. 

Lemma 5.2: Let A, 0, 0' be dominant weights. The 
decomposition of the Kronecker product (A) ® (0 + 0') 
contains any representation (A. + 0 + 0') with A.En(A), 
A. + 0 + O'EA +, with a mUltiplicity larger or equal than the 
multiplicity of the representation (A. + 0 )EA + in the de
composition of (A) ® (0). 

Proof Along with the notations of Sec. IV A, let 
VE(A,A.) and OEA + such that 

({} + p,a
V
) 0 Ii . 1 2 

Xj v = , or any J = , , ... ,n. (5.1 ) 

Equation (5.1) implies that for any O'EA +, 

({} + {}' +P.aVj) 0 Ii . 12 (52) 
Xj v = , or any J = , , .. ,n, . 

from which, from the PR V theorem, the stated inequality 
between the multiplicities results. 0 

Corollary 5.3: Let Nco (A,O) be the number of terms in 
the Clebsch-Gordan decomposition of the Kronecker prod
uct (A) ® (0) and let A; be fundamental weights of the 
semisimple Lie algebra L. Then 

Nco (A;,Aj)<..Nco (A; + Ak,Aj ) • (5.3) 

TABLE II. The Okubo partners (n) associated with the minuscule repre
sentation (A) for the algebras Bn, Cn, and Dn' 

Algebra Minuscule weights Okubo partners 

Bn An kA,(k= 1,2 .... ) 
Cn A, kAn(k= 1,2, ... ) 

Dn A, kAn _ "kAn (k = 1.2, ... ) 
An_, ,An kA,(k = 1,2, ... ) 
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The Kronecker products with the shortest Clebsch
Gordan series therefore have to be sought among the prod
ucts of fundamental representations. 

Lemma 5.4: Let (Ai) and (AJ ) with l<i<j < n be two 
fundamental representations of a Lie algebra of type en. The 
decomposition ofthe Kronecker product (Ai) ® (Aj) con
tains the representations (Aj _ i)' which is a Dynkin repre
sentation only for i = 1 and j = n. 

Proof: Inspection of the Cartan matrix of en points out 
that (denoting again simple roots by ai ) 

a l +a2+ ... +ak=AI+Ak-Ak+ l • (5.4) 

Equation (5.4) proves the existence of the following chain, 
with k < n and a decreasing sequence of the labels of the 
simple roots: 

ak ak_t 

Ak -+ Ak _ I - Ak + Ak + I -+ Ak _ 2 - Ak _ I + Ak + I 

ak_ 2 a l 

-+ ... -+ - AI + Ak _ I' (5.5) 

Using Dynkin's lemma (Sec. IV D) we can prove that each 
element of this chain is either the start or end of an a i string, 
i.e., no element is "traversed" by any other string. This is 
essential for the application of the PR V theorem. We thus 
have 

Ak - (ak + ak_1 + ... + a2 + al) = - AI + A k+ I . 

(5.6) 

Similarly, 

- AI + A k+ I - (ak+ I + ak + 

= - A2 + A k + 2 , (5.7) 

-A2 +Ak+ 2 - (ak+ 2 +ak+1 + ... +a3 ) 

= -A3 +Ak+ 3 , (5.8) 

and, finally, from 

a n_ k +an_ k+ 1 + ... +an_1 

= -An +An_ 1 +An _ k -An_ k _ 1 (5.9) 

we obtain 

-An_ k _ 1 +An_ 1 - (an_I +an_ 2 + ... +an_ k ) 

= -An _ k +An. (5.10) 

The following weights [which belong to n (Ak ) ] : 

Ak,Ak+ 1 -AI' A k+ 2 -A2, ... ,An -An_ k (5.11) 

are, as a result of the same Dynkin lemma, either the start or 
the end of an ai string. The representations Ak of en being 
self-contragredient, the same property is true for the follow
ing set of weights which belong to n (Ak ): 

-Ak' -Ak + 1 +AI, -Ak + 2 +A2, .. ·, 

- An + A n _ k • 

Therefore, application of the PRY theorem gives 

(A k ) ® (A k ) 3 (Ao) , 

(A k ) ® (Ak + 1 )3(A I ), 
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(5.12) 

(5.13) 

where (A) ® (B) 3 (e) means that representation (e) be
longs to the Clebsch-Gordan series of the Kronecker prod
uct (A) ® (B). 

By applying this procedure successively to the represen
tations (AI)' (A2 ), ... ,(An) we obtain the general result 
(k + i<n): 

(5.14) 

It is easy to prove that Ai is not a Dynkin weight if k i= 1 
and k + ii=n. We have, indeed, 

Ak+Ak+i-(ak+ak+I+'" +ak+i) 

=Ak-I+Ak+i+Ii=Ai . (5.15) 

If k = 1 and k + i = n, then a I + a 2 + ... + an 
=AI-An_ 1 +An and AI +An -l:?=lai =An_ 1 is a 

Dynkin weight. 
Lemma 5.5: Let (Ai) and (Aj) with l<i <j <n - 1 be 

fundamental representations of a Lie algebra of type B n' The 
decomposition of the product (Ai) ® (Aj) contains the rep
resentation (Aj _ i)' which is not a Dynkin representation. 
The products (An) ® (Ai) (i = 1,2, ... ,n - 1) contain the 
representation (An)' which is not a Dynkin representation 
except for i = 1. We also have (An) ® (An) 3 (Ao). 

PrOOF Inspection of the Cartan matrix of Bn and a rea
soning similar to Lemma 5.4 show that the weights 

- A k, - A k+ I + AI' - A k+ 2 + A2, .. ·, 

-An_I +An_ k _ 1 (5.16) 

are either the end or beginning of a i strings and are not 
traversed by any string. Applying the PR V theorem to these 
weights proves that 

(Ak)®(Ak+i)3(Ai~' for i=O,1,2, ... ,n-k-1. 

(5.17) 

It can be proved that none of the weights 
(Ao),(AI), ... ,(An _ k- I) are Dynkin weights for the corre
sponding Kronecker products. 

Let us now recall that An is a minuscule weight for Bn. 
All the weights of representation (An) have multiplicity 1 
and each weight is either the beginning or end of a i strings. 
Observing that 

An - (an + an_I + ... + a l ) = An - AI' 

An - AI - (an + an_I + ... + a 2 ) = An - A2 , 

An -An_2 - (an +an_ l ) =An -An_I' (5.18) 

and applying the PR V theorem we obtain 

(An) ® (AI) 3 (An) 

= Dynkin representation for (An) ® (AI) , 

(An)®(Ai)3(An) 

i=Dynkin representation for (An) ® (Ai) , 

for i = 2,3, ... ,n - 1. 

Since - AnEn(An) we have (An) ® (An) 3 (Ao). D 
Lemma 5.6: Let (Ai) and (Aj) with l<i<j<n - 2 be 

two fundamental representations of a Lie algebra of type D n 

(n;;;.4). The Clebsch-Gordan series of the Kronecker prod
uct (Ai) ® (Aj) contains the representation (Aj _ i)' which 
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is not a Dynkin representation. We also have, for i<,n - 2, 

and 

(An)®(Ai)3(An), ifi=2k, 

(An) ® (Ai) 3 (An _ I ), if i = 2k + 1 , 

(An_I)®(Ai)3(An_I)' if i=2k, 

(An _ I )®(Ai )3(An), ifi=2k+l, 

(5.19) 

(5.20) 

(5.21 ) 

(5.22) 

(5.23 ) 

Proof: In a similar way as for the algebras C nand B n we 
can prove that for i = 0,1,2, ... ,n - 2, 

(5.24) 

Let us consider now the spinorial representations (An _ I ) 

and (An). The following equalities hold: 

(5.25) 

(5.26) 

(5.27) 

(5.28) 

(5.29) 

Application of the PRV theorem gives 

(An) ® (AI) 3 (An_I)' (An-I) ® (AI) 3 (An) . (5.30) 

In Eqs. (5.30) (An_I) and (An) are Dynkin representa
tions in the products (An) ® (AI) and (An_I) ® (AI), re
spectively. Relations (5.19)-(5.22) result from Eqs. 
(5.26) - (5.29) by application of the PRV theorem. The 
representations (An _ I ) and (An) are not Dynkin represen
tations in the corresponding Kronecker products. 

To prove Proposition 5.1 let us recall that the decompo
sition of the Kronercker product of any two irreducible fi
nite-dimensional representations contains two "standard" 
irreducible components: the Cartan (stretched) and Dyn
kin representations. The Kronecker products whose decom
positions contain a representation that is neither Cartan nor 
Dynkin have to be excluded in our search for pairs offunda
mental weights {A;oAj }, for which the product (Ai) ® (Aj) 
decomposes into two irreducible terms. From the previous 
analysis these pairs are the following: 

{AI,An}, for Bn, Cn ; 

{AI,An_ I}, {AI,An}, for Dn. 

Let us now recall that An is a minuscule weight for Bn; 
Al is a minuscule weight for Cn; and AI' An_I' and An are 
minuscule weights for Dn. Using Corollary 4.5 to Feingold's 
theorem (Sec. IV C) this enables us to conclude that 
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NCG (AI,An) = NCG (kAI,An) = 2, 

(k = 1,2, ... ) for Bn, 

NCG (An ,AI) = NCG (kAn ,AI) = 2, 

(k = 1,2, ... ) for Cn , 

NCG (AI,An_ l ) = NCG (kAI,An_ l ) 

=NcG(Al>kAn_ l ) =2,(k= 1,2, ... ), 

NCG (AI,An) = NCG (kAI,An) = NCG (AI,kAn) = 2, 

(k = 1,2, ... ) for Dn 

APPENDIX A: THE WEIGHTS OF THE MINUSCULE 
REPRESENTATIONS OF THE CLASSICAL LIE 
ALGEBRAS 

o 

In this section we give analytic expressions for the 
weights of the minuscule representations of the classical Lie 
algebras of arbitrary rank. 

1. Algebras of type An 

For the algebras oftypeAn the minuscule weights are all 
the fundamental weights A I,A2, ... ,An. Using Dynkin's lad
der procedure for the derivation of the weights of a represen
tation from its highest weight and Eq. (2.2) we obtain by 
induction the analytic expression for the weights of the fun
damentalrepresentations (Ak) (k = 1,2, ... ,n) of the Lie al
gebra An; these weights are 

- Ai, + Ai, + I - Ai, + Ai, + I - .. , - Ai
k 

+ Ai
k 
+ I , 

(AI) 

with O<,i l < i2 < .,. < ik <,n and the conventions Ao = 0 and 
An+ 1=0. 

In orthogonal coordinates EI ,E2, ... ,En ,En + I the expres
sions of the weights of the minuscule representation (A k ) of 
An are 

k n+1 

E· + E· + .,. + E· - -- L E·, (A2) 
I, I, 'k n + 1 j = I J 

with 1 <,i2, ... < i k <,n + 1. The number of weights of repre
sentation (A k ) of the algebra An is thus (~+I), a well
known result. 

Let us also observe that the weights of the representa
tion (An + I _ k) are obtained from those of the conjugated 
representation (Ak ) by reversing the signs of the weights of 
the last representation. 

2. Algebras of type Bn 

Algebras of type Bn admit only one minuscule weight: 
An. Again using the step-down procedure, we obtain the 
following set of weights for the representation (An): 

± [Ai, -Ai, + Ai, -Ai. + ... 
+ (-l)k- IA

ik 
+ (-I)kA n ], (A3) 

with 1 <,il < i2 < ... < i k <,n - 1 and k = 0, 1,2, ... ,n - 1, 
where, for k = 0, the expression of the weights between the 
square brackets reduces to zero. 

The expression of the set of weights (A3) in orthogonal 
coordinates Ei (i = 1 ,2, ... ,n) is 

M. losifescu and H. Scutaru 275 



                                                                                                                                    

(A4) 

without any coherence between the plus and minus signs. 
The number of weights of representation (An), calcu

lated from Eq. (A3), is 

3. Algebras of type en 
Algebras of type en have only one minuscule weight: 

AI' The set of weights of representation (AI) is 

{± [ - A; + A;+ I] Ii = 0,1,2, ... ,n - 1}, (AS) 

with the convention Ao = O. 
In orthogonal coordinates the set of weights (AS) has 

the expression 

{ ± E; Ii = 1,2, ... ,n}. (A6) 

4. Algebras of type On 

Algebras of type Dn have three minuscule weights: AI' 
An _ I' and An· The set of weights of the representation (AI) 
is 

{± [A; - A;_I], i= 1,2, ... ,n - 2,n, 

± [An + An - I - An - z1 }, (A7) 

with Ao = 0; altogether, 21 weights. In terms of orthogonal 
coordinates, the set of weights (A 7) is 

is 

{ ± E; Ii = 1,2, ... ,n}. (AS) 

The set of weights of the representation (An) for n odd 

{ 
'+'+ +.+ k[ k ] 11<_il<i2<"'<ik<n-2,}, ( - 1) I, I, ... Ik n - J.L= I ( - l)j A~ + ( - l) k + I An 

k - 0,1,2, ... ,n - 2 

{ [ 
k ] 1 1 <_il <i2< ... <ik<n - 2,}. U (_l);'+;'+"'+n+k+1 J.L=I (-l)jA;j + (-l)k+ IA n _ 1 

k - 0,1,2, ... ,n - 2 
(A9) 

In terms of orthogonal coordinates, the set of weights (A9) becomes 

1 ~ 1 ~ ( 1 )6;, ( 1 2 ) 1 ~ ( 1 )6;, + 6u - £.. E;, - £.. - E;, S = , , ... ,n, - £.. - Eo 2 ;= I 2 ;= I 2 ;= I 
(s,t = 1,2, ... ,n; s < t). (AW) 

The set of weights of the representation (An _ I) for n odd is obtained from the set of weights (A9) by reversing, for the same 
n, the sign of each weight. 

The set of weights of representation (An) for n even is 

The set of weights of the representation (An _ I) for n even is 
obtained from the set of weights (A 11) by permutating An 
with An _ I and keeping the rest of the terms and conditions 
unchanged. 

The sets (AW) and (All) contain 

[(n - 2) (n - 2) (n - 2)] 2 0 + 1 + ". + n _ 2 = 2n
-1 

terms. 

APPENDIX B: THE WEIGHTS OF THE MINUSCULE 
REPRESENTATIONS OF THE EXCEPTIONAL LIE 
ALGEBRAS 

The only exceptional semisimple Lie algebras that ad
mit minuscule representations are E6 and E7 • Using Bourba

I 

(mod2)l 

(All) 

ki's notations, the algebra E6 admits the minuscule represen~ 
tations (AI) and (A6); the algebra E7 admits the minuscule 
representation (A7 ). 

We shall enumerate the weights belonging to a given 
representation by separating with solidi the weights belong
ing to different levels of the representation; the various levels 
of a given representation are presented in sequential order, 
beginning with the level of the highest weight; and different 
weights within the same level are separated by commas. 

For the algebra E6 we shall present only the list of 
weights of representation (A I) because the list of weights of 
(A6) is obtained from the list of weights of (AI) by simply 
changing the signs ofthe former. 

The weights of representation (AI) are listed below. Re
call that dim (AI) = dim(A6) = 27: 

AI/ - Al + A3/ - A3 + A4/ A2 - A4 + As/ - A2 + As,A2 - As + A~ - A2 + A4 - As + A6, 

A2 - A~ A3 - A4 + A6, - A2 + A4 - A~ Al - A3 + A6, A3 - A4 + As - A6/ - Al + A6, 
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Al - A3 + As - A6• A3 - As/ - Al + As - A6• Al - A3 + A4 - As/ - Al + A4 - As. 

Al + A2 - A4/ - Al + A2 + A3 - A4• Al - A2/ A2 - A3• 

-AI -A2 +A3/ - A2- A3 +A~ -A4+AS/ -As+A~ - A~. 

This table of weights and the corresponding table of weights of representation (A6 ) (obtained from the previous by 
reversing signs) allow us. using Corollary 4.3. to write the following Kronecker products for the Lie algebra E6: 

(AI) ® (AI) = (2AI) Ell (A3) Ell (A6). (AI) ® (A2) = (AI + A2) Ell (As) Ell (AI)' 

(AI) ® (A3) = (AI + A3) Ell (A4) Ell (AI + A6) Ell (A2). 

(AI) ® (A4) = (AI + A4) Ell (A2 + As) Ell (A3 + A6) Ell (AI + A2) Ell (As). 

(AI) ® (As) = (AI + As) Ell (A2 + A6) Ell (A3) Ell (A6). (AI) ® (A6) = (AI + A6) Ell (A2) Ell (Ao). 

(A6) ® (A2) = (A2 + A6) Ell (A3) Ell (A6). (A6) ® (A3) = (A3 + A6) Ell (AI + A2) Ell (As) Ell (AI), 

(A6) ® (A4) = (A4 + A6) Ell (A2 + A3) Ell (AI + As) Ell (A2 + A6) Ell (A3). 

(A6) ® (As) = (As + A6) Ell (A4) Ell (AI + A6) Ell (A2). (A6) ® (A6) = (2A6) Ell (As) Ell (AI)' 

as well as. similarly, any other Kronecker product of the form (AI) ® (O) or (A6) ® (O) for any dominant weight 0 of E6• 

For the algebra E7 the minuscule representation (A7) of the Lie algebra E7 (dim (A7) = 56) has the following set of 
weights: 

A7/A6 - A7/AS - A~A4 - As/A2 + A3 - A4/ - A2 + A3, Al + A2 - A3/AI - A2 - A3 + A4, 

- Al + A2/AI - A4+ As, - Al - A2+ A~AI - As + A6• - Al +A3 -A4 + As/AI -A6 +A7, 

- Al + A3 - As + A6• - A3 + As/AI - A7, - Al + A3 - A6 + A7, 

- A3 + A4 - As + A~ - Al + A3 - A7• - A3 + A4 - A6 + A7, 

~-~+A~-~+~-~ ~-~+~-~+~ 

- A2 + A~ A2 - A4 + As - A7, A2 - As + A7, - A2 + As - A6 + A7/ - A2 + As - A7, 

A2 - As + A6 - A7• - A2 + A4 - As + A7/ - A2 + A4 - As + A6 - A7• A2 - A6, 

A3 - A4 + A7/ - A2 + A4 - A6, A3 - A4 + A6 - A7, Al - A3 + A7/ A3 - A4 + As - A6• 

Al - A3 + A6 - A7, - Al + A7/ A3 - As. Al - A3 + As - A6, - Al + A6 - A7/ Al - A3 + A4 - As, 

- Al + As - A~ Al + A2 - A4, - AI + A4 - As/AI - A2• - AI + A2 + A3 - A4/ - AI - A2 + A3• 

A2 - A3/ - A2 - A3 + A4/ - A4 + As/ - As + A~ - A6 + A7/ - A7/' 

Using this list of weights and Corollary 4.3, we can write the following Kronecker products of the fundamental represen-
tations of the Lie algebra E7: 

(AI) ® (A7) = (AI + A7) Ell (A2) Ell (A7), (A2) ® (A7) = (A2 + A7) Ell (A3) Ell (A6) Ell (AI)' 

(A3) ® (A7) = (A3 + A7) Ell (AI + A2) Ell (As) Ell (AI + A7) Ell (A2), 

(A4) ® (A7) = (A4 + A7) Ell (A2 + A3) Ell (AI + As) Ell (A2 + A6) Ell (A3 + A7) Ell (AI + A2) Ell (As), 

(As) ® (A7) = (As + A7) Ell (A4) Ell (AI + A6) Ell (A2 + A7) Ell (A3) Ell (A6), 

(A6) ® (A7) = (A6 + A7) Ell (As) Ell (AI + A7) Ell (A2) Ell (A7). (A7) ® (A7) = (2A7) Ell (A6) Ell (AI) Ell (Ao). 
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Left-invariant Brownian motions on nilpotent Lie groups are studied. Their characterization is 
given through Ito or Stratonovich stochastic differential equations, their generators are 
exhibited and the associated heat semigroups are studied. A reduction formula is given for 
these semigroups and their kernels, as integrals of products of normalized random Gaussian 
densities. 

I. INTRODUCTION 

The study of Brownian motion and diffusion processes 
on Lie groups has a long story. Already in 1928 Perrin stud
ied Brownian motion on SO(3) and Brownian motion on 
U (1) was studied in details by P. Levy in 1939. I Starting 
from the 1940s probability laws on (locally) compact 
groups were studied extensively, see, e.g., Refs. 2 and 3 and 
references therein. The systematic study of homogeneous 
processes on Lie groups was started by Hunt in 1956,4 who 
used infinitesimal generator methods combined with proba
bilistic methods. Yosida5 brought into this study new analyt
ic tools. 

Methods of stochastic differential equations were intro
duced in work by 1t06 and by Mc Kean (see Ref. 7 and 
references therein) , and much work has been done since, see, 
e.g., Refs. 8-21, and references therein. 

For some applications of the study of stochastic pro
cesses on Lie groups in classical physics see, e.g., Refs. 19 
and 20. The study of diffusion processes on Lie groups is also 
of importance in relation to certain problems of quantum 
mechanics, see, e.g., Refs. 21 and 22 and references therein. 

In particular, motions on Lie groups arise directly in 
connection with spin particles, but also in a more indirect 
way in the study of models related to gauge fields (chiral 
models, (T models) and general relativity. A method for 
quantizing such motions is precisely to construct the heat 
kernel and the associated processes on the manifolds. 

The study of the relations between quantum mechanics 
and classical mechanics also can be looked upon as the prob
lem of controlling the heat kernel in the limit of small diffu
sion. Such problems, and related ones of small time asymp
totics of heat kernels, have been studied quite extensively on 
a general level, see, e.g., Refs. 21, 23-29. Specific studies in 
certain groups, where the heat kernel is known explicitly, 
have also been done, see, e.g., Ref. 22 for compact groups 
and certain other homogeneous spaces (see also Refs. 30-
32). Such studies are also of relevance in filter theory, see, 
e.g., Refs. 33 and 34 and references therein. In this paper we 
shall examine, somewhat with this point of view in mind, the 
case of nilpotent Lie groups. 

Certain degenerate hypoelliptic differential operators 
on special Lie groups have been studied quite extensively as 
examples of hypo elliptic differential operators, see Refs. 25, 
35-38. In our paper we shall examine the case of nondegen
erate elliptic diffusion generators on general nilpotent Lie 
groups and obtain recursion resp. explicit formulas for the 
heat kernel. 

In Sec. II we describe the natural left-invariant Brow
nian motion with drift on a Lie group, the associated genera
tors, and semigroups. 

In Sec. III we analyze the specific features of left-invar
iant Brownian motion with drift on a nilpotent Lie group 
and the properties of the associated semigroups. In particu
lar we give a representation of the Laplacian on such groups 
and show the equivalence of the Ito and Stratonovich equa
tions defining left-invariant Brownian motion on such 
groups. 

In Sec. IV we study in more details the heat semigroup 
on nilpotent Lie groups and their kernels. In particular we 
give a recursion formula for reducing the computation of the 
heat semigroup on nilpotent Lie groups of order n(n - 1 )/2 
to the one for such groups of order [(n - 1) (n - 2) ]/2. We 
also exhibit the heat semigroup kernel as an integral of a 
product of normalized random Gaussian densities. 

In Sec. V we study some examples and make some com
ments about the study ofthe small time behavior of the heat 
semigroup kernels. 

II. LEFT-INVARIANT BROWNIAN MOTION ON A LIE 
GROUP AND ASSOCIATED SEMIGROUPS 

Let us consider left-invariant Brownian motion (with 
drift) on an arbitrary Lie group G, following, e.g., Ref. 18, V. 
35, p. 234. Let VET. G ~g and let B be a Brownian motion on 
Rn and let B m be its mth component. Let 

(2.1) 

with 'T m ,m = 1 ..... n a basis of g. Then Z is a (left-invariant) 
process (Brownian motion) on the additive Lie group Te G. 
We make the convention of summing over repeated indices. 
A left-invariant Brownian motion X(t). tER+ on G, with 
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drift given by v, is defined as the existent and unique solution 
of the stochastic differential equation in Stratonovich sense 

aJ(x(t» = (LmJ)(XCt»aBm + (LvJ)(XCt»at, (2.2) 

for any /EC"'(G), with given X(O), where Lv is the left
invariant vector field that takes the value v at the identity e of 
G; Lm is the unique left-invariant vector field associated with 
the element 'T m E.g; and a means Stratonovich differential. 
The above equation (2.2) is often written for short as 

X-I ax = az. (2.3) 

It is also said that X is obtained by product-integral injection 
of Z. (cf. also Ref. 7). For v = 0 we have left-invariant 
Brownian motion on G without drift. 

The characterizing properties of left-invariant Brow
nian motion (with drift) XCt) on G are: (i) continuity of 
paths; (ii) (X,- IXs+ "t;;pO) is independent of 
{Xr ,r..;;s} 'o's;;p0; (iii) for each s;;pO the processes 
{X,- IXs+ "t;;pO} and {X"t;;pO} are identical in law. It is well 
known (by classical work of Yo sid a, Hunt, and others) that 
each Brownian motion on G is a Feller-Dynkin diffusion 
process (in particular strong Markov) on G. Its infinitesimal 
generator has the form 

1 n 2 
if =- L (Lm) +Lv· 

2 m= I 

(2.4) 

The corresponding Feller-Dynkin semigroup P, =e':£,t;;PO 
has the property: P, is a strongly continuous semigroup of 
linear operators on the space Co( G) of bounded continuous 
functions on G vanishing at infinity (looking upon G as a 
locally compact space) s.t., Oq..;;1 ..... 0..;;P,j..;;1, Po is the 
identity on Co( G) andP,j ..... / as no, 'o'/ECo( G), the conver
gence being in sup-norm. 

Any such semigroup has a (normal) transition function 
P, (x,dy)s.t. 'o't;;PO, 'o'XEG, P, (x,) is a measure on G (with its 
Borel structure), P, (x,G) ..;; 1 'V t;;pO, and P, ( . ,n is Borel 
measurable from G to R; the Chapman-Kolmogorov equa
tion holds; one has Po(x,·) = Ox (.) and 

(P, J) (x) = f P, (x,dy)/(y) 

'o'/bounded measurable on G. 
Since {Lm,m = 1, ... ,n} is a basis ofg~ TxG'o'XEG, H6r

mander's hypoellipticity condition (see, e.g., Ref. 18, V. 38, 
p. 253) is verified, hence P, (x,dy) has a density P, (x,y) with 
respect to Haar measure, for each t > 0, xEG, and p ( . , . , . ) is a 
C'" function on (0,00) X G X G. Moreover p satisfies Kol
mogorov's forwards and backwards equations and 

lim fpCt,X,y) /(y)dy =/(x). 
nO 

The transition semigroup P, and transition density function 
P, ( .,.,) are left-invariant in the sense that P, = e'.!f and if 
commutes on C '" (G) with thegeneratorsLm , m = 1, ... ,n of 
left translations. 

Everything said until now concerning left-invariant 
Brownian motion and left-invariant transition semigroups 
can be repeated accordingly for right-invariant Brownian 
motion, defined by right-invariant vector fields and accord
ingly right-invariant transition semigroups. 
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Let us now introduce a metric on G. The canonical dif
ferential form (Maurer-Cartan form) w on G is by defini
tion the left differential of the identity map on G. It is thus a 
Lie-algebra-valued one-form and for each xEG we have the 
left invariance 

w(x)hx = x-Ihx' hxETxG (2.5) 

(with x-Ihx standing for the image of hxETxG under the 
left translation induced by x- I ). 

Let 'T;, 1..;; i..;; n, be a basis of the Lie algebra g. Then we 
can write 

n 

w(x)hx = L w~ (x)'T;. (2.6) 
i= 1 

withw~ (X)ER. Wehavew~ (x) = (hx,w;), withw;E(TxG)*. 
It is natural to introduce the following left invariant 

metric on G. A metric y on G is defined naturally by giving 
on Tx G, 'V xEG the scalar product obtained by left translation 
from the scalar product on Te G ~g, which is the one coming 
from R n (using the vector space structure of gas R n and the 
Euclidean scalar product in Rn). 

Denoting by ( , ) x the scalar product at xEG we then 
have ('T;,'Tj)e = oij and for hx,h ~ETxG, 

(hx,h~)x = (x-Ihx,x-Ih~)e 

= (w(x) h x ,w(x)h ~ ) e 

n 

= L w~ ,w/, ('T;,'T) e 
;= 1 

(2.7) 

This gives a metric yon Gwhich is by construction left invar
iant. (G,y) is then a Riemannian space. 

With respect to this Riemannian metric the Laplace
Beltrami operator is defined by 

(2.8) 

with .fY=~det y, with yijyjk = o~ and a;=alax; in local 
coordinates x, according to the general definition of La
place-Beltrami operator on a Riemannian manifold. By the 
choice of the above left invariant metric we have 

(L;,Lj)y = oij. 
It follows then, see Ref. 18 (p. 217), that 

A = mtl (Lm)2 - Ct/:'m )Lr, 
with 

2k ; = ; + k + j 
jk -cjk cij C ;k' 

C;k being the structure constants such that 

[Lj,L k ] = C;k L ;. 

(2.9) 

(2.10) 

(2.11 ) 

(2.12) 

The Brownian motion with drift on the manifold G with 
metric y (as a stochastic process generated by the Laplace
Beltrami operator) coincides with the above left-invariant 
Brownian motion on G, if we take 

(2.13 ) 
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Remark: We can also express l>. in local coordinates 
x = (xl, ... ,xn

) on Gby 
A jk i ~ = Y (Djk - rjkDi ), 

with 

a a a 
Djk =-.-, Di =-., 

ax} axk ax' 
i _ ·1 

r jk =~ 1" (DjYlk + Dk Yo - DIYjk) 

(the Christoffel symbols associated with the metric Y) (cf., 
e.g., Ref. 18, p. 216). 

III. LEFT-INVARIANT BROWNIAN MOTION AND ITS 
GENERATOR ON NILPOTENT LIE GROUPS 

Let g be a solvable Lie algebra over the complex resp. 
real numbers. By Ado's theorem there exists a faithful (i.e., 
injective) representation 11" of g in a (finite dimensional) 
complex vector space V #{o} (e.g., the adjoint representa
tion) [see, e.g., Ref. 39 (VI, § 2, p. 202]. It is possible to 
choose in Va basis such that all operators (endomorphisms) 
11"(1), leg are given by upper triangular matrices, i.e., matri
cesA of the formA ik = 0, i < k [see, e.g., Ref. 40 (2.3, Cor. 2, 
p. 402), Ref. 41 (III, Cor. 2.3) ]. Nilpotent Lie algebras are 
special cases of solvable Lie algebras, and they have (finite 
dimensional) faithful representations in a complex vector 
space V #{o} with a basis such that 11"(I),leg are given by 
upper triangular matrices with elements on the diagonal be
ing zero [this is part of Engel's theorem, see, e.g., Ref. 41, 
Chap. III, Th. 2.4 (p. 135)]. IfGisa nilpotent connected Lie 
group, by using the above form of a faithful representation of 
its Lie algebra g together with the fact that the exponential 
mapping is a diffeomorphic (analytic) bijective map from g 
onto G, we see that on any nilpotent connected Lie group one 
can introduce a coordinate system (one single chart) such 
that any element AEG can be represented faithfully by a ma
trix of the form A = «X

ik
», X ik = 0 for i < k, Xii = 1 

Vi = 1, ... ,n, if n is the dimension of G. To study nilpotent 
groups it is therefore sufficient to study the group of matrices 
of this form. Similarly, in the case of solvable Lie groups of 
exponential type, the exponential mapping is a surjective dif
feomorphism, see, e.g., Ref. 42, p. 120. Hence we can para
metrize also in this case any AEG in a single chart by matrices 
of the form A = «Xik» with Xik = 0 for i < k. 

We shall now consider Brownian motion without drift 
on a nilpotent Lie group G. As we saw above it suffices to 
consider the case where G is a matrix group. 

Lemma 3.1: On a nilpotent Lie group G the Laplace
Beltrami operator l>. defined in Sec. II is given by 

l>. = a;yjaj . 

Proof From Sec. II we have that the left-invariant vol
ume form on G is given by Wi /\ w2 

/\ ... /\ w n
• By the defini

tion of the metric on Gby Lie exponentiation of the one given 
on g, we have that Wi /\ w2 

/\ ... /\ wn is obtained by exponen
tiating to G the Riemann-Lebesgue volume element on g, 
the Jacobian determinant being 

det(dyexp), y=exp-I x , xEG 

(exp being the exponentiation fromg to G). 
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By a known formula, see. e.g., Ref. 43 (XIX, 16, p. 219), 
we have 

det(dyeXP)=det[i: 1 (ad(-xw]. (3.1) 
p=O (p+ I)! 

Using the well-known formula 

det A = exp tr In A (3.2) 

we have that the rhs is equal to 

00 1 
exp trln L (ad( - x»)P. 

p=O (p + 1)! 
(3.3 ) 

But by using the representation of G by upper triangular 
matrices .I;=o [1/(p + 1)!](ad( -x»)P is of the form 
1 + B, where B is upper triangular with zero on the diag
onal. 

Using In(l + B) = .I;,= I [( - 1)n+ l/n]B n we get 

tr In (1 + B) = 0, (3.4) 

since tr B n = O. Introducing this into (3.1) and (3.2) we 
then get 

det(dy exp) = 1, (3.5) 

which by the above yields that the volume element 
Wi A ... Awn on G is the same as the one in the Lie algebra g. 

By definition of the Haar measure on G we then have 
..fY = 1. Introducng this into the general formula (2.7) for 
the Laplace-Beltrami operator l>. the lemma is proven. • 

From Sec. II we have the relation 

(3.6) 

and l>. coincides with the infinitesimal generator of the left
invariant Brownian motion on G with drift 
vq = - ~.Imk ~m In our case 

(3.7) 

Let us now consider the upper triangular matrix realiza
tion of G given above. A left-invariant vector field LA. on G 
corresponding to the element Aeg is given by, with 
x = «xii »EG, i <j, ij = 1, ... ,N and N(N - 1 )/2 = n 

(L.J)(x) = L(xA)ii~f(x) (3.8) 
i<j ax/} 

for any fEeoo (G). 

In particular then, for the basis element Ea of g in the 
direction a = 1m, l< m, [i.e., (Elm )ii = bi/bjm ], denoting by 
Lim the corresponding left-invariant vector field on G, we 
have 

~ ir( ) a 
= "'- X Elm rj a. ii 

l<r X 
i<j 

(3.9) 

Introducing this into the expression (3.6) for l>. we get the 
representation 
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a= I(Ixil~)2 - I(I k rs
) I xir~ 

I<m ;<1 ax,m r<s a aa i<r<s ax'S 
(3.10) 

(with k ':a,r<s,l<;.r<s<;.N denoting the set of numbers 
k ~a' 1 <;.r<;.n introduced before, now using the new basis in g 
as a matrix algebra). 

Lemma 3.2: 

'" (L )2= "'('" xjlxil) a
2

. L 1m L L a. Jma. ,m I<m iJ,m I<m X X 

I a (I } ./) a = -- xix' --. 
iJ,m aX

jm 
I aX

im 

Proof: From (3.9) we have, with 1< m 

(L f = ('" xii ~)(", Xi/~) 
1m 7 axlm ~ ax,m 

= XlO·O --+ Xl X' ----I { ·1 a ·1·1 a
2 

} 

iJ Jl ml aXim aXjm aXim 

I ·1·1 a2 

= XlX'----
iJ axim aXim ' 

where in the last equality we used that 1< m, hence Oml = o. 
Summing now the above equality over m and I with 1< m we 
get the first equality in the lemma. The second equality fol
lows by observing that by the same argument as above we 
have 

(L )2 = '" ~(XjlXil)~ 
1m f: axlm ax,m 

and we then sum again over 1< m. 
Lemma 3.3: We have 

vrs = _l.- '" k rs =0 2 L Im,lm 
I,m 

• 

(with the present realization of g as a matrix algebra and v, k 
defined accordingly as in Sec. II), 

Proof: By definition of the structure constants we have, 
with I <m,p <q, r<s: 

Introducing the expression (3.9) for Lim we get then c~:",pq 
= 0 unless r = I, s = q or r = p, s = m. In these cases we 

have c:'!n,pq = omp, dl;::'pq = - Oql Inserting these values in 
the definition of v and k b..,lm the lemma is proven. • 

Proposition 3.4: For the Laplace-Beltrami operator on 
the nilpotent group G with the metric described above and 
the given realization as matrix algebra we have: 

= -- x'X --. I a (L ·1 iI) a 
iJ,m axim 

1 aX
im 

Proof This is immediate from (3.6) and the above two 
lemmas. • 

From the metric given in Sec. II we have that the left 
invariant vector fields Lim are mutually orthogonal, with 
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our choice of the basis Elm in g. The matrix elements of the 
metric Y with respect to the base Elm are given by 

Yln,rm(X) = I (X-I)kl(X-I)krOmn' 
k<r 
k<1 

with XEG. More precisely, these are the matrix elements of Y 
with respect to Eln' Erm . The inverse matrix to Y is given by 

ykm,ln(x) = I xkrxlrOmn' 
r 

By the formula (3.7) for the Laplace-Beltrami operator on 
the nilpotent group G we have then, using this expression for 
y- I : 

Proposition 3.5: 

a = I akm ykm,ln a 1n = I akm L XkrXlr aim' • 
k<m k<m 
I<n I<m 

Remark: This coincides with the expression for a given 
in Proposition 3.4. In deriving that proposition we used 
(3.6). The derivation of the latter proposition together with 
the two lemmas give an alternative direct proof, in our repre
sentation for G nilpotent, of (3.6). 

The above results show in particular, that the Brownian 
motion with generator a in the case of nilpotent groups has 
zero drift. Hence, by the discussion of Sec. II, in such a case 
the Brownian motion with generator a is the solution of the 
Stratonovich equation (2.2), i.e., 

x-Iax=az 

with Z = Bm T m the Brownian motion (with zero drift) on 
the Lie algebra. This equation coincides with the Ito equa
tion 

dX=XdZ, 

with d the Ito differential. This is so since the generator :f of 
X has no first-order term, in this case, as follows from its 
expression (2.3), v = 0, as computed above (Lemma 3.3 and 
Lemma 3.2). Hence we have proven the following theorem. 

Theorem 3.6: Let G be a nilpotent Lie group, faithfully 
represented as a matrix group of upper triangular matrices. 
Then, the Laplace-Beltrami operator a on G is given as a 
sum of squares of vector fields: 

as given in Propositions 3.4 and 3.5. 
Here, ~a is the infinitesimal Markov generator of the 

stochastic process, left-invariant Brownian motion on G, 
given by the unique solution of the Stratonovich equation 

X-I aX=aB, 

or equivalently the Ito equation 

dX=XdB, 

with B the Brownian motion on the Lie algebra. 
Remark: A corresponding result concerning a on a 

compact Lie group (or a Lie group with unimodular Lie 
algebra) being given by a sum of squares of left-invariant 
vector fields was established by analytic methods in Ref. 44. 
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IV. THE HEAT SEMIGROUP AND ITS KERNEL ON 
NILPOTENT LIE GROUPS 

Let Gbe a nilpotent Lie group and letX(t), teR+ be the 
Brownian motion on G discussed in Sec. III. Let P, be the 
corresponding Feller-Dynkin strong Markov diffusion se
migroup discussed in Sec. III, i.e., 

(PJ)(x) = Ex (f(X(t») , (4.1 ) 

for any feC 0' (G), where Ex is the expectation of X started at 
xeG. Here, P, has ~a, with a the Laplace-Beltrami operator 
on G, as its generator. We call Pt the heat semigroup on G. 
Let us now consider the matrix realization of G discussed in 
Sec. III. Then x = «xii», with xii = 0 for i>j, Xii = 1, 
xiieR, 1<i<j<N, N(N - 1)/2=n. Using this global para
metrization of G,J can be considered as a function on Rn 

• Let 
us first study P J for I of the following form. 

Let Y (R) be the set of functions h that are Fourier 
transforms of complex measures f.lh on R, so that 

(4.2) 

Here, Y (R) is a Banach algebra with the norm 

IIh 110= IIf.lh II = total variation of f.lh 

see e.g., Ref. 45. We havethatY(R) nu (R) is dense in all 
LP(R), l<p< 00 and in Co(R) [since it contains, e.g., 
Schwartz test function space Y (R)]. Let Y n be the algebra 
of functions obtained by taking all linear combinations of 
functions of the form 

n 

h(AI, .. ·,An ) = II hi(Ai ), with hieY(R)Vi. 
;=1 

Here, Y n is again a Banach algebra with norm 
n 

IIh 110= lI,uh, • .. ··,uhnll< II lI,uh, II· 
i=1 

It is easily seen that Y n n u (R n ) is dense in 
LP(Rn )Vl<p< 00 and in Co(Rn

). 

For 

I(x) = II /;j(xii)eYn 
1<:i<j<:N 

we have 

(P,.f)(x) = Ex (f(X(t))) =Ex [ II lii(Xii(t»]. (4.3) 
I <:i<J<:N 

The Ito equation that determines X, given in Sec. III 
(Theorem 3.6) 

dX=XdB 

can be written, using the components X ii of X and B ij of B: 

dXij=IXiidBlJ 
I<j 

(4.4 ) 

with i <j. In particular, using X lm = 0 for I> m, xmm = 1, 
B NN = 0 (since Beg and g is nilpotent): 

N-I r 
XiN(t) = XiN(O) + J-i Jo Xii dB IN. (4.5) 

We shall consider the initial condition Xii(O) = xij~ with 
xeG. Introducing this into (4.3), we get 

= Ex L<:iJ1N- /ii(Xii(t» f exp (i~t: ajNXjN(t») )1: d,ukN(akN )] 

= Ex L<:iJ1N-1 /;j(Xii(t» f exp (i~tll ajNXjN(O») exp (i~tll ajN ~~; f XjldBIN(S») XJ:: d,ukN(akN)] (4.6) 

with,uiN=,ufiN' We takeXiN(O) to be a.s. constant. By the Fubini theorem (4.6) is equal to 

(4.7) 

By the independence of the Brownian motions B ii, i <j < N - 1 from BIN, I,N - 1 and the structure of the stochastic 
equations for X(t), coming from the fact that X(t) is upper triangular, the integrand depends on BIN, / = 1, ... N - 1, only 
through the terms involving f~X iI dB IN, where X il is independent of B /N. Integrating with respect to the variables BIN, 
k,N - 1 by means ofa well-known formula for Gaussian integration E(exp Z) = exp[!E(Z2)], i.e., in our case, 

E(exp(ti:: ajN Nil rtXjldBIN))=exp(_~ Nil aJN Nfl aJ'N Nil rXjl(S)XJ'I(S)dS) 
j=1 I=J Jo 2 j=1 j =1 l=jVjJo 

(4.8) 

(with E expectation with respect to B/N,/<N - 1), we get 

(4.9) 
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Here we used the notation EN - l,xN _ , 

1 <i<j<N -n. 
for the expectation with respect to the Xij, 1<'; <j<N - 1, with XN_ I =={(xij), 

Let us set 

i' N-I 
Yjj , (t) == 2: XjI(s)XF[(s)ds. 

o [=jVj 

(4.10) 

We can perform the integral with respect to the ajN,j<N - 1 variables if we takefLiN(da) to be an unnormalized complex 
Gaussian measure 

(4.11 ) 

for some TJ> O. In this case 

(P,I)(x) = EN-I,XN_' [ IT lij(Xii(t»[det(217Y)) -1/2 exp( - -.!.. Nil (xjN - X;N )(y-I(t)lu' (Xj'N - X;'N »)], 
1<i<j<N-I 2 j,F=1 

with Yjj,==Yjj , +TJ8jj ,. We remark that y- I exists since Yis a positive matrix and Y>Y. Moreover (det217y)-I/2 
< (217TJ) - (N - I )/2 so that the integrand is bounded and measurable for each TJ > O. The expression under the expection only 
depends on Bik, 1<; < k<N - 1 (where we use again the upper triangular structure of the matrices entering the Ito equation 
dX=XdB). 

Hence we have proven the following proposition. 
Proposition 4. J: The semigroup P, with generator ~a on a nilpotent Lie group G parametrized by upper triangular 

matrices is given on functions/ofthe forml (x) = "l<i<j«N- I) /;j(x ii ), with x = (xij), 1 <i,j<N'/;jEY(R) such that/;j is 
the Fourier transform of a complex measure fLij' by 

where Ex is the expectation with respect to the Brownian 
motion X on G started at xEG, given by 

dX=XdB, 

with B the Brownian motion on the Lie algebra g of G, 

i
' N-I 

Yjj , (t) == 2: XjI(s)Xj'I(s)ds. 
o [=jVj 

Here, EN-I,XN_' is the expectation with respect to the 
Xij(t), l<i <j<N - 1, XN_ I being x without the Nth row 
and the Nth column. If fLiN is of the form 

fLjN(da) = exp( - i lajN l2) 

for some x' EG, then 

(P,/)(x) 

= EN-I,XN_' [ IT .Iij{X ij(t» [det(217Y) ] -1/2 
1<i<j<N-I 

( 
1 N-' 

Xexp - - 2: (x"N - x'jN)(y-I(t»jj' 
2 jJ'=' 

X (x"'N _ X'FN) ) ] 

with Yjj , == Yjj , + TJ8jj ,. • 
We find it convenient at this point to introduce the 
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pinned Brownian motion (Brownian bridge) on the nilpo
tent group G N of order N. Given any two points a, bEGN , the 
pinned Brownian motion conditioned to start at a at time 0 
and to end at b at time t is by definition the probability mea
sure vir,b) defined for any IECb (lRnj),jEN, t,<t2< ... <tj by 

J dv}J·a,b) j{X(t,) , ... ,X(tj » 

==PN(t,a,b)-' J PN(t"a"x I )PN(t2 - t"x"x2) 

j 

.. 'PN(t - tj,xj,b) I(x" ... ,xj ) IT dXk' 
k=l 

( 4.12) 

with P N ( • ,.,.) the transition probability density for the 
group GN. Here, v}J·a,b) gives the transition probability ker
nel for the pinned Brownian motion X( t). 

In terms of this probability measure the formula for the 
heat semigroup P, in the preceding proposition can be ex
pressed as follows. 

Proposition 4.2: Let GN be a nilpotent group of order N. 
Let P :" be its heat semi group as in Proposition 4.1. Let v~ .-'..;) 
be the transition probability for pinned Brownian motion on 
GN _, and let Y(N) be defined by (4.10). 

Then, for any x = «xij), 1 <i<j<N)EGN,[N(N - 1)/ 
2] = n, we have 

(P:" IN )(x) = (P:"- 'f~-, )(x), 

where 
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1* (x·' x) N-I , 

==f dx' dv},:':r"·')(X(· »IN(X') [det(217Y(N»] -1/2 

xexp[ - Wx - x')'(Y(N) )-I(t)(X - X'»], 

with x = (x·,x),x= (xjN, l<j<N-l), (,) meaningsca
lar product in ]RN-I. Moreover, for IN being the Fourier 
transform of the measure (4.11) we have 

1"/,-1 (x·',x) =IN-I (x·')h(x·',x), 

where 

h(x·',x) = f dx' dv},:':·(')(X(·»[det(21TY(N) ]-1/2 

xexp[ - !«x - x')'(Y(N) )-I(t)(X - x'»] 

Proof: The proof is an immediate consequence of Pro po-
sition 4.1 and the definition of VN _ I . • 

Remark: Proposition 4.2 permits us to reduce the com
putation ofthe heat semigroup on GN to the one on GN _ I' 

From the discussion of Sec. II we know that P ~ has a 
smooth kernel absolutely continuous with respect to Lebes
gue measure on GN , i.e., 

(4.13) 

pN( ..... ) is Ceo on (0,00) XGN XGN • 

Now letlN be a function of the product form as in Prop
osition 4.1 and 4.2, i.e., 

IN (x) ==/"lv (x) 

== II lij(xij) Nif r /a}.,xIN 
l<:.i<j<:.N-1 j=1 JR 

X dJ1.jN '1 (ajN ), (4.14) 

with dJ1.jN '1(ajN ) ==exp[ - (11/2) lajN 12 - iajNx'jN]dajN' 
Assumingthe/ij (.) are in Y(R)./"lv(x)dx· converges 

weakly as 11 ~ 0 as a finite measure to 

N-I 
II lij(xij)dx· II 6x'}N(~N) ( 4.15) 

1<:.i<j<:.N-I j= 1 

Then, since pN (t,x, . ) is Ceo , f pN (t,x,y) l"lv (y) dy converges 
as 11--+0 to 

fpN(t,X,(X'.,x'» II !:j(xij)dx'·, 
1<:.i<j<:.N-I 

( 4.16) 

with (x'·,x') ==x'. 
From this and the result of Proposition 4.2 we get the 

following theorem. 
Theorem 4.3: Let G N' P ~ be as in Proposition 4.2. Then 

the kernel of P ~ has a smooth density pN (t,.,.) and we have 
for any x, x'EGN : 

pN(t,x,X') 

= pN - I (t,x. ,x'.) 

X f dv},:':'(')(X('»[ det(21TY(N) ] -1/2 

xexp[ - !«x - x'),( Y(N) )-I(t)(X - x'»], 

where x = (x·,x), X is the pinned Brownian motion on 
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G N _ l' Y( N) is defined in (4.10), and v},:':' (') is defined by 
(4.12). • 

Remark: By repeating the procedure we get an expres
sion for pN (t,x,x') as an integral of a product of normalized 
random Gaussian densities. 

Remark.' The integrand in Y N is a principal 
(N - 1) X (N - 1) minor of the matrix Ykr,lm giving the 
metric on GN (cf. Sec. III), evaluated at X(s). 

Heuristically for Ix - x'i small in Rn andX(s) piecewise 
constant, the above observation together with Theorem 4.3 
makes it plausible that the small diffusion limit of the heat 
semigroup should be given in terms of the geodesic distance 
between x and x', cf. the discussion in Sec. V. 

V. SOME EXAMPLES OF HEAT SEMIGROUPS ON 
NILPOTENT GROUPS 

Let us consider a nilpotent group G whose matrix repre
sentation is by matrices of the form 

(~ ~), XE]R 

( which corresponds to N = 2, n = 1). In this case the sto
chastic equation in Sec. III reduces to dX(t) = dB(t), with 
B the Brownian motion on lR. Then of course X(t) is simply 
Brownian motion on ]R and Theorem 4.3 reduces simply to 

p(t,x,x') = (21Tt) - 112exp ( - IX2~ x'1
2
) . 

In the case N = n = 3 the group GN consists ofall 3 X 3 ma
trices of the form 

o 
This group of matrices is isomorphic to the classical Heisen
berg group of dimension 3, whose Lie algebra is defined by 
the relations [x, y] = - 4z, [x,z] = [y,z] = O. (See, e.g., 
Refs. 25 and 35.) 

In Sec. III we got a realization of this algebra, as the one 
generated by Lim' 1<1 < m<3 with Lim = ~i<i Xil(J /Jxim). 

From Theorem 4.3 we have in this case for t> 0 

p(t,x,x') = (21Tt) -1/2 exp(lXl2 ~tX;212) 

X f dv(t,x 12,xb)(X I2 (t»[det(21TY)] -1/2 

xexp [ - ! (x - x') y-I(x - X')] , 

(5.1 ) 

with 

Y == (t + f~X 12(S)X 12(S)ds f~X 12

t

(s)ds) . 

f~XI2(S)ds 

Here, v (I,X ",x; 2) (X 12 (t» is the probability measure giving the 
distribution of the pinned Brownian motion X 12(t) starting 
at time 0 in x 12, and ending at time tin X;2' This can be 
expressed by 
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X 12(S) = Xl2 + (X;2 - X 12) (sit) + /t q(slt) , (5.2) 

where q(s), SE[O,I] is the Brownian bridge with 
q(O) = q( 1) = 0 (see, e.g., Ref. 29). 

Inserting (5.2) into (5.1) we can replace integration 

with respect to dv(t.x",xt,) by an integration with respect to 
the probability measure df.lq ( .) associated with the Gaus
sian process with zero expectation and covariance 

E(q(s)q(s'» = s(1 - s'), s <s' . (5.3) 

By a direct computation we get 

and 

det 217'Y = (217')2t 2[ 1 + + f (X 12 (s»2ds 

- /2 (f X I2
(S)dSY] (5.4) 

- S~X 12(S)ds ) 

t + S~(XI2(S»2ds . 

(5.5) 

Remark: The above representation (5.1) of the heat se
migroups on the Heisenberg group is useful for the study of 
the kernel as nO. In fact from Schwarz inequality if follows 
from (5.4) that det Y>t 2. 

Moreover in (5.5) we have integrals involving X 12(S) 

and by (5.2) this is a function of sit and /t q(slt). We write 
as a shorthand X 12 for X 12(/t q(slt) ,sit). By changing thes
integration variables in Y into sit = s' we see that p( t,x,x') 

get expressed in terms of X 12(/t q(s'),s'). 

But X I2(/tq(s'),s') depends linearly on /tq(s') and 

inserting this into Y we see that the /t dependence of Y, at 
fixed q in the probability space, is smooth for t> O. The same 
considerations hold for Y -I and [det( 217' y) ] - 1/2 (here we 
use also the above lower bound). Hence, we get that 
(217't) 1/2 exp( /X 12 - X;2/2/2t)p(t,x,x') is given by an expec
tation with respect to the t-independent probability measure 

f.l(q( . » of an integrand that is smooth in /t for almost all 
fixed paths, i.e., of the "Laplace form" 

/ (/X12 - X;2/2) p(t,x,x') = (217't) -3 2 exp - 2t 'h(t) , 

where 

h(t) = f exp( -7(q(·),/t»)dq(.) , 

withj{q(w),/t) C<X> in /t for a.e. ai, with h(' )eC <X> (R+). 
The factor t -3/2 comes from the t -1/2 present in (5.1) 

combined with the t 2 in det 217' Y. Hence, the study of the 
limit tW of p(t,x,x') is reduced to the study of a Laplace 
integral of the form 

To handle this integral one can use the Laplace method in 
function spaces (for such methods in general see, e.g., Refs. 
25,46, and 47). 
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This study of the nO (or, equivalently, the "small diffu
sion limit") is based on the formula in Theorem 4.3 which 
holds for all n. So, in principle, the method can be extended 
to nilpotent groups of arbitrary order. 

This should be confronted with studies of this problem 
for lower n's (e.g., Refs. 25 and 35) and with general (but 
somewhat implicit) results on short time expansions based 
on large deviations and Malliavin calculus, see, e.g., Ref. 48. 
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Inhomogeneous boson realization of indecomposable representations 
of Lie algebras 

Hong-Chen Fu and Chang-Pu Sun 
CCAST (World Laboratory), P. 0. Box 8730, Beijing, People's Republic 0/ China and Department 0/ 
Physics, Northeast Normal University, Changchun, Jilin Province, People's Republic o/Chinaa) 

(Received 5 April 1989; accepted for publication 29 August 1989) 

By making use of the differential realization of Lie algebras in the space of inhomogeneous 
polynomials of a certain number of variables, the corresponding inhomogeneous boson 
realization of Lie algebras is given. A new kind of indecomposable representations of Lie 
algebras are studied on the universal enveloping algebra of Heisenberg-Weyl algebra, its 
subspaces and its quotient spaces. The finite-dimensional representations are naturally 
obtained on the subspaces of Fock space. As an example, the indecomposable and irreducible 
representations of the Lie algebra su(2) are discussed in detail. 

I. INTRODUCTION 

Indecomposable representations of physically relevant 
Lie algebras have been suggested for the description of un
stable particles .• ,Z Gruber and his co-workers studied the 
indecomposable representations of Lie algebras on the uni
versal enveloping algebra of this Lie algebra by making use 
of the purely algebraic method. 3

,4 One of the authors has 
studied the indecomposable representations of Lie algebras 
on the universal enveloping algebra of Heisenberg-Weyl al
gebra, its subspaces and its quotient spaces by making use of 
the homogeneous boson realization (HBR) of Lie alge
bras.5

-
7 In this paper we will study the indecomposable rep

resentations of Lie algebras by making use of the inhomo
geneous boson realization (lHBR) of Lie algebras, which is 
obtained from the corresponding inhomogeneous differen
tial realization (lHDR). 

However, the IHDR of Lie algebras itself is very useful 
in "quasi-exactly-solvable problems of quantum mechanics" 
(QESP) discovered recently.8-11 QESP have been proved to 
be related to the IHDR of Lie algebras. Turbiner has studied 
the one-dimensional QESP by using the IHDR of sl (2) alge
bra,9 and pointed out that a similar procedure for the search 
of multidimensional QESP can be developed if we use the 
IHDR of sl( m) algebra.9 Shifman and Turbiner studied the 
two-dimensional QESP by making use of the IHDR of 
su(2) Xsu(2), so(3), and su(3) algebras. 10 Therefore, the 
IHDR of Lie algebras given in this paper will play an impor
tant role in the search for multidimensional QESP. 

In this paper, the IHDR of Lie algebras is given by gen
eralizing Shifman's discussions in Ref. 11. The correspond
ing IHBR of Lie algebras is obtained with provision for the 
corresponding relation between differential operators and 
creation and annihilation operators of boson states. In com
parison with the HBR given in Refs. 5-7, the IHBR of Lie 
algebras uses creation and annihilation operators less than 
the HBR, and enables us to obtain the finite-dimensional 
representations on the subspaces of Fock space, while in 
Refs. 5-7 we can only obtain the finite-dimensional repre
sentations on the quotient spaces of Fock space. By making 
use of the IHBR of Lie algebras, a new class of in de compos-

a) Mailing address. 

able representations of Lie algebras are studied on the uni
versal enveloping algebra of Heisenberg-Weyl algebra, its 
subspaces and its quotient spaces. As an explicit example, 
the indecomposable representations of su(2) algebra are 
studied in detail. 

Although the IHDR of Lie algebras given in this paper 
looks trivial, we can use its corresponding IHBR to obtain 
various nontrivial indecomposable representations on the 
universal enveloping algebra of Heisenberg-Weyl algebra, 
its subspaces and its quotient spaces. 

The symbols 1;+ and N denote the set of non-negative 
integers and the set of positive integers, respectively. The 
symbol C denotes the field of complex numbers. 

II. FROM IHDR TO IHBR 

A. IHDR of Lie algebras 

Let the basis for the Lie algebra L be all {Tp} that satisfy 
the Lie product [Tp, Tq] = ~ r C;q Tr , where C;q are con
structure constants. Let D be a faithful representation of L 
with dimension m < 00, and let {e.,ez, ... ,em } be the basis for 
a representation space. Then we have 

m 

Tpei = L D(Tp)jiej . (2.1 ) 
j=. 

Since we would like to construct a realization on polynomi
als, we introduce m independent variables {x.,XZ, ... ,xm } and 
identify them with the basis vectors {e.,e2 , ... ,em }: 

x/;::?ei (i = 1,2, ... ,m) . 

Now Eqs. (2.1) and (2.2) imply 
m 

TpXi = L D(Tp )jiXj . 
j= • 

(2.2) 

(2.3 ) 

Equation (2.3) immediately allows us to write the Tp in the 
differential form 

m a 
Tp = L D(Tp )jiXj -. (2.4) 

ij=. ax; 

This realization is obviously valid not only for the first-order 
homogeneous polynomial space with basis {x.,XZ, ... ,xm } 

that carries the representation D but also for the space of nth
order homogeneous polynomials spanned by 
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{X;'X~"'X:lk~1 i k =n, ikeZ+}, (2.5) 

which carries the symmetrized direct product representa
tion 

D s"'n = !D®D® ·:;.®Dl symmetrized. 
v 

(2.6) 

n copies 

In fact, the following equation defines a new realization Ton 
the space of nth-order homogeneous polynomials: 

m 

= X""x'- ( x')x'+ ···x m L I I, T I I, I 
I r- I p r r+ 1m' (2.7) 

r= I 

From Eqs. (2.4) and (2.7) it follows that 

A m a 
Tp = L D(Tp)jrXj - == Tp. (2.8) 

r,j= I aXr 

We call the realization (2.8) on the space of homogeneous 
polynomials the homogeneous differential realization 
(HDR) that corresponds to the HBR given in Refs. 5-7. 

However, we would like to construct the differential re
alization on the space of inhomogeneous polynomials for the 
needs ofQESP. For this purpose we define a new variable: 

51 = xJxm (i = 1,2, ... ,m - I) , (2.9) 

A m-l 

TpX:' = nx:'D(Tp)mm + nx:, L D(Tp)lmSo 
1=0 

........ 1:'1,1:'1, ... l:'lm-, xn 

.....,...~1~2 ~m-I m (

m-I ) L ik = 0,1,2, ... ,n . 
k=1 

Then the linear space 9 spanned by 

(2.10) 

9: {S;'S~"'S:='lx:,I]11 i k =O,I, ... ,n, ikeZ+} (2.11) 

is a space of inhomogeneous polynomials with dimension 

dim9 = ± (m + k - 2)! . 
k=O k! (m - 2)! 

(2.12) 

In fact, we can regard {51 Ii = 1,2, ... ,m - l} as the local co
ordinates of the projective space 

of 

Rn
: {x = [xl, ... ,xm ] Ix1, ... ,xm E R}, 

where R is the field of real numbers. The space 9 is the 
polynomial space with regard to the local coordinates {51 I 
i = 1,2, ... , m - l} of PR m - .. one of whose elements corre
sponds to a polynomial in Rn through the corresponding 
relation (2.10) between the basis for 9 and the basis for the 
space of homogeneous polynomials. 

It is easy to deduce that 

A m-I m-I 

Tp S~ = D(Tp)mkik S~-I + L D(Tp)lkikSI S~-I - D(T#)mmik S~ - L D(Tp)lmik 51 S~· 
1=1 1=1 

Therefore 
A. . m-l . 
T(I:'I,I:'I, ... I:"m-' xn)=nD(T) (1:'I,l:'I, ... I:"m-'xn)+n ~ D(T). 1:'.l:'I,l:'I, ... l:"m-' xn p ~ 1 ~ 2 ~ m -I m p mm ~ I ~ 2 ~ m - I m ~ p 'm~' ~ I ~ 2 ~ m -I m 1=1 

m-I a x (l:' I, l:' I, ... I:' 1m -, xn ) _ ~ D( T ) l:' _ (I:' I, l:' I, ... I:' 1m -, xn ) 
~ I ~ 2 ~ m - 1 m ~ p mm ~ k a'l:' ~ I ~ 2 ~ m - I m 

k= I ~k 

m-Im-I a . 
- L L D(Tp);m SISk a'l:' (5;' s~···s:;=\ x:'). 

k=1 1=1 ~k 

(2.13 ) 

From (2.13) we obtain the desired IHDR on 9: 

(2.14 ) 

It is easy to check the commutation relation 

(2.15) 

It should be noted that n in the basis for 9 is a positive 

integer, and that the x:, is an overall factor. Its existence 
provides the first and second terms in the realization of 
(2.14). However, if we extend the positive integer n to an 
arbitrary real number, we can also check that the realization 
(2.14) with real number n also satisfies the Lie product 
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(2.15), e.g., it is also the differential realization of L. There
fore the positive integer n in (2.14) can be extended to an 
arbitrary real number. 

In comparison to the more difficult situation presented 
in Appendix A of Ref. 11 with su(3) as an example, the 
IHDR obtained in this paper looks very trivial because it 
only covers those representations that are the symmetrized 
direct product of one fundamental representation [e.g., a 
triplet or an antitriplet for su (3)] and are marked by one 
positive integer n. It is well known that the finite-dimension
al (irreducible) representations of semisimple Lie algebras 
are marked by rank L non-negative integers, where rank Lis 
the rank of semisimple Lie algebra L. In order to obtain all 
representations of semisimple Lie algebras in the space of 
polynomials, all the fundamental representations must be 
exhausted. In the product of all the fundamental representa
tions we impose certain additional conditions and then ob
tain the nontrivial IHDR marked by rank L integers, each 
one of which is the number of a fundamental representation 
in the product. However, it is difficult to obtain analytically 
such an IHDR in practice. Because the main purpose of this 
paper is to obtain the indecomposable representations in a 
differential way, we only need the IHBR that corresponds to 
the most trivial IHDR (2.14). In the following discussions 
we will see that the indecomposable representations are 
marked by a certain number of complex numbers involving n 
on the quotient spaces of the universal enveloping algebra of 
Heisenberg-Weyl algebra. 

B. IHBR of Lie algebras 

Notice the corresponding relation between creation and 
annihilation operators of (m - 1 )-boson states {a/, 
a;li=I,2, ... ,m-l} and the operators {s;,a/as;li 
= 1,2, ... , m -l} in g, 

a/ ~s;. a;~a/as;, (2.16) 

and the same commutation relations: 

[a;.a/ ] = OijE, 

[E,a;] = [E,a/] = 0 (E = identity operator), 

(2.17) 

[s;. ~j] = Oij 1, [I,s;] = [ 1, a~;] = O. 

We obtain the IHBR of Lie algebras from (2.14): 
m-I 

B(Tp) =nD(Tp)mm +n L D(Tp);m a/ 
;=1 

m-I 

+ L D(Tp)mkak 
k=1 

m-Im-I 
+ L L D(Tp);ka/ak 

;= 1 k= 1 

m-I 

-D(Tp)mm L ak+ok 
k=1 

m-l m-l 

- L L D(Tp);ma/atak' (2.18) 
;=1 k=1 

When we regard E as 1 we have 
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(2.19) 

Although the IHDR and the IHBR of Lie algebras satisfy 
the same commutation relations, the IHBR can give richer 
representations than the IHDR. In fact, g is isomorphous 
to the subspace ,7 (n), spanned by 

{at;'a2+;""0;~ml-'10) I il,i2, ... ,im_ 1 El+, 

i l +i2+ ... +im_ 1 =0,I,2, ... ,n, aklO) =O}, 

ofthe Fock space,7 with basis 

CT. { +;, +;"" +;m-'IO) I" . l+ v. al 02 - am_I ' 1,'2"", 1m_I E , 

ak 10) = a}. 

The Fock space ,7 is isomorphic to the quotient space 
,7' == (0/1) / J of the universal enveloping algebra 0 of the 
(m - 1 )·state Heisenberg-Weyl algebra K: {o;+ ,0;,E Ii 
= 1,2, ... , m - l} with the PBW basis 

0: {X(r;.s;.t) ==E t ( mIy a;+ r, mIy a;') I r;,s;,t E l+} , 
1=1 1=1 

(2.20) 

where I is a left ideal generated by (E - 1), and J is a left 
ideal generated by {a; Ii = 1,2, ... , m - l}. The space V==O/ 
I with basis 

V: {X(r;,s;) ==X(r;rS;.O) mod I Ir;,s; EZ+}, (2.21) 

which carries therepresentationp[ p(E) = 1] of K, islarg
er than ,7'. Therefore the represenlations of B( Tp) on Vare 
richer than the representations of Tp on g. This is why we 
study the representations by making use of the IHBR, in
stead of the IHDR. 

Comparing with the homogeneous boson realization 
given in Refs. 5 and 6, the IHBR has merit: It only uses 
creation and annihilation operators of (m - 1 )-boson states 
for the m-dimensional faithful representation D of Lie alge
bra L, while the homogeneous boson realization must use 
creation and annihilation operators of m-boson states. 

c. Example: IHDR and IHBR of sl(m) algebra 

We choose the basis for sl (m) algebra as 

{Tij = eij U¥-j = 1,2, ... , m), 

Tk = ekk - e(k+ l)(k+ 1)0 

(k = 1,2, ... , m - 1 )}, (2.22) 

where eij is a mXm matrix with matrix element (eij)pq 
= O;pOjq. The finite-dimensional representation D ofsl(m) 

algebra is chosen as the natural representation, e.g., D( Tij) 
= Tij,D(Td = Tk. By making use ofEq. (2.14) we obtain 

the IHDR ofsl(m) algebra: 

A a 
Tpq = SP - (p¥-q = 1,2, ... , m - 1), 

aSq 

A m-I a 
Tpm = nsp - SP j~1 Sj aS

j 
(p = 1,2, ... , m - 1), 

A a 
Tmq =- (q=I,2, ... ,m-I), (2.23) 

aSq 
A a a 
Tp =sp al: - SP+ 1 ~ (p= 1,2, ... , m - 2), 

':>p ':>p+ 1 
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'" a m-I a 
T m - I = S m - I a;;- - n + .L Sj af;-.. 

!>m-I }~I!>} 

where T + = T 12, T - = Tw and TO = ~ T 1. Equations 
(2.25a) are just the realization adopted by Refs. 8 and 9. 

The corresponding IHBR is 

B(Tpq ) =ap+aq (p=!=q= 1,2,00', m -1), 
m-I 

III. INDECOMPOSABLE REPRESENTATIONS OF LIE 
ALGEBRAS 

B(Tpm) = nap -ap L a/aj (p= 1,2,00.,m-1), 
j~ I 

B(Tmq) =aq (q= 1,2,00.,m-1), (2.24) 

The representation of the Heisenberg-Weyl algebra K 
on its universal enveloping algebra 0 is defined 

m-I 

B(Tm_I)=a;:;_lam_l-n+ L a/aj. 
j~1 

When m = 2 we obtain the IHDR and IHBR ofsH2) alge
bra: 

T + = ns - S 2 ~, T - = ~ , 

"'0 1 d 
T = -T n +s ds' 
B(T+) =na+ _a+2a, B(T-) =a, 

B(TO) = -~n+a+a, 

(2.25a) 

(2.25b) 

p(a/ )X(r;,s;,t) = X(r; + Oij,s;,t), 

p(ak )X(ri>s;,t) = X(ri>S; + O;k,t) 

+ rkX(r; - O;k,S;,t + 1), 

p(E)X(ri>si>t) = X(ri>si>t + 1). 

It induces a representation of K on V = 0/1, 

p(a/ )X(ri>s;) = X(r; + oij's;), 

p(ak )X(ri>S;) = X(ri>s; + O;k) 

+ rkX(r; - O;k,S;), 

p(E)X(ri>sj) =X(ri>s;) [e.g.,p(E) = 1]. 

By making use of the equation 

m-l m-t m-lm-l 

r(Tp)=nD(Tp)mm+ n L D(Tp);mp(a/) + L D(Tp)mkP(ak ) + L L D(Tp);kP(a/)p(ad 
;~I k~1 j~1 k~1 

m-l m-lm-l 

-D(Tp)mm L p(a:)p(ak ) - L L D(Tp)jmp(a;+)p(a:)p(ak ), 
k~1 j~1 k~1 

we obtain the representation r of the Lie algebra L on V: 

m-Im-I m-Im-I 

- L L D( Tp) jmX(rj + O;k + 0ij,s; + O;k) + L L D( Tp) jkX(r; + oij's; + O;k) 
j~1 k~1 j~1 k~1 

m-I m-I 

-D(Tp)mm L X(r; +O;k'S; +O;k) + L D(Tp)mkX(r;,s; +O;k) 
k~1 k~1 

m-lm-l m-t 

+ L L D(Tp)jkrkX(r; -O;k +oij's;) + L D(Tp)mkrkX(r; -O;k,S;), 
j~1 k~1 k=1 

(3.1 ) 

(3.2) 

(3.3 ) 

(3.4) 

It is observed that the value l:7'~11 S; cannot decrease in Eq. (3.4). Thus each non-negative integer N defines a r-invariant 
subspace VIN) of V with basis 

VIN): { X(ri>s;) I ~II s;>N, ri>s; E Z+} , (3.5) 

for which no invariant complementary subspace exists. Thus the representation (3.4) on Vis indecomposable. The represen
tation subduced on every V is also indecomposable. 

It is easy to see that there exists an invariant subspace chain of the space V: 

V= VIO) :::> VII) :::> V(2) :::> •.• :::> VIN) :::> •••• (3.6) 

Correspondingly, there are quotient spaces VIN,K) = VIN)/VIN+K): 

VIN,K): { Y(r;,s;) = X(ri>s;)mod VIN+Kl IN.;;; :~II s;.;;;N + K - 1}, NE Z+, KEN. (3.7) 

The representation on V IN I can induce a representation r on V IN,K I. When K> 2, the representation r on V IN,K I is indecom
posable. When K = 1, the representation ron VIN.Il becomes 
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m-Im-I m-I 

+ L L D(Tp)jkrkY(rj -{jjk + {jij,Sj) + L D(Tp)mkrkY(rj -{jjk,Sj) 
j=1 k=1 k=1 

( 

m-I ) .L sj=N . 
1=1 

(3.8) 

It is noted that the values Sj (i = 1,2, ... , m - 1) do not change. Thus every set (SI,S2"'" Sm _ I) that satisfies the condition 
l:7'=1 1 

Sj = N defines a f-invariant subspace V[~:!! ..... Sm_ ,) with basis 

V[~:!! ..... Sm_I): { Y(rj,sj) E V[N·1J1 ~~II Sj =N,sl,s2,,,,,sm_1 are fixed} . (3.9) 

The representation on V[N.IJ is completely reducible: 

V[N.IJ = L <& V[~:!! ..... Sm_I)· (3.10) 
(s •• s::! .... , Sm _ I) 

(l:r=-lls;=N) 

When n is not a non-negative integer, the representation subduced on every V [~:!! ..... Sm _ I) is irreducible. When n E Z+, it is 

obvious that there exists an invariant subspace V [~:!! ..... Sm _ I) (n) of V [~:!! ..... Sm _ I) , 

with the dimension 

n (m + k - 2)! 
dim V[~:!L ... Sm_') (n) = k~1 k! (m _ 2)! ' 

(3.11 ) 

(3.12) 

for which no invariant complementary subspace exists. Thus the representation subduced on V [~:!! ..... Sm _ ,) is indecompos
able. The subspace V [~:!! ..... Sm _ ,) (n) carries a finite-dimensional irreducible representation. 

The relation {aj - Aj IAj E C,i = 1, ... , m - 1} generatesaleftidealJ' of V. For the quotient spaceY' = V IJ',alsocalled 
the Fock space, a basis can be chosen as 

(3.13) 

The representation (3.4) on V induces a representation on Y', 

m-tm-l m-lm-l 

- L L D(Tp)jmAkX(rj+{jjk+Dij) + L L D(Tp)jkrkX(rj-Djk+Dij) 
k=1 j=1 j=1 k=1 

(3.14 ) 

which is an infinite-dimensional irreducible representation for the case with Aj :;60. When Al = A2 = ... = Am _ I = 0, Eq. 
(3.14) becomes 

r(Tp)X(rj ) = ( n - ~~II r j ) JI

I 

D(Tp)jmX(rj + Dij) + ~~II :~II D(Tp)jkrkX(rj - Djk + Dij) 

+ :~II D(Tp)mkrkX(rj -Djk ) +D(Tp)mm ( n - ~: r k )x(rj ). 

The representation (3.15) is equivalent to the representation 
on every V [~:!! ..... Sm _ ,)' When n EI: Z+, (3.15) is an infinite
dimensional representation. When n E Z+, (3.15) is an inde
composable representation in which there exists a finite-di
mensional irreducible representation on the invariant 
subspace of Y', 
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Y'(n): {X(rj) Ey'l "tIl rj<n, rj EZ+}, 
with dimension 

dimY'(n) = i (m+k-2)! 
k=O k!(m-2)! 

H. Fu and C. Sun 

(3.15 ) 

(3.16) 

( 3.17) 
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From the above discussion we see that we can obtain the 
finite-dimensional representations on the subspace of Fock 
space if we use the IHBR of Lie algebra. If we adopt the 
homogeneous boson realization of Lie algebra, we can only 
obtain the finite-dimensional representations on the quotient 
spaces of Fock space (see Refs. 5 and 6). 

IV. IHBR OF INDECOMPOSABLE REPRESENTATIONS 
OF SU(2) ALGEBRA 

The representation of the one-state Heisenberg-Weyl 
algebra Jf': {a+ ,a,E} on its universal enveloping algebra 0 
with PBW basis 

0: {X(r,s,t) =a + rasE' Ir,s,t E Z+} 

is defined as 

p(a+ )X(r,s,t) = X(r + l,s,t), 

p(a)X(r,s,t) =X(r,s+ 1,t) +rX(r-l,s,t+ 1), 

p(E)X(r,s,t) = X(r,s,t + 1). 

(4.1 ) 

(4.2) 

The relation (E - 1) generates a left ideal I of O. The repre
sentation (4.2) induces on the quotient space V = 011 with 
basis 

V: {X(r,s) =X(r,s,O)mod I Ir,s E Z+} (4.3) 

a representation 

p(a+ )X(r,s) = X(r + l,s), 

p(a)X(r,s) = X(r,s + 1) + rX(r - l,s), (4.4) 

peE) = 1. 

By making use of the IHBR (2.25b) ofsu(2) algebra and the 
equation 

reT+) =np(a+) - [p(a+)]2p(a), r(T-) =p(a), 
(4.5) 

we obtain the representation of su (2) algebra on V, 

r( T + )X(r,s) = (n - r)X(r + l,s) - X(r + 2,s + 1), 

reT-)X(r,s) =X(r,s+ 1) +rX(r-l,s), (4.6) 

r( TO)X(r,s) = (r - nI2)X(r,s) + X(r + l,s + 1). 

It is easy to see that a non-negative integer S defines an 
invariant subspace V [S] of V, 

(4.7) 

for which no invariant complementary subspace exists. Thus 
the representation (4.6) is indecomposable. The representa
tion subduced on every V[S] is also indecomposable. 

On the invariant subspace chain of V, 

V= V[O] :::) V[1] :::) V[2] :::) ... :::) V[S] :::) ... , (4.8) 

there exist some quotient spaces V[S,K] = V[S]/V[s+ K]: 

V[S,K]: {Y(r,s) =X (r,s)mod V[S+K]IS<s<S + K - 1, 

(4,9) 

When K~2, the representation induced on V[S,K] is inde-

292 J. Math. Phys., Vol. 31, No.2, February 1990 

composable. When K = 1, the representation induced on 
V[S,I] is 

reT+)Y(r,S) = (n - r)Y(r+ I,S), 

r(T-)Y(r,S) = rY(r-l,S), (4.10) 

re TO) Y(r,S) = (r - n12) Y(r,S). 

Equations (4.10) constitute an infinite-dimensional irredu
cible representation for the case with n fJ: Z + . If n E Z +, there 
exists an (n + 1)-dimensional subspace V[S,II(n) of V[S,II 

with basis 

V[S,II: {Y(r,S) E V[S,lllr<n, rEZ+} (4.11) 

for which no invariant complementary subspace exists. Thus 
Eqs. (4.10) are an indecomposable representation for the 
case with n E Z+. Ifwe define a new basis for V[S,II (n), 

Ij,m)s = (l/~(j + m)! (j - m)!)Y(j + m,S), 

(4.12) 

where j = n12, m = - j, - j + 1, ... ,j, the representation 
subduced on V[S,II(n) becomes 

reT ±) Ij,m)s = ~(j+ m)(j ± m + 1) Ij,m ± 1)s, 
(4.13) 

r(TO) Ij,m)s = mlj,m)s, 

which is an irreducible representation of su (2) of the highest 
weightj with dimension (2j + 1). 

The relation {a - AlA E C} generates a left ideaIJ'. The 
representation (4.6) induces on the Fock space Y'= V IJ', 

Y': {X(r)=X(r,O)modJ'lrEZ+}, (4.14) 

a representation 

r( T + )X(r) = (n - r)X(r + 1) - AX(r + 2), 

r(T-)X(r) = AX(r) + rX(r-1), (4.15) 

reTo)X(r) = (r-nI2)X(r) +AX(r+ 1). 

Equations (4.15) are an infinite-dimensional irreducible 
representation for the case with A # O. If A = 0, (4.15) be
come 

re T+ )X(r) = (n - r)X(r + 1), 

r(T-)X(r) =rX(r-1), 

r(To)X(r) = (r- nI2)X(r), 

( 4.16) 

which is equivalent to the representation on V [S, II. Equation 
( 4.16) is an infinite-dimensional irreducible representation 
for the case with n fJ: Z+. When n E Z+, there exists an invar
iant subspace Y' (n) of Y' with dimension (n + 1), 

Y'(n): {X(r) EY'lr<n, rEZ+}, ( 4.17) 

for which no invariant complementary subspace exists. Thus 
the representation (4.16) is indecomposable for the case 
with n E Z+. If we define a new basis for Y , (n), 

Ij,m) = (1/~(j + m)! (j - m)!)X(j + m), (4.18) 

where j = n12, m = - j, - j + 1, ... , j, the representation 
subduced on Y'(n) becomes 

reT ± )Ij,m) = ~(rfm)(j ± m + 1) Ij,m ± 1), 

reTo)lj,m) =mlj,m), 
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which is an irreducible representation of su (2) of the highest 
weight j with dimension (2j + 1). 

For example, whenj = ! and the order of the basis for 
Y' is chosen as 

{IM),I!, - p,x(2),x(3),x(4), .. .}, ( 4.19) 

in which I!,P and I!, - P arethebasisforY'(n), therepre
sentation on Y' (A = 0) is 
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o 0 

o 

o 

o 
o 

o 

o 0 0 
-1 0 0 
o -2 0 

200 
o 0 0 

030 
o 0 4 
000 
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! 0 0 

o -! 

o 0 ~ 

which is an infinite-dimensional indecomposable represen
tation. 
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The classical non-Abelian Berry's phase is defined for a parameter-dependent dynamical 
system that is collective with respect to a Hamiltonian G-action when the parameters are fixed. 
It is shown that the corresponding angular two-form of Berry is given in terms of the 
momentum mapping of the G-action and is induced naturally by the symplectic form on the 
phase space. Moreover, this angular two-form can be seen as the correction term in the 
effective symplectic form on the parameter space, with respect to which the Hamiltonian is to 
be quantized. 

I. INTRODUCTION 

The quantum adiabatic phase, or the Berry phase, I is a 
phase shift in the eigenfunctions to a multi-parameter-de
pendent Hamiltonian as the parameters traverse adiabatic
ally along a closed curve. Simon2 has recognized that this 
phase arises from a connection on the solution line bundle 
over the parameter space. The adiabatic assumption was 
subsequently removed by the work of Aharonov and Anan
dan.3 Applications of Berry phase arise as fractional statis
tics of Wilczek,4 which include statistics for the quantum 
Hall effect,5 and vortex quantization in an incompressible 
4He superfluid,6 among others. 

The classical Berry phase, as formulated by Berry7 (see 
also Berry and Hannay8 for the nonadiabatic generaliza
tion), is applicable for completely integrable dynamical sys
tems. It arises as the angular shifts on the invariant tori as the 
system is being transported along a closed curve in the pa
rameter space. The specific formula depends explicitly on 
the action variables. Following the bundle interpretation of 
the quantum Berry phase of Simon, one can consider the 
classical Berry phase as a connection form on the torus bun
dle over the parameter space. From the integrability as
sumption, this bundle is a principal G = [SO(2) r bundle, 
where the G orbits are Lagrangian submanifolds on the 
phase space, which correspond to a one-dimensional eigen
subspace via geometric quantization according to the dictio
nary9 of Marsden and Weinstein. This phase is then analo
gous to an Abelian gauge field on the parameter space. In the 
subsequent work of Gozzi et al., \0 a dynamical meaning of 
this phase is given. If one considers the curvature form (the 
angular two-form of Berry7) on the parameter space as a 
symplectic form, one can treat the parameters dynamically; 
in particular, it can be quantized. Moreover, if the parameter 
space is itself a symplectic manifold (the parameters being 
the "slow" dynamical variables), then the correct symplec
tic form for its quantization is the "effective form" given by 
the curvature as the adjustment term. This view has been 
applied to the planar three-body problem to yield the correct 
quantization. II 

It was Wilczek and Zee l2 who first discussed Berry 
phase on multidimensional eigensubspaces in the quantum 
case, as a generalization of the work of Simon. They consid
ered a vector bundle over the parameter space as a unitary 
bundle. Kristsis 13 has classified the Berry phase according to 

the topological type of this bundle using homotopy theory. 
Mention must be made, however, that the unitary group ac
tion is not a dynamical symmetry of the system, but the sym
metry of a complex vector space. For a system with dynami
cal symmetry group G, Anandan 14 has analyzed the vector 
bundle for a Hamiltonian which is collective with respect to 
G and invariant with respect to an Abelian subgroup K (see 
Sec. III). 

The purpose of this paper is to give the non-Abelian 
version of the classical Berry phase, in the presence of a dy
namical symmetry group G, where the phase space M pos
sesses a Hamiltonian G action, with G-equivariant momen
tum mapping J. Our objective is to define the effective 
symplectic form on the parameter space which is to be used 
in the quantization of G-collective Hamiltonian functions. 
We also discuss the relation between the adjustment term in 
this effective form and the curvature form as a result of a 
horizontal lift. Recently, Golin et al. 15 have studied the situ
ation for G-invariant Hamiltonians, where the momentum 
mapping is defined with respect to the effective form. We 
summarize our work as follows: in Sec. II we reformulate the 
standard (Abelian) classical Berry's angular two-form in 
the terminology of symplectic geometry to facilitate the non
Abelian generalization. We also explain the interpretation of 
Berry's angular two-form as a symplectic form, as a kind of 
reduction procedure. It is with this point of view that we 
extend our consideration to the non-Abelian case. The need
ed concepts in symplectic geometry: momentum mapping 
and collective motion, are collected in Sec. III. The non
Abelian Berry phase is formulated in Sec. IV. For complete
ness, we include proofs of some technical details in the Ap
pendix. 

II. ABELIAN BERRY PHASE-SYMPLECTIC 
REFORMULATION 

We take the viewpoint that Berry phase is an adjustment 
term in a separation of variables type scheme. Denote by X 
the total phase space which separates intoX = M XB, where 
M and B are symplectic manifolds with symplectic forms 
.n M and .n B' respectively. We also consider B as a parameter 
space of a Hamiltonian 

(1) 

We assume in this section that for each bEB, the dynamical 
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system defined by Hb:M -> R is integrable, i.e., there exist 
action-angle variables (1;,b'{};,b)' i = l, ... ,n = ~ dim M, with 

. . aHb Tb = 0, O·b = --. (2) 
I, I, aT 

I,b 

LetJ:M xB->R" be defined by J(m,b) = (11'''''/,,)' where 
we consider I;(m,b) = I;,b (m) as functions on M XB. Let 
E = J- I (f..l) for some f..lER". We have natural projections: 

E 

1TI '\P, 
B M 

where 1T:E ->B is a principal G = [SO(2) r bundle (by the 
angle variables). Moreover, fibers of 1T are Lagrangian sub
manifolds in M. Therefore, 11M = 0 when restricted to 
1T- I (b). However, in general, 11M #0 when restricted to E 
(it is zero if the system is separable, I; independent of B, for 
instance). 

We use the convention that the group G acts on the left. 
The projection 1T gives rise to a diffeomorphism ir:G '\E -> B, 
it is not a canonical transformation. Since the Hamiltonian 
vector field of H commutes with the G action, it defines a 
vector field on the quotient space G '\E. The correct sym
plectic form for this dynamical system is the one induced by 
11 M + 11 Bon G '\E. However, since the differential form 11 M 

(a contravariant object) does not push forward onto the 
quotient space, we perform an average over the G orbits. The 
extent to which this method works depends on whether the 
method of average 16 yields reasonable results. This includes, 
but is not limited to, adiabatic systems. We assume that the 
resulting two-form is nondegenerate, therefore it is a sym
plectic form. Pull back via the diffeomorphism ir- I gives a 
two-form on B; 

(3) 

where 11A carries the effect of 11M on G '\E. Then ir is a 
canonical transform if we change the symplectic form on B 
by adding 11A, where 11A is the average of 11M over the fibers, 
which coincides with the angular two-form of Berry. Expli
citly, 

11A (b) = 1T*p*11M(m,b) 

= (21T) -IILg*p*11M(g(m,b»dg. (4) 

Here p* denotes the pull back operator and 1T * denotes the 
averaging operator over the fiber 1T- I (b). This average is 
well defined since g*11(g(x» is a two-form at x for all gEG, 
two-forms at x forms a vector space. This effective form also 
plays a role in the covariant constant condition in geometric 
quantization. II 

According to Berry, the angular phase shift along a 
closed curve y in B is given by 

-ai 110; = -- 11A , 
aI; D 

where D is a region with boundary y. We may view 

a 
11v = - L aT 11A e; 

I 

(5) 

(6) 

as the curvature form of a connection avon the principal 
bundle E, where {eJ forms a basis for the Lie algebra of 
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[SO(2)]" = R". It is then a tautology that 110; is the phase 
shift of the horizontal lift of y with respect to a v. Thus we 
recover the principal bundle interpretation of Simon. 2 

The significance of the horizontal lift, in the context of 
symplectic geometry, can be seen as follows: Since the mo
tion on B along a vector field r will affect the change in the 
angular variables, Berry 7 considered the effective Hamilto
nian function 

lI=H- LprQdO=H-r J1T*p*aM, (7) 

where aM is the symplectic one-form on M, then () = alI I al. 
The second term, as a result of the horizontal lift of r, ac
counts for the change in 0 caused by r. In a sense, this is 
changing the Hamiltonian vector field [ calI I aI)( a lao) in
stead of (aH I aI) (a lao)] of the function H. This in tum 
changes the Poisson bracket and the symplectic structure on 
M. If we are only concerned with the dynamics on M (the 
dynamics on B is given by the curve y), then it is natural to 
define adjustments on M. In our work, we leave M as is and 
put the adjustments on B, where more interesting dynamics 
may occur. I I In summary, we see that given a Hamiltonian 
H:M X B -> R, on fixing the actions J = f..l, we have 
H:J- I (f..l) -> R, which induces a Hamiltonian 
F:G '\J- I (f..l) = B->R. To quantize F:B->R, we must use 
the corrected symplectic form 11 ~elf) on B. 

III. MOMENTUM MAPPING AND COLLECTIVE MOTION 

We give here a brief review of some concepts of symplec
tic geometry that are needed for our purpose, details may be 
found in Guillemin and Sternberg. I? 

Let M be a symplectic manifold with symplectic 
form11 M = daM' Here, M has a compact Lie group G acting 
canonically on the left, i.e., g* 11 M = 11M , Denote by g its Lie 
algebra and we assume that the first two cohomologies of g 
vanish; this is the case if G is semi-simple. Here, Mis a Ham
iltonian G space if there exist a momentum mapping 
J:M->g*, the dual space ofg, which satisfies: 

(i) J is G equivariant, i.e., J (gm) = ad;- I J (m), where 
ad;- I denotes the coadjoint action of g on g*. 

(ii) Let sEg, by the canonical G action on M and S in
duces a Hamiltonian vector field Sll on M. We require that 
Sll is the Hamiltonian vector field of the real value function 
f(m) = (J(m),s), where (,) is the pairing between g and 
g*. If we denote by :It''f the Hamiltonian vector field of J, 
then :It''f(m) = sll(m). 

Note that in the integrable case, the actions 
J:M-+ [so*(2) ]"~R", satisfies the above conditions. 

Let H:M -+ R be a Hamiltonian function, H is collective 
with respect to G if there exists a map F:g* -> R such that 
H(m) = F{J(m». This corresponds to the quantum Hamil
tonian operator belonging to the Lie algebra. In particular, if 
G is Abelian, H is G collective and this implies that H is G 
invariant. 

Contrary to the integrable case, J-I(f..l) has no quan
tum analog, e,g., ifG = SO(3),M = T*R3

, J- I (f..l) consists 
of a subset with fixed angular momentum, this violates the 
uncertainty principle. Fix f..lo in g*, let S be the coadjoint 
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orbit of f.Lo in g*, where S has a natural symplectic structure 
Os. We assume that J- I (S) is a coisotropic submanifold in 
M. (This assumption usually holds.) Reduction on coisotro
pic submanifold is the classical analog of projection onto an 
eigensubspace according to Marsden and Weinstein.9 In the 
case with Hamiltonian G action, this assumption corre
sponds to restriction to a g-representation subspace. In the 
example above, this is the eigensubspace with the magnitude 
of the angular momentum fixed. The reduction procedure 
goes as follows: Let K be the connected component of the 
isotropy subgroup off.Lo, then H, when restricted to J- I (S), 
is invariant with respect to K in the following sense: For any 
mEJ-I(S), J(m) = ad;, (f.Lo) for some gEG, then for all 
kEK, H(gkg-Im) = H(m). This does not constitute a new 
K action on M due to the choice of g, how~ver, K orbits of 
this "action" is well defined. Denote the space of K orbits by 
K \. J- I (S), this space has a natural symplecticform 0 satis
fying p*O = i*OM' where p is the projection 
J- I (S) -K \.J- I (S) andiis theinclusionJ-1 (S) -M. The 
Hamiltonian vector field of H on J- I (S) is related to the 
Hamiltonian vector field of F on S by J * J¥' H (m) 
= J¥' F(J (m». Since the Hamiltonian vector fields are re

lated, the quantization of H on K \.J- 1 (S) is determined by 
the quantization ofF on S = G / K, which is usually of much 
lower dimension. 

The manifold K \. J - I (f.Lo) is also a symplectic manifold 
with symplectic form 0 0 satisfying p*Oo = i*OM' where 
p:J- 1 (f.Lo) -K \.J- 1 (f.Lo) and i:J- 1 (f.Lo) -M are projection 
and inclusion, respectively. 

Locally we may decompose 

Tm M = [TmJ-1 (f.Lo) r a1 Tm K \.J- 1 (f.Lo) , (8a) 

where 1 denotes symplectic orthogonal complement. This 
decomposition is not canonical in a categorical sense. We 
emphasize here that although K is not assumed to be Abe
lian, K actions Poisson commute on J- 1 (f.Lo) , i.e., 
[k,k] ~ ker f.Lo, thus 

[TmJ-1 (f.LO)]l = g a1 k* = k a1 S a1 k*, (8b) 

where s is the orthogonal complement ofk in g, to emphasize 
that it is locally S, and we reserve 1 to mean symplectic or
thogonal complement. Here, k* can be interpreted either as 
the dual coordinates ofk in the symplectic manifold T * K, or 
as the dual Lie algebra ofk. Since s forms a symplectic vector 
space under f.Lo [ - , - ], we may assume the basis ei 's forms 
a canonical coordinate system on s, i.e., let {eJ i = 1, ... ,2n 
be a basis for s, {e2n + i} basis for k, we have 

f.Lo[ en+ ;oej ] = 8i.j , 

f.Lo [ e;oej ] = f.Lo [ en + i,en + j] = 0, 

f.Lo [ e2n + ;oej ] = 0, for all i, j. 

for i,j = 1, ... ,n, (9) 

Therefore, although Je;'s are not canonical coordinates on 
M, the s components have the canonical relation at 
mEJ- 1 (f.Lo)' Moreover, sinceK actions Je2n + i are in involu
tion, there exist angle variables ()2n + i for these actions. Thus 
locally, M is a twisted produce of three symplectic manifolds 

M = T*K xS xK /J-I(f.LO)' (10) 

We indicate a method, mod k, for such a decomposition: 
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Lemma: Let J (m) = f.Lo and Kbe the isotropy subgroup 
of f.Lo as usual, let 1M - R be a K-invariant (not necessarily 
G-collective) function around m. Let 

J¥'f = (J¥'f - ~f) + ~i' 
where 

is the desired decomposition, i.e., ~ foT m J- I (f.Lo) is K equi
variant, thus it projects via p* to TmK \.J- 1(f.Lo) and 
J¥'f - ~ fos. We will henceforth compress the notation 
Jei = J i. We are now in position to explain (6), the relation 
between the effective symplectic form and the curvature 
form. As was mentioned in Ref. 11, our work is inspired by a 
result of Kummer,18 which we now describe: Let X be a 
manifold with K acting freely on the left, let Y = K \.Xbe the 
manifold of orbits. Let a be a connection on the principal 
bundle 1T:X - Y. We can extend the K action into a Hamilto
nianK action on T * X. Denote by J: T * X - k* the momentum 
mapping, J is linear. We assume, as in our case, f.Lo is K 
invariant. Then 

ir:K \.J- 1 (f.Lo) - T* Y (12) 

is a diffeomorphism. (This plays the role of ir:G \.E - B in 
the integrable case.) Moreover, ir is a canonical transform if 
we have the effective symplectic form Opy + f.LoOa. Here 
Oa is the curvature of the connection a; it is a k valued two
form.J.toEk* impliesf.LoOa is a real valued two-form on T* Y. 
Thus f.LoOa plays the role of 0 A' the adjustment term. In this 
sense, relation (6) is the inverse relation of 

OA = f.LoOa = JOa · (6') 

In the Abelian case, (6) and (6') are equivalent. In our case, 
sinceOa = da + Ha,a],andf.Lo[a,a] = O,relation (6) will 
only recover part of Oa . 

IV. NON-ABELIAN BERRY PHASE 

We assume M,B are symplectic manifolds with sym
plectic forms OM = daM and OB' respectively, as before. 
Here and beyond, we denote J¥'", the Hamiltonian vector 
field of the function tPb on M, viewed as a vector field on 
M X B. Suppose for each bER, there is a Hamiltonian G ac
tion on M with momentum mapping J b:M - g*, denote 
J:M XB-g* as usual. We assume H(m,b):M XB-R be 
such that Hb is G collective. That is, for each hER, we have 
Fb:g*-R with Hb(m) =FB(Jb(m». More conveniently, 
the following diagram commutes: 

H 

E-----·MXB 'R 

! JXid \ /F" 
S XB g*XB 

Let Sbe the coadjoint orbit of f.Lo as before, E = J- I (S), Kbe 
the isotropy subgroup of f.Lo, then H, when restricted to E, is 
determined by F:S XB-R, whereS XB has a natural sym
plectic form Os + 0 B' However, as seen in the Abelian case 
(S is a point), this symplectic form has to be adjusted in 
order to quantize F. 
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Since G-collective Hamiltonians are in involution with 
the K action, these actions are adiabatic invariants. So we 
assume here that the vector fields 'Y on B we will consider 
satisfies an "adiabatic" condition 'Y(J2n +;)-O(E), E 

small. This will hold either ifthe evolution on B is slow, or 
the dependence of Jon B is small. We are seeking Hamilto
nian equations which will describe: 

j 2n + ; = 0, j; = level crossing, 

02n +; = phase shift in k representation subspace. 

Our assumption on K implies the irreducible representation 
spaces of K are one dimensional. Denote by K \E the space 
of K orbits, define 

W:K \E--S XK \J-1(po), (13) 

and 

W(K(m,b» = (J(m,b) = ad;-, (po),Kg-1(m,b» 

is a diffeomorphism. Furthermore, denote by OK,E the in
duced form of OM + OB on K \E via restriction and aver
age, it pulls back to a form which separates into three terms. 

Theorem 1: 

OK ,E(K(m,b» = W* [Os(ad;-, (Po» + Oeross 

+ Oo(g-I (m,b»], (14) 

where 0 0 is a two-form on K \J- 1 (Po) and Os is the natural 
symplectic form on S. Here Oeross is a pull back from S X B, 
0eross (e;,v) = v(Je;), Oeross = 0 when restricted to either 
factor. Moreover, p*Oo = p* i*(OM + 0B) with 
p:J-1(po) --K \J-1(po) and i:J-1(po) --M xB natural 
projection and inclusion, p. the average operator over K 
orbits. Finally, p. i*OB can be identified naturally with 
i*OB' 

With the above separation, the adjustment term OA on 
S X B should capture the effect of p. i* 0 M (the only term not 
described in the theorem) on J-1(po)' The effective sym
plectic form on S XB is then O~ffXB = Os + OB + OA 
+ Oeross with respect to which F is quantized. The quantum 

effect of the symplectic form Os on S has been studied by 
Giavarini and Onofri 19 in terms of coherent states and repro
ducing kernel. This will handle level crossing due to evolu
tion on S. (In Ref. 19, where S is the parameter space, there 
is no B.) Clearly, since the two-form on S will have no effect 
on J - 1 (Po), this implies 0 A is a two-form on B. Unlike the 
integrable case, p. i* 0 M does not "push forward" to a two
form on B. This is due to the fact that the projection 
ir:K \J-1(po) --B has nontrivial fibers, whereas in the inte
grable case ir is a diffeomorphism. However, the lemma gives 
a way to subtract off the fibers K \ J; 1 (Po), Therefore the 
required adjustment on B must capture the effect of OM on 
[ T m J; 1 (Po) ] 1, the symplectic orthogonal complement of 
TmJ;I(PO) in TmM. We identify TmJ;I(PO) 
= T(m.b) J; 1 (Po), where J; 1 (Po) is viewed as a submani

fold in J-1(po) --M XB. 
The symplectic manifold M is a twisted product of three 

symplectic manifolds each of whose symplectic structure is 
induced by OM' We have local decomposition, as suggested 
by (10), around m, where J(m,b) = Po: 

297 J. Math. Phys .• Vol. 31. No.2, February 1990 

M = T*K xS XK \J; I(PO)' (10') 

All three symplectic forms depend on B, and we will measure 
the change of the symplectic forms on T * K X S along a vec
tor field on B, the last factor K \J b- 1 (Po) being irrelevant in 
the realm of collective Hamiltonians. Theorem 1 allows us to 
restrict our discussion to the submanifold J- 1 (Po), on 
which the momentum J; (i = 1, ... ,2n) are canonical. Rough
ly, 

so 

- OA = dBJn +; /\dBJ; + dBJ 2n +; /\dB()2n+;' (15) 

We will discuss the relation between this adjustment form 
and the curvature form for the lift. This is done by first lifting 
vector fields from B to the relevant piece in K \J- 1 (Po), 
then by lifting to J-1(po)' This is, along the vertical dia
gram, 

p 

JT~o)---. M 

K \J-l(po) 

\1T 
B 

We first consider the lift K \J- 1 (Po) --B, denoted by 

~(K(m,b» 

= P.P; I(TmJb- l(pO»l 

= {VET(m.b) K \J- 1 (Po) I there exists 

iJET(m.b)J-1(Po), P.v=v, 
and 0M(P.V,W) =0, 

for all fJJET(m.b)J; I(PO)}' (16) 

the horizontal subspace in T(m.b) K \J- 1 (Po). It is clear that 
under the projection 1T:K \J- 1 (Po) --B,1T. 
~(K(m,b»-- TbB is one-to-one and onto, since 
~(K(m,b»nT(m.b)K\J;l(po) =0 by the nondegener
acy of the symplectic form. Thus ~ defines a horizontal 
space for lifting from B to K \J- 1 (Po). This isomorphism 
1T. plays the role ofthe diffeomorphism ir:G \E--B in the 
integrable case, and the effect of OM on ~ induces a two
form onB. 

Note that if a v is the connection form for the lift from B 
to K \ J - 1 (Po), and f3 v is the connection form for the lift 
from K \J- l (Po) to J- l (Po), then p*av + f3v is the con
nection form for the lift from B to J - 1 (Po). Thus the com
bined curvature form, as well as the "angular two-form," 
also sum. 

We first state the results for the K \J- l (Po) compo
nent. Here 

av(K(m,b»:TK(m.b)K \J-l(po) -- TK(m.b)K \J; l(pO), 
(17) 

such that a v = identity on TK(m.b)K\J;l(po), and av 
= 0 on ~(K(m,b». Let v be vector fields on B and satisfy

ing the adiabatic assumption, v be K equivariant on J- 1 (Po) 
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in the preimage of !!It so that its projection via P. is the 
horizontal lift of v. Then, mod k 

v = v + Iv(Jn + i )JY'J; - v(Ji )JY'J" t;' (18) 

Theorem 2: Let {e J i = I •...• n •... 2n be a basis for s in g which 
forms a canonical coordinate for s as a symplectic vector 
space, then 

(19) 

is the two-form induced by OM on B through !!It on 
K / J- 1 (f.lo)' Moreover, the curvature form Ov for the con
nection !!It is 

Ov (v,w) = JY'f - IJY'J" + ; (j)JY'J, - JY'J;(j)JY'J" i;' 
i 

where 

f= IvJn+iWJi - wJn+iVJi 
i 

= OA (v,w). 

(20) 

Compare with the lemma, Ov (v,w) is the vertical compo
nent of JY'f' whereas in the integrable case, set J n + i = Pi> 
J i = qi' Ov (v,w) is indeed JY'f' where f = average over 
torus of 

- IdBPidBqi(V,W) = OA (v,w), 
i 

JY'f is already vertical. 
As for the K component, let !!It' (m,b) = P; 1 

x!!lt(K(m,b» define the connection form 
/3v (m,b):!!It'(m,b) -k = tangent space of K orbit at (m,b) 
by 

(21) 

and denote the horizontal space !!It # ( m' b) = ker /3 v' thus 
the horizontal lift v# of v on B takes the form 

(22) 

Here, v as in (18) and v# may be viewed as the horizontal 
projection of v. 

Notice that although 02n + i are not uniquely defined, 
v( 02n + i) are when restricted to J- 1 (f.lo)' However, since we 
do not have the angular variables at all, we will give an alter
nate definition of /3 which does not involve O. 

(23) 

where iJJE!!It', P.p· pulls aM back to the submanifold 
J- 1 (f.lo) and average over the K orbits. This definition is 
comparable to (J /Jlk )(prq)(J /JOk ) in the integrable 
case. Equation (21) implies directly that /3 v (JY' J

2
u+ .> 

= JY'J
2

" +;' thus it is indeed a connection form. The curva
ture form is given by the standard formula: 

(24) 
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as a k valued two-form on K \J- 1 (f.lo)' The following 
theorem is immediate: 

Theorem 3: Let V#,W# be horizontal projections of v and 
w, respectively, define the effective form on K \J- 1 (f.lo) by 

nA (v,w) = - P.P·OM (V#,W#). (25) 

Then 

d/3v (v,w) = JY'f' (26) 

wheref = nA (v,w). Notice thatthe commutator term in the 
curvature form is not recovered as explained at the end of 
Sec. III. 

To summarize: Eq. (25) is precisely statement ( 15) that 
the effective form on B is the one induced by OM' The hori
zontallift of v on B is given by (22) and ( 18), the curvature 
form is partially recovered from the effective form by (26) 
and (20). 

APPENDIX: PROOFS OF THEOREMS 1-3 

Proof of Theorem 1: By equivariance of momentum 
mapping, we have the Poisson bracket on M, 

(AI) 

for allt,1] in g. The first term is 0M(JY'Js,JY'J,/)' the last 
term is Os (Jb.JY'JpJh.JY'J,/ ). It remains to compute the 
cross term: Let v = VM + VB be a K-equivariant vector field 
on J- 1 (f.lo) and w = Jb.JY'J<: be a vector field on S, then 
OM (JY'Js'vM ) = - vM(Jt) ~ VB(Jt). Thus the cross 
term Oeross is a pull be of S X B since it depends only on the B 
component of v. 

Proof of Theorem 2: Using ( 18), we have 

v = v + Iv(Jn+i)JY'J, - v(Ji)JY'J,,+;, 
i 

(18' ) 

where the second terms are the M components of v and w. 
Since the J i are canonical, OM (JY'J" + ;,JY'J) = Oi.j' a 
straightforward calculation shows 0 M (P. V,P. w) 

= LiV(Ji)W(Jn + i ) - V(Jn+i)w(Ji)·Moreover,OM(g,k) 
= 0 implies it is independent of our choice of v and w, prov

ing (19). 
Since Ov (v,w) = a v [v,w], we compute 

[v,w] = [v,w] + I[v,w]Jn+iJY'J; - [v,w] JiJY'J" + , 
i 

+ JY'f - IJY'J" +; (j)JY'J; - JY'J; (j)JY'J" +, 
i 

+ Iv(J;)w(J) - v(J)w(Ji ) [JY'J<,JY'J,] . 

(A2) 

Here f as in the theorem and a v of the first line is 0 since it is 
horizontal. The adiabatic assumption implies f is K invar
iant, thus a v of the second line is itself since it is vertical. As 
for the last line, notice that [ JY'J< ,JY'J,] is on J b- 1 (f.lo), and 

[JY'J<,JY'J,] =JY'J{e.c,}, (A3) 

where J[ek,ed =f.lo[ek,ed = constant on J-1(f.lo)' 
Therefore 
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(A4) 

for all SETmJ;; I(ILo)' This implies p.KJ[ekedE~, 

a v [KJk,KJ,] = O. 
Proof of Theorem 3: Equations (25) and (26) are 

straightforward once we have established (23) as our work
ing definition of P v' We must therefore show (23) is equiva
lent to (21), and this can be seen as 

if we have the angular variables. Thus 

~J2n+kW(82n+k) = wJ ~.p*aM - ~Jn+jdMJj)' 
the last expression does not involve 8 'so One checks that 
wJJn+jdMJj =0 using the canonical relations J;'s (9), 

and the result follows. 
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Group theoretical properties of certain nonlinear partial differential equations playing a 
distinguished role in the gravitational instanton theory and in complex relativity are studied. It 
is demonstrated that, in general, the groups of contact transformations admitted by these 
equations appear to be the first prolongations of appropriate point transformation groups. An 
exceptional case leading to the Gibbons-Hawking metric is examined in detail. 

I. INTRODUCTION 

The group theoretical analysis of nonlinear partial dif
ferential equations provides us with an effective tool for find
ing solutions of these equations. 1-6 First, having the maxi
mal group of point or contact transformations leaving the 
differential equation invariant one can generate new solu
tions of this equation from some given solution. It may hap
pen that all solutions can be obtained in this manner (equiv
alent to the automorphic equation). For instance, it occurs 
when the differential equation appears to be linearizable by 
the point or contact transformation.6 Second, employing the 
method of invariant variables,2-6 one reduces the number of 
independent variables. In particular, the application of this 
method in general relativity leads to space-times with the 
Killing vector field.6 

Consequently, motivated by the above facts we intend to 
analyze the point and contact symmetries of certain nonlin
ear partial differential equations that play an important role 
in both the gravitational instanton theory and complex rela
tivity. These equations arise from the reduction often Ein
stein equations Rij = 0 for the spaces of Petrov-Penrose
Plebanski types [ - ] ® [any], D ® [any], or of the equa
tions Rij = - Agij for the spaces [-] ® [any]. 7-15 For 
each case one gets a single second-order, nonlinear partial 
differential equation for one function. 

The group theoretical analysis ofthe equations obtained 
shows that, except the Gibbons-Hawking case,I6-20 the 
maximal groups of contact transformations admitted by 
these equations appear to be the first prolongations of the 
point transformation groups. Then the transformation of 
metric caused by the appropriate maximal group of contact 
transformations is rather trivial (except the Gibbons
Hawking metric) as it consists of a simple coordinate trans
formation and the conformal transformation of a constant 
conformal factor (compare Ibragimov6.21 and Pham Mau 
Quan22

). In the case of the Gibbons-Hawking metric the 
corresponding nonlinear equation is linearizable. Therefore 
every Gibbons-Hawking metric can be obtained from one 
seed metric with the use of the appropriate contact transfor
mation group. 

The paper is organized as follows: Section II is devoted 
to the heavenly equation and its counterpart in the gravita
tional instanton theory. In this section we also present the 
formalism of Lie-Backlund transformations in the space of 
infinite-order jets,5.6.23 which is employed in our paper. In 
Sec. III, the nonzero cosmological constant is included. In 
Sec. IV, we deal with one-sided type-D, Ricci-flat complex 

space-times and gravitational instantons. Then we consider 
a nonlinear partial differential equation [Eq. (4.12)] that 
contains the Gibbons-Hawking case and the case of hea
vens, called "case 111,,,18 admitting the Killing vector field. 
In the gravitational instanton theory "case III" corresponds 
to the gravitational instantons admitting the "rotational" 
Killing vector field. 19.20.24 

In the next paper we analyze the group theoretical prop
erties of the fundamental equations of complex relativity, 
i.e., the hyperheavenly equations. 

II. HEAVENS AND SELF-DUAL, RICCI-FLAT 
GRAVITATIONAL INSTANTONS 

In the present section we deal with the "first heavenly 
equation" and its counterpart in the gravitational instanton 
theory.7-13 

The first heavenly equation is one of the fundamental 
partial differential equations in complex relativity. It is of the 
form 

a2u a2u 
ax I ax3 ax2 ax4 

where u = u(xi
), i = 1, ... ,4, is a holomorphic function of 

four complex variables Xl, x2
, x\ and X4. It is well known 

that every self-dual, Ricci-flat complex space-time jy' (for 
heaven) admits local complex coordinates Xl, x2

, x\ and X4 

such that the metric g of jy' is given locally as follows: 

g = gaP' (dxa ® diP + dxP ® dxa), (2.2a) 

(2.2b) 

with a = 1,2, and 7J = 3,4, and where u = U(XI) is a solu
tion of (2.1 ) . 

Analogously, every self-dual, Ricci-flat gravitational in
stanton admits local complex coordinates Xl, x 2

, x 3 = Xl, 

X4 = x2 (with the overbar standing for the complex conjuga
tion) such that the metric of this gravitational instanton can 
be defined locally by (2.2) with u = U(Xi) now being a real 
solution ofEq. (2.1). 

Consequently the group theoretical properties of the 
first heavenly equation (2.1) determine immediately the 
symmetries of the gravitational instanton version of (2.1 ). 
Therefore we intend to find point and contact groups of 
transformations under which Eq. (2.1) remains invariant 
and then we will specify the results obtained to the case of 
gravitational instanton theory. 
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As announced in the Introduction, we employ the infi
nite jet bundle technique.5

•
6

•
23 Using the notation 

a'u 
Uj ... j : = ., s> 1, il, ... ,i, = 1,2,3,4, (2.3) 

" axj,·· . ax" 

we rewrite (2.1) in the form 

F: = U13U24 - UI4U23 - 1 = O. (2.4) 

Equation (2.4) defines a submanifold Y of the space of 
second-order jets of C 4 

..... C, J 2 
( C 4 , C) . The infinite prolonga

tion of (2.4) defines a submanifold Y 00 of the space of infi
nite-order jets, J 00 ( C 4, C). Let Gibe a one-parameter Lie
Backlund group of transformations of J 00 (C 4,C) and let X 
be the infinitesimal operator of G I: 

. a a ~ a x=s'-. + 7]-+ k.Jj···j --, 
ax' au ,>1' 'au;, ... ;, 

sj = sj(xj,u,Ui'Uj'jl .... )' 7] = 7](x
j
,u,uj 'Uj 'Jl .... )' (2.5) 

~j, ... j, = D j," 'DjJ7] - sjuj ) + sjujj, ... j,' 

where 

a a a 
D j : = -. + Uj - + IU jj ... j -- (2.6) 

ax' au ,>1 ' 'auj, ... j, 

(indices i,j,il , ... ,i"jl,j2'''' are assumed to run through 
1,2,3,4). Then the differential equation (2.4) is invariant 
under the group GI iff 

XF 1.'7~ = 0, (2.7) 

where 1.'7~ means the restriction to the submanifold yoo. 
An operator of the form (2.5) is called a Lie-Backlund oper
ator. Two Lie-Backlund operators XI and X2 are said to be 
equivalent ifthere exist functionspj = p/(xi,u,uj,u)J, •... ) such 
that 

X I -X2 =p jD j • (2.8) 

Hence one concludes that the Lie-Backlund operator (2.5) 
is equivalent to 

a a 
Xc: = P -a + IDi , .. 'Di, (p)-a -, (2.9) 

U ,>1 Ui, .. ·i, 

where 

P = 7] - SiUi' (2.10) 

This Xc is called a canonical Lie-Backlund operator equiva
lent toX. 

Now as any partial differential equation is invariant un
der the one-parameter group defined by the infinitesimal op
erator ofthe form/Do Eq. (2.7) holds iff 

(2.11) 

In the present paper we deal with groups of contact 
transformations. Consequently, we study Eq. (2.11) for Xc 
of the form (2.9) with P now being a function of the variables 
Xi, U, and Ui , i.e.,p = p(xi,u,u j ). Then the infinite prolon
gation of the infinitesimal operator of a one-parameter group 
of contact transformations leaving Eq. (2.4) invariant is de
fined by (2.5) with 
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ap 
7] =p - Ui -

aUj 
(2.12) 

(compare Ref. 6). It is evident that this group of contact 
transformations appears to be the first prolongation of some 
one-parameter group of point transformations iff 

a2p 
---'--=0. 
aUi aUj 

(2.13) 

One finds easily that the invariance condition (2.11) for F 
defined by (2.4) and Xc defined by (2.9) takes the form of 

[U24D ID3(P) + U13D2D4(P) - U23D ID4(p) 

- U I4D2D3(P) ].7~ = O. (2.14 ) 

A straightforward but rather tedious computation leads to 
the following general solution of (2.14): 

[ 
ay(xl x 2) ] p = a(xl,x2) + {3(X3,X4) + au + ax; - bx l 

U I 

+ [ 
ay(xl,x2) b 2] 

- - X U2 axl 

+ [a6(x
3
,x

4
) _ (a _ b)x3] U3 ax4 

+ [ _ a6~~;x4) _ (a _ b)x4] U4, (2.15) 

where a(xl,x2), {3(x3,x4), Y(X I,x2), and 6(X3,X4) are arbi
trary holomorphic functions of their arguments, and a and b 
are any complex constants. 

As p given by (2.15) satisfies the condition (2.13), ev
ery group of contact transformations admitted by Eq. (2.4) 
is the first prolongation of the point transformation group 
admitted by (2.4). 

According to (2.12) with (2.15), 

I _ ay(xl,x2) ay(x l x 2) S -- +bXI, S2= ' 
ax2 axl 

S3 = _ a6~~-:4) + (a _ b)x3, 

1;-4 _ a6(x
3
,x

4
) ( b) 4 

~ - ar + a- x, 

(2.16) 

7] = a(xl ,x2) + {3(X3,x4) + au. 

Having S i and 7] one can integrate the Lie equations and 
find the maximal group of contact transformations leaving 
Eq. (2.4) invariant. Thus we arrive at the following 
theorem. 

Theorem 2.1: The maximal group of contact transfor
mations admitted by Eq. (2.4) is the first prolongation of the 
infinite group of point transformations defined by 

Xl' = ml '(x l ,x2), x 2, = m2'(x l ,x2), 

x 3' = m3'(x3,x4), x4, = m4'(r ,x4), 

u' = cu + q(X
I
,X

2
) + r(x3,x4

), 

(2.17) 

where q(XI,x2) and r(r ,x4) are arbitrary holomorphic 
functions of their arguments, c is an arbitrary nonzero com
plex constant, and the m

j
, are any holomorphic functions of 

their arguments satisfying the follo~g condition: 
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a = 1,2, 7:J = 3,4. • 
The point transformation (2.17) causes the following 

transformation ofthe heavenly metric (2.2): 

axa ax{J 
ga{J~g~'{J' = cga{J axa' axP" (2.18) 

Consequently we conclude that (i) one cannot generate es
sentially new heavenly metrics from some original metric 
with the use of contact transformations; and (ii) one cannot 
linearize Eq. (2.4) by any contact transformation (compare 
Ref. 6). 

These conclusions seem to clarify the difficulties in 
searching for solutions of the first heavenly equation (2.4). 

Now it is an easy matter to specify the results obtained to 
the case of a self-dual, Ricci-fiat gravitational instanton; 
namely, in the latter case Theorem 2.1 remains valid with the 
obvious restrictions: 

(rl' = (;)1', ro41 = (;)1', c = c, (7 = 7, 
(2.19) 

where an overbar stands for complex conjugation. 

III. HEAVENS WITH COSMOLOGICAL CONSTANT 

We intend to generalize the results of Sec. II when the 
nonzero cosmological constant is included. As has been 
shown in Ref. 14, the Einstein equations Rij = - Agij' 
A#O, for a self-dual complex (or Euclidean) Einstein 
space-time can be brought locally to one nonlinear partial 
differential equation on one holomorphic (resp. real) func
tion u: 

F: = U\3U24 - UI4U23 - (2U 13 + u lu3)e- U = 0, (3.1) 

Then the metric is defined by (2.2a) with 

gI3=3A- IU\3, gI4=3A- Iu w 

g23 = 3A -IU23, g24 = 3A -I. (U24 - 2e- U). 
(3.2) 

To find the group of contact transformations admitted by 
Eq, (3.1) we proceed as in Sec. II; namely, we solve Eq. 
(2.11) for Xc and F given by (2.9) and (3.1), respectively, 
and for f.l =f.l(Xi,U,Ui ). One finds that the invariant condi
tion (2.11) is now of the form 

[ (U24 - 2e - U)DID3 (f.l) + U \3D2D 4(f.l) - U23D ID 4(f.l) 

- U 14D2D3 (f.l) - u3e - uDI (f.l) - U Ie - UD3(f.l) 

+W{2U\3+ulu3)e-ut.~ =0. (3.3) 

The general solution ofEq. (3.3) reads 

aa(x2) aa{x4) 
II = + _P_- + r(x l x 2)u - a(x2)u 
,... ax2 ax4 ' I 2 

+8(X3,X4)U3 -(J{X4)U4, (3.4) 

where a(x2), (J(X4), r(x l ,x2), and 8(X3,X4) are arbitrary 
holomorphic functions of their arguments. The function f.l 
given by (3.4) satisfies the condition (2.13). Consequently, 
every group of contact transformations admitted by Eq. 
(3.1) appears to be the .first prolongation of an appropriate 
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group of point transformations admitted by (3.1). Then we 
have 

51 = - r{xl,x2), 52 = a(x2), 

53 = - 8(x3,x4), 54 = (J(X4), 

_ aa(x2) + a(J(x4) 
1]- ax2 ~' 

(3.5) 

and the integration of Lie equations yields the following 
theorem. 

Theorem 3.1: The maximal group of contact transfor
mations admitted by Eq. (3.1) is the first prolongation of the 
infinite group of point transformations admitted by (3,1): 

XiI = ro ll (X I ,X2), X21 = ro21 {X2), 

X31 = ro31 (X3,X4), X41 = ro41 (X4), 

I (aro
21 

aro
41

) u=u+ln--2 - 4- , 
ax ax 

(3.6) 

where the roil are any holomorphic functions of their argu
ments such that 

aro II aro21 aro31 aro41 
----#0, • 
axl ax2 ax3 ax4 

It is obvious that statements (i) and (ii) of Sec. II also 
hold true in the present case. To specify the results obtained 
to the case of gravitational instantons one should assume 

that x 3 = xr, X4 = XI, Ii = u, ro31 = (;)1', and ro41 = (;)1'. 

IV. ONE-SIDED TYPE-D, RICCI-FLAT COMPLEX SPACE
TIMES AND GRAVITATIONAL INSTANTONS 

The main result of Ref. 15 can be summarized as fol
lows: For every Ricci-fiat complex (or Euclidean) space
time of the type D /ill [any], the Einstein equations can be 
reduced locally to the following nonlinear partial differential 
equation of one holomorphic (resp, real) function: 

U = u(x l + X3,X2,X4), 

U\3U24 - UI4U23 - 2· (U\3 + 2u lu3)e- U = O. 
(4.1 ) 

The metric is of the form (2,2a) with 
I - 3/2 I - 3/2 

gl3 = 'lUI U\3, gl4 = 'lUI U14 ' 

I - 3/2 I - 3/2 ( 2 - U) g23 = 'lUI U23' g24 = 'lUI . U24 - e . 
(4.2) 

We define new variables 

(4.3) 

and U is now assumed to be a function of these variables 
U = u(/ ,y2,y3). Consequently, Eq. (4.1) is equivalent to the 
following differential equation in the second-order jet space 
J 2 (C 3 ,C): 

F: = UII U23 - U12U\3 - 2· (u ll + 2ui )e- U = o. (4.4) 

The formalism employed in previous sections can be, 
mutatis mutandis, utilized in the present case of J2( c3,C). 
Formulas (2.5)-(2.13) remain valid if one substitutes x for 
y and lets the indices iJ,il, ... ,isJw .. Js run through 1,2,3. The 
invariant condition (2.11) for Eq. (4.4) takes the form 

[( U23 - 2e - U)DIDI (f.l) + U llD2D 3(f.l) - U 13DID2{f.l) 

- UI2D ID 3(f.l) - 8u le- UD I (f.l) 

(4.5) 
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As we deal with groups of contact transformations we let /1 
depend on yi, u, and U j only. The analysis of Eq. (4.5) is, 
rather surprisingly, much more involved than that of Eq. 
(2.14) or (3.3). Finally we arrive at the following general 
solution of (4.5): 

/1 = aa(y2) + a{3(y3) + (ayl + r(y2) + b(y3)}U 
ayZ aT I 

- a(T)uz - {3cT)u 3, (4.6) 

wherea(yz),{3(y3), r(yz), andb(T) are arbitrary holomor
phic functions of their arguments and a is an arbitrary com
plex constant. 

Then 

5 I = - ay!- reT) - beT), 

52=a(y), 53 = {3(y) , 

aa(y) a{3(y3) 
7J = --a.T + aJ3 . 

(4.7) 

Having 5 j and 7J one can find the maximal group of 
contact transformations leaving Eq. (4.4) invariant. This 
group is evidently the first prolongation of the maximal 
group of point transformations admitted by (4.4). Thus we 
have the following theorem. 

Theorem 4.1: The maximal group of contact transfor
mations admitted by Eq. (4.4) is the first prolongation of the 
infinite point transformation group 

yl' = byl + U(y2) + r(y3), T' = wz,(yz), 

y' = w3, (y3), 
(4.8) 

, (awZI a(3/
) 

u =u+ln aT ay3 ' 

whereu{T), r(y3), WZ' (y), andw3,(y) are arbitrary holo
morphic functions of their arguments such that 

aw21 aw3' 
ay2 aT #0, 

and b is an arbitrary nonzero complex constant. • 
The metric (4.2) transforms under (4.8) as follows: 

a= 1,2, 73 = 3,4, 

(4.9) 

where 

Xli = bxl + !'(u(xz) + r(x4 », XZ' = WZ'(XZ), 

X31 = bx3 + ~'(u(xz) + r(x4 », x 4
' = W3/ (X4

). 
(4.10) 

The transformation (4.9) is obviously a composition of the 
transformation generated by the coordinate transformation 
(4.10) and the conformal transformation 

g __ b3/Zg __ b=const....LO. 
afJ afJ' T 

Therefore one can repeat conclusions (i) and (ii) of Sec. II 
as they also hold true in the present case. 

It is an easy matter to specify the above-obtained results 
to the case of a one-sided, type-D, Ricci-flat gravitational 
instanton. Namely, we have to make the restrictions 

x3 = iT, X4 = ? ~ yr = yl, y3 = r; 
Ii = u, Ii = b, r(y3) = U(y2) , W31 (y3) = W21 (y2) . 

(4.11) 
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Now we intend to study symmetries of the following 
nonlinear partial differential equation inJ Z(C 3,C): 

F: = Ull U23 - UI2U13 - f(Y!) = 0, (4.12) 

where f(Y!) is an arbitrary holomorphic (or real for the in
stanton case) function of yl. Equations of this type seem to 
play an important role in complex relativity and gravitation
al instanton physics. 

For f(Y!) = e>", Eq. (4.12) defines all heavens admit
ting the Killing vector field that belong to "case III" (ac
cording to the terminology of Ref. 18), or, in the gravitation
al instanton theory, it defines all self-dual, Ricci-flat 
gravitational instantons admitting the "rotational" Killing 
vector field. 19,20,Z4 As has been demonstrated in Ref. 20, Eq. 
( 4.12) for f(y!) = e>" is related to Eq. (4.4) by some Lie
Backlund transformation. 

Forf(y!) = 1, Eq. (4.12) defines all heavens admitting 
the Killing vector field that are classified as "case I a,,,18 or 
in the gravitational instanton theory it defines all self-dual, 
Ricci-flat gravitational instantons admitting the "transla
tional" Killing vector field 19.Z0.Z4 (that is, the Gibbons
Hawking gravitational instantons I6

•
17

). Notice that in the 
gravitational instanton theory these two cases,f(y!) = e>" or 
f(y!) = 1, contain all self-dual, Ricci-flat gravitational in
stantons admitting at least one Killing vector field. 

The invariant condition (2.1l) forEq. (4.12) reads 

[UZ3D ID I(/1) + UIIDzD3(/1) - u 13D IDz(/1) 

- u1zD ID3 (/1) ]7°C = 0. (4.13) 

As before we let /1 be a function of y', u, and U j • Then the 
general solution of Eq. (4.13) appears to be of the form 

Z ,.3 2 3 . /1 = a(y ,U l'UZ) + {3(y ,U I,U3 ) + r(y ,y ,U I)U + b(y',u l), 
(4.14 ) 

Z ,.3 2 3 . wherea(y ,U I,U2),{3(y ,U l ,U3 ), r(y ,y ,ul),andb(y',u l) are 
any holomorphic functions satisfying the following set of 
equations: 

AZa = 0, A2{3 = 0, af aa = 0, af a{3 = 0, 
au; auj ayl au I ayl au I 

af ar = ° ,iJ2a ar _ ° -iJ
z
{3 ar _ ° 

a I a ,J-:
a 

2 + al,.3 - , J-:
a 

Z + a 2 - , 
Y U I U I 'Y U I Y 

a 2b AZr aZr aZb aZb 
ayi = 0, auf + ayZ aT = 0, f auf + ayZ aT = 0, 

.-iJa ar aZb 
2J

aul 
- u1ay - ayl a

y
3 =0, 

2fa{3 -u ar _~-o 
aUl I ayZ ayl ayZ - , 

f.(2r +2 aZb +2ular + aa + a{3)+ af ab =0. 
ay! aU1 aU I ay2 ay3 ay! aU I 

(4.15 ) 
The analysis ofEq. (4.15) leads to the results 

(A) f(yl) = a' (yl)h, a = const#O, b = const#O. 
(4.16) 

Then 

/1 = ( - CIUI + C2 )Y. + p(yZ) + weT) - (c3Yz + C4 )UZ 

- {[2cs - (2 + b)c1 - C3 ]y3 + C6 }U3 + C5U, (4.17) 
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where p (f) and W (T) are arbitrary holomorphic functions 
of r or y3, respectively, and CI"",C6 are arbitrary complex 
constants. 

Hence 

5 1 =CIYI, 52=C~+C4' 

53 = [2cs - (2 + b)cI - C3] + C6' 

11 = csu + C2,)I1 + p(y2) + weT). 

( 4.18) 

Having 5 i and 11 we can find the maximal group of contact 
transformations admitted by Eq. (4.12) for I(i) given by 
(4.16). This group is the first prolongation of the following 
group of point transformations: 

yl' = rIY I
, r' = rff + r3, 

T' = ~rl- (2 + bl r2- IT + rs, ( 4.19) 

u' = r4u + r6Y I + uef) + reT), 

where u(r) and reT) are arbitrary holomorphic functions 
of their arguments and r l :;60, r2:;60, r4:;60, r3, rs, and r6 are 
any complex constants. 

We also have 

(B) I(i) = aeby', a = const:;60, b = const:;60. 
( 4.20) 

In this case, 

f.L = c i i + per) + weT) 

_ b _1.(c1y(y2) + ao(y3) + 2C)U 
ay2 aT 21 

+ r(y2)U2 + O(y3)U3 + c2u, (4.21) 

where p (y2), W (T), r(y2), and 0 (y3) are arbitrary holomor
phic functions of their arguments and CI and C2 are arbitrary 
complex constants. Consequently 

f:o l =b- I .(c1y(y2) +aO(T) +2C) 
!> ay2 aT 2' 

52 = - r(r), 53 = - oCT), (4.22) 

11 = c2u + CIY I + p(y2) + W(y3), 

and one concludes that the maximal group of contact trans
formations admitted by Eq. (4.12) for/(i) given by (4.20) 

is the first prolongation of the point transformation group 

YI' =yl + r - b -I In (arp(r) af/!(T») 
I ay2 aT' 

y2' = rp(r), T' = ,p(y3), (4.23) 

u' = e)12br,U + r2,)l1 + u(r) + reT), 

where rp(y2), ,p(T), U(y2), and r(T) are arbitrary holomor
phic functions of their arguments restricted only by the con
dition 

arpef) a,p(y3) :;60 
ar aT ' 

and r) and r2 are any complex constants. 
Also 

(C) l(i):;60, a~:I) :;60, 

I(yl) is neither type (A) nor (B). 

In this case, 

f.L = CIY) + p(y2) + weT) - (Cff + C3)U2 

- [(2C4 - C2)y3 + Cs] U3 + c4u, (4.24) 

51 =0, 52=C1Y2+C3' 53 = (2c4-c2)T+cs, 

11 = c4u + CIY) + per) + weT), (4.25) 

where p (r) and W (T) are arbitrary holomorphic functions 
ofy2 andT, respectively, and c)"",cs are arbitrary complex 
constants. 

Then, the maximal group of contact transformations 
leaving Eq. (4.12) invariant is the first prolongation of the 
group of point transformations 

i' =i, r' = r~ + r2, T' = rirl-IT + r4, 
(4.26) 

where uef) and reT) are arbitrary holomorphic functions 
of their arguments and r l :;60, r3:;60, r2, r4, and rs are arbi
trary complex constants. 

We also have 

(D)/(i) =a=const:;60. (4.27) 

Then we find 

f.L = {[3ac~ + 3ac~ - 2c3uI - (C4 + Cs + C6) ]u I + 2ac7r + 2acsr + 4ac~T + c9}i + p(r,T,u l ) 

+ [(2c~ + !C2U) + cs)u) + ( - 2ac l r + 2C6)r + CIO ]U2 + [(2c~ + !CIU I + C7)U) 

+ ( - 2ac~ + 2cs)T + Cl1 ]U3 + ( - ac~ - ac~ + C3UI + c4)u, 

where C)""'CIJ are arbitrary complex constants and 
p = p(r,T,u) is any solution of the following linear partial 
differential equation: 

a2p a2p a-+--=O. (4.29) 
auf ay2 aT 

We have not been able to find explicitly the maximal group 
of contact transformations generated by f.L of the form 
(4.28). However, one can find an important subgroup of this 
group defined by 
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c) = c2 = C3 = c7 = Cs = 0. 

From (4.28) with (4.30), we get 

and, from (2.5), 

(4.28) 

(4.30) 
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ap ;1 = - (cs + C6)U I + C9, ;2 = (C4 + 2c6)U2 + ar' 

(4.32) 

Then the contact group of transformations defined by (4.31 ) 
and (4.32) takes theform 

i' = rIYI - aaq;, r' = rv? + r3, 
ul 

y' = ~rl-2r2-ly + rs, 
, ( I aq;) _I ( aq;) u = r4u + r6· rIY - - + r4r l . q; - ul- , 

aU I aUI 
(4.33) 

, _I + ' _I ( + _I aq;) ul' = r4r l ul r6, u2' = r4r2 . u2 r l ar ' 
, -L2 ( + _Iaq;) u3' = r4 rt r2 • u3 r l ay' 

wherer l #0, r2#0, r4 #0, r3, rs, and r6 are arbitrary complex 
constants and q; = q;(U I,y2,y3) is any solution ofEq. (4.29). 

Thusifu = u(i) isanysolutionofEq. (4.12) forj(i) 
defined by (4.27), and 

DI(i')=rl_ulla2q;#0, (4.34) 
aui 

then u' = u' (i'), as given by (4.33), is also a solution of this 
equation. Now as q; = q;(ul,r,Y) is an arbitrary solution of 
( 4.29) provided that the condition (4.34) is satisfied, one 
can expect that all or "almost all" solutions ofEq. (4.12) for 
j(yl) defined by (4.27) can be obtained from a given solu
tion u = u (/) with the use of the transformations (4.33). 

Indeed the following theorem holds. 
Theorem 4.2: Let u = u(i) be a solution ofEq. (4.12) 

with (4.27) on an open neighborhood VofapointpEC\ and 
let 

a
2

u! #0. 
a 12 
~ p 

Then for every point qeC 3 and every local solution u' (i') of 
( 4.12) and (4.27) at q satisfying the condition 

a
2

u'! #0 
ayl,2 q 

there exist an open neighborhood V' e V of p, an open neigh
borhood V" of q, and a solution q; = q;(U I,y2,y) of Eq. 
(4.29) such that the mapping 

~: V'3 (i,r,y)f-+(i',y2',y3')eV", 

yll = yl _ aq; 1 ' 

aU I (/l 

r' =y2 + r3, y' =y3 + rs, (4.35 ) 

is a diffeomorphism of V' onto V", and 

I ( i,) [ ( aq; ) aq; ] u y = u+r6· YI-- +q;-ul- . 
aU I au l (yleV' 

(4.36) 

where r3, rs, and r6 are complex constants. 
Proof First consider the case p = q. Let 
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b: = :; 1/ C: = :;',Ip· 
Then the function 

u'(i'): = u'(i') + (b - c)i' 

is a local solution ofEq. (4.12) for (4.27), and 

au' 1 =~I a
2
u'! #0 

ai' p ayl / ai,2 p . 

Then by the assumption 

a2~! #0, a
2
u:! #0<:> a

2
u:! #0, 

ai pal' pal' p 

(4.37) 

(4.38 ) 

it follows that there exist open neighborhoods V' e Vand V" 
of p, and an open set we C 3 such that the mappings 

'1": V'3 (i,y2,Y)f-+(z,y2,y)eW, 

au(i) 
Z=--, 

ayl 
z' = au'(y') 

ayl' , 
(4.39) 

are diffeomorphisms of V' or V", respectively, onto W. De
fine two functions on W: 

K(z,r,Y): = u(i(z,r,Y),r,Y) 

-zi(z,r,Y), 

K'(z',r',y'): = u'(yl'(z',r',y'),r',y') 

-z'yl'(z',r',y'), 

(4.40) 

where yl(Z,y2,y), and i'(Z',y2"y') are solutions of the 
equations 

au(i) au'(i') 
z = ---a.YI' and z' = ayl' 

with respect to i and i', respectively. Then K and K' satisfy 
a linear partial differential equation of the type (4.29), i.e., 

a 2K a 2K a 2K' a 2K' 
a--+---=O and a--+ =0· 

azZ ay2 ay3 az,2 ar' ay3' , 
(4.41 ) 

moreover, 

a2K a2K' --#0 and --2 #0 on W. 
azZ az' 

( 4.42) 

From ( 4.41 ) one infers that there exists a function 
q; = q;(Z,y2,y3) on Wsuch that 

a 2q; a 2q; 
a-+--=O (4.43) 

az2 ay2 ay3 

and 

K'(z,r,y) = K(z,r,Y) + q;(z,r,Y). (4.44) 

Then from (4.39), (4.40), (4.42), and (4.44) it follows that 
the mapping 

~ = '1'''-1 0'1'': V'3 (yl,y2,y3)f-+(yl',r',y')eV", 

yl' = yl _ aq; 1 ' 

aU I (/l 

r' =y2, y' =y, 

(4.45) 
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is a diffeomorphism of V' onto V II • 
Finally (4.37), (4.39), (4.40), (4.44), and (4.45) yield 

(4.36) with r6 = c - b. Hence for p = q our theorem holds. 
Assume p#q. Let p = (y!,y;,y;), q = (Y!,Y;,Y!). Then 
there exist complex constants s, r3, and r5 such that 

Y! = Y! + s, ~ = y; + r3, Y! = Y; + r5• 

Define an open set VI C C 3 (qE VI): 

VI: = {(yI"f,Y)EC 3
: 

(i - s,y - r3,y - r5 )EV}. 

The function ii: VI -+ C, 

ii: VI 3 (i,y,Y)l-+u(i - s,y - r3,y - r5 ), 

is a solution ofEq. (4.12) for (4.27) on VI' and 

a
2

ii I = a
2

u I #0. 
a 12 a 12 y q Y p 

( 4.46) 

( 4.47) 

( 4.48) 

Thus ii(/) and u'(/') appear to be two solutions of Eq. 
(4.12) for (4.27) on some neighborhoods of the point q. 

One also has 

a
2

ii I #0, a
2u'l #0. 

a 12 a 1.2 

y q Y q 

Therefore we can repeat our previous considerations and we 
get (4.35) and (4.36). The proof is completed. • 

Concluding, one can say that any solution u' (y') of Eq. 
(4.12) with (4.27) on a sufficiently small open set of C 3

, 

provided that a 2U' / ai 2 # 0 is generated by a given local so

lution u = u(/), a 2U i/ayl 
2 #0, with the use of a suitable 

transformation (4.33) for r l = r2 = r4 = 1. This is an ob
vious consequence of the fact that Eq. (4.12) for f(yl) = a 
= const # 0 and u II # 0 can be linearized by the contact 

transformation l 8-20 according to (4.39)-(4.41). 
[Remark' Analogous conclusions can be obtained for 

the case u II = O. However, in this case, 

U(i,y2,y) = V(y2,y)yl + W(y2,y), 

where v(y\y) satisfies the following equation: 

V2V3 - a = 0, 

and w(y,y) is an arbitrary holomorphic function ofy2 and 
y. Thus the problem appears to be two dimensional and it is 
not interesting for our purposes.] 

Finally we have 

(E) f(i) = O. (4.49) 

Then 

p, = O'(ul)i + w(y,u l ) + 1'(y,u l ) + a(y,u l,U2) 

+ {3(y,U I,U3) + r(ul)u, (4.50) 

where O'(u I ), W(y2,U I ), 1'(y3,UI ), a(y2,u l,u2), {3(y3,U I,U3), 
and r( u I) are arbitrary holomorphic functions of their argu
ments. 

We have not succeeded in finding the general group of 
contact transformations defined by p, of the form (4.50) but 
we can find an important subgroup of this group. It is exactly 
of the form (4.33) with tp=tp(U I'Y2'Y3) now an arbitrary 
solution of the following linear partial differential equation: 
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a 2tp 
--=0 
ay2ay , 

i.e., Eq. (4.29) for a = O. Therefore 

tp(ul,y,y) = 8(U I,y2) + E(UI,y), 

(4.51) 

(4.52) 

where 8(u~) and E(UI,y) are holomorphic functions of 
their arguments. Then Theorem 4.2 holds true for the pres
ent case provided a = O. The analysis ofEq. (4.12) is closed. 

Up to now, to the best of our knowledge, only the cases 
(B) and (D) are employed in complex relativity and the 
gravitational instanton theory. The specialization of the re
sults obtained for these cases to the gravitational instanton 
theory can be achieved by imposing the following restric
tions: 

(B) a,b,c l ,c2,rl ,r2 real constants, 

i real, y2,y complex, 7 = y, ureal, 

pel) = W(y3), r(y2) = 8(y), 

tp(l) = t/J(y), '(T(7) = 1'(y); 

i real, y2,y complex, -:-:2' _ ,.3 Y -y, 

p(y,y,u l ), tp(U I,y,y3) real. 

ureal, 

Then Theorem 4.2 remains (mutatis mutandis) valid. Con
sequently all Gibbons-Hawking metrics can be generated 
from any given Gibbons-Hawking metric by means of trans
formations (4.33) for r l = r2 = r4 = 1. An important con
clusion concerning case (B) can be readily derived from 
( 4.23). As we have pointed out, case (B) for a = b = 1 cor
responds to the self-dual, Ricci-flat gravitational instanton 
admitting the "rotational" Killing vector field or to the 
heaven of "case III." The transformation of the correspond
ing metric caused by (4.23) appears to be a composition of 
some coordinate transformation and the conformal transfor
mation of the constant conformal factor e(i12)r,. Thus state
ments (i) and (ii) of Sec. II hold (mutatis mutandis) true in 
the present case. 
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Form perturbations of the Laplacian on L2 (R) by a class of measures 
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A class of form perturbations of the Laplacian - a; on L 2 (R, dx), defined in terms of 
regular, in general, complex, Borel measures, satisfying a certain growth condition, is studied. 
The domain of the associated closed operator H is characterized and the special case of 
measures with finite total measure is investigated. A unicity theorem for the eigenfunctions of 
H is derived. 

I. INTRODUCTION 

One-dimensional systems play an important role in il
lustrating concepts from both quantum mechanics and oper
ator theory. Thus in almost any textbook on quantum me
chanics the reader is confronted with the one-dimensional 
quantum mechanical motion of a particle generated by a 
Hamiltonian of the type 

H= -a; + V(x), (1.1) 

acting in K = L 2(R, dx), where the potential Vex) is a 
square well, a step function, or a Dirac ~ function. On the 
other hand, such systems are a convenient means to study 
operator theory as witnessed by the monograph by 
Schechter,1 which is completely devoted to the former. Since 
H has to generate a unitary time evolution it must possess a 
self-adjoint extension. Since the Laplacian - a; is essen
tially self-adjoint on the Schwartz space Y cK with clo
sure p2 = Ho = ( - a;)C (domain go), it follows by a well 
known theorem2

,3 that for symmetric potentials Vex) with 
domain containing go and which are (p2, 1 - e)-bounded, 
Ho + Vis self-adjoint with domain go' It is also known that 
~ functions and general V(x)e L 1 (R, dx) are not in this 
class. They can, however, be handled by quadratic form 
techniques2

,3 (for a different approach, see Ref. 4). Such 
techniques have been considered by a number of authors, 
especially in the three-dimensional casc.5,6 Quite general re
sults have been obtained· in the N-dimensional case by 
Herbst and Sloan,7 who consider perturbations of Ho (which 
can be more general than considered here) by the sum of a 
non-negative potential and a small form perturbation. 

Observing that both ~ and LI potentials define a mea
suredJL(x) = V(x)dx, it makes sense to investigate the situ
ation where the Laplacian is perturbed by measures, thus 
unifying the various cases mentioned above. Thus we consid
er its form perturbations by a class ~ of regular, in general, 
complex, Borel measures JL, characterized by a growth con
dition stating that, on the average, IJL I ( [a,b] ) grows at most 
linearly with the length I = b - a of the interval [a,b]. This 
includes cases such as infinite or semi-infinite Kronig-Pen
ney lattices. In Sec. II we give a general expression for 
[z - H] -I, zEp(H) (the resolvent set of H), and give a 
characterization of the functions in the domain g (H) of H. 
Decomposing JL~ into its atomic, singularly continuous, 
and absolutely continuous parts, JL = JLB! + JLsc + JLBC, we 
have the expected situation of boundary conditions in the 

points of C(JLa!) [C(JL) is the set on which JL is concentrat
ed], whereas JLBC leads to a multiplicative perturbation 
Vex), dJLBC (x) = V(x)dx, V(x)eL foe (R, dx). Singularly 
continuous measures, however, make their presence felt in a 
more subtle way. (Here and in the following, phrases such as 
absolutely continuous, singularly continuous, and almost 
everywhere are with respect to Lebesgue measure.) In Sec. 
III measures JL with finite total measure, IiJL II = IJL I ( R) < 00, 
are considered. Now [z-H] -I - [z-Ho] -I, z 
ep(H)np(Ho), is a trace class operator, leading to a scat
tering situation possessing asymptotic completeness for self
adjoint H (real JL). In Sec. IV we derive a unicity theorem for 
the eigenfunctions of H. One of its consequences is that for JL 
real, concentrated on a finite of semi-finite interval, H has no 
non-negative eigenvalues. A similar case, related to a quan
tum mechanical tunneling situation, is briefly mentioned in 
the discussion section. The results concerning operator and 
form techniques, used in the sequel, can be found in Refs. 2 
and 3. For the various measure-theoretic notions, Ref. 8 is a 
convenient reference. 

II. MEASURES AS FORM PERTURBATIONS 

We start by introducing some notation. As mentioned 
earlier, we are considering form perturbations of Ho = p2 
(domain go), the closure of - a; onY(R) cK = L 2(R, 
dx) [inner product if,g), norm II I II ]. The closed quadratic 
form associated with Ho is 

<1>0 ( f,g) = (H ~/2 f,H ~/2g) = (pf,pg), 

l,geg(H~/2) = g(p) = g, 

where p is the momentum operator [the closure of - i a x on 
Y (R) ]. We recall that with the resolvents of p and p2 are 
associated the integral kernels [O(x) is the unit step func
tion; O(x) = 1, x;;:'O, zero, otherwise] 

(xl[z_p]-lly) 

{ 
- iO(x - y)exp[iz(x - y)], 1m z> 0, 

- (2.1) 
- iO(y-x)exp[i.JZ(x-y)], Imz<O, 

(xl[z_ p2]-lly) = [2i.JZ1- 1 exp[i.JZlx-yl], 

z e (>d 0,00 ). 

Noting that any I eg (p), its Fourier transform being an L 1 

function, has a continuous version vanishing in infinity, de
noted by (xii) (and its complex conjugate by (/Ix», we 
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see that (xlf)e Co = Co(R), the algebra of continuous 
functions, vanishing in infinity. Now, Co equipped with the 
sup-norm is a Banach algebra and its dual, C ~, is the space of 
regular Borel measures I' with finite total measure, the norm 
being 111'11 = 11'1 (It) (for these facts, see Ref. 8). Thus 

<l>1(f,g) = f dp(x)(glx)(xlf), f ,ge~, I' eC~, 
is well defined (integrals, unless specified differently, are 
over R) so that 

<1>( f,g) = <1>0 ( f,g) + <1>1 (f,g) (2.2) 

is also properly defined and a simple estimate shows that <1>1 
is <l>o-bounded with zero relative bound so that <I> defines an 
m-sectorial operator H with ~ (H) C~ and 
(H j,g) = <1>( f,g),fe~ (H). In particular, His closed and, 
in case pis real, self-adjoint and bounded from below.2 Re
placing I' by Lebesgue measure in (2.2) we see that <I> I per
turbs Ho through the addition of a constant. This suggests 
the extension of our class of measures by incorporating mea
sures that, on the average, grow as Lebesgue measure. 

Definition 2.1: Let I' be a regular Borel measure. Then I' 
is said to belong to the class we if there exist positive con
stants K and I such that 11'1 ([a-b) <K(b,a) for every finite 
interval with length b-a>l. A scaling argument shows that 
we can take I = I without loss of generality as we shall do in 
the sequel. 

Remark: The measure I' can be complex-valued with 
infinite total measure, which deviates from the standard de
finition. Note, however, that 1', restricted to a finite interval, 
has finite total measure. In the sequel dp is always weighed 
in such a way that the weighed measure has finite total mea
sure. 

Proposition 2.2: Let Il ewe. Then (2.2) defines a closed 
m-sectorial operator H with domain ~ (H) c ~ . For real 1', 
H is self-adjoint and bounded from below. 

Proof: We show that <1>1 is <l>o-bounded with zero relative 
bound. Let f e~ (p) so that f = [ia-p] - I q;, a> 0, q; eJY. 
Proceeding formally, using (2.1), we have 

<1>1 (f J) = f dp(y) I <YI fW 

= f dp(y) f dx dx' B(y - x)B(y - x') 

Xexp[ - a(2y - x - x') ]q;(x)iP(x') 

= f dxM(x,a)h(x), 

where 

hex) = 1"0 dx' exp[ - ax'] 

X{q;(x)iP(x-x') +q;(x-x')iP(x)}, 

M(x,a) = f dp(y)B(y - x)exp[ - 2a(y - x)]. 

Now h eL I(R, dx) with IIh Ib<2a- Illq; 112 and, writing 
00 

[X,oo) = u [x + k,x + k + 1], 
k=O 
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we have 

IM(x,a) I<K[l - exp[ - 2a])-I, 

SO that our formal manipulations are justified and 

1<I>I(f./)I<2Ka- l[l - exp[ - 2a])-IIIq; 112 

=2Ka- I[1-exp[ -2a])-I{<I>o(f./) 

+a211fll2}. 0 

Remark: We note that we contains lattices of {j potentials 
(Kronig-Penney lattices) but also atomic measures where 
C(llat 

) clusters locally, provided the strength of the {j poten
tials decays sufficiently fast. 

Proposition 2.3: LetHbeas in Proposition 2.2. For Im,[z 
> 2K, we have z ep(H) and 

[z-H] -I 

= [,[z + p] - 1[1 + K(z)] - I [,[z _ p] - 1= R(z), 
(2.3) 

where the bounded operator K(z), defined by the integral 
kernel 

(xIK(z) Ix') = f dp(y)exp[i,[z(x + x' - 2y)] 

XB(x - y)8(x' - y), (2.4) 

is analytic in z eC\ [0,(0) and obeys 

IIK(z)II<2K(lm,[z)-1[1-exp[ -2Im,[z] -I]. 
(2.5) 

Proof: (a) Let,[z = u + iv. For x>x', we have 

I (xIK(z) Ix') I 

<f d III I (y)exp[ - vex + x' - 2y) ]B(x' - y) 

= f dil'l (Y)X( - oo.x· J (y) 

Xexp[ - 2v(x' - y) ]exp[ - vex - x')] 

<K[ 1 - exp[ - 2v)) -I exp[ - vex - x')], 

and similarly for x < x' [X.of (y) is the characteristic 
function of the set A] with the result 

I (xIK(z) Ix') I 

<K[I-exp[ -2v))-lexp[ -vlx-x'I] 

= 2Kv[ 1- exp[ - 2v)) -I(xl [P2 + v2] -llx'), 

from which (2.5) follows. The analyticity statement follows 
by applying Morera's and Fubini's theorems to (K(z) f ,g), 
f,geJY· 

(b) The existence of K(z) now being established, we 
note that a suggestive way of writing K(z) is 

K(z) = - f dp(y) [,[z-p] -lly)<YI[,[z+p] -I. 

(2.6) 

This expression suggests the relation 

K(zl) = [~-p] -I[{Z; -P]K(Z2)[{Z; +p] 

X[~ +p]-I, 
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which is readily vertified by actual computation. Using this 
result we find that R (z) obeys the resolvent equation 
R(zl) - R (Z2) = (Z2 - Zl )R(zl )R(Z2)' which implies that 
therangeofR(z) isz-independent. In addition, (2.3) shows 
that R(z) and R *(z) have empty null spaces, so that 
R(z) -I = z - H exists with H closed, densely defined. For 
l,gE !if, we have 

(R(Z)-I/,g) = ({I +K(z)}(~+p)/,( ~ -p)g) 

= z(/,g) - <I>(/,g), 

so that H coincides with our earlier definition. 0 

Remark: We shall say that a function I (x) is contained 
in BVloc if its restriction to a finite interval is of bounded 
variation. 

Theorem 2.4: Let H be as in Proposition 2.2. Then we 
have the following: 

(a) In case !if (H) = !if (Ho) = !if 0' p is absolutely 
continuous: dp(x) = V(x)dx, V(X)E L foe (R, dx). 

(b) Every I E!if (H) has a continuous version (x I 1>, 
continuously differentiable in R" C(pat ). In each 
x EC(pat), (xii) possesses left and right derivatives, their 
difference being equal to p( {x}) (xl I) and both being con
tained in BVloc ' 

(c) Let D x be the Lebesgue derivative and let Ibe as in 
(b). Then for almost every x, 

(HI)(x) = {- Dx ax + V(x)}(xl/) 

= {- D~ + V(x)}(xl/), (2.7) 

where Vex) is defined through dpac (x) = V(x)dx. 
(d) Let/be as in (b) and let (ax (xl I»S be the singular 

part of ax (xl I) [the latter is not defined in x E C(pat ) but 
we can take either the left or right derivative of (x I I); its 
singular part is defined in terms of the associated singular 
measure]. Then, for each h (x) E Y (pS = psc + pat), 

f dx(ax(xl/»Sax hex) = f dpS(x)(xl/) hex). 

(2.8) 

We start with a lemma. 
Lemma 2.5: Let vEW1, r=Re S>O, and/ECo(R). 

Then 

g(x) = f dv(y)exp[is Ix - yl]f(y) 

exists for each x ER, is bounded in absolute value by an x
independent constant, and tends to zero as lxi- 00. 

Prool: For each E> 0, 3 Yo> 1 such that I I (y) I < E, for 
Iyl > Yo' Thus 

Ig(x) I <;E f d Ivl (Y)X(y".oo) (Iyl )exp[ - rlx - yll 

+ 11/1100 f d Ivl (Y)X(O,y,,) (Iyl )exp[ - rlx - yl] 

<;E f dlvl(y)x(y",oo) (lyJ)exp[ -rlx-yl] 

+2K1l/1100 max exp[-rlx-yl]. 
jyj E[O,y,,] 
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The second term has the needed behavior and it remains to 
consider the first. For Ixl <;Yo, the first term is properly be
haved and it remains to consider its properties for Ixl > Yo' 
Thus let x > Yo (the case x < - Yo goes similarly). Now, us
ing vEW1, 

f d Ivl (y)X( - oo,-y,,) (y)exp[ - rlx - yl] 

= f d Ivl(y)x( - ",,-y,,) (y)exp[ - r.v] exp[ - yx] 

<;k exp[ - yx], 

where k> 0 is a constant. Second (n l is the first integer such 
that Yo + n1>x and k' > 0 a constant), 

f d Ivl (y)X(y",oo) (y)exp[ - rlx - yl] 

= f d Ivl (y)X(y",X (y)exp[r.v]exp[ - r x ] 

+ f d Ivl (y)X(X,oo) (y)exp[ - rex - y)] 

<;K ± exp[r(yo + n) ]exp[ - rx] 
n=O 

00 
+K L exp[ -r(x+n)]exp[rx<;k'.] 

n=O 

Thus we have assembled all ingredients needed for the valid
ity of the lemma. 0 

ProololTheorem 2.4: (a) Let !if (H) = !if (Ho) = !if 0 

and let I E!if 0 be such that I (y) = 1 on the finite interval 
[a,b], b>a. We denote 

V(y) = (HI)(y) - (Ho/)(y),YE[a,b]. 

Then for g E !if with support in (a,b), 

f dy V(y) (ylg) = f dp(y) (ylg) 

and by a limiting argument 

LX dy V(y) =p«a,x», xE(a,b). 

Since VELfoe' VELfoe anddp(y) = V(y)dy. 
(b) Since !if (H) is contained in !if (p), every I E !if (H) 

has a continuous version (xl I). Writing 1= [z - H] -Ig, 
Z E p (H), g E ,)Y, and noting that 

[z - H] - I = [z - Ho] - I - [~ + p] - IK(z) 

X [1 + K(z)] - I [~ _ p] - 1 

= [z - Ho] -. I - [~ + p] - IK(z) 

X[~+p][z-H]-t, (2.9) 

we have 

(xl I) = (xl [z - Ho] -lg) 

- (xl [~ + p] - IK(z) [~ + p]1> 

= (xiii) - (xI/2), 

where (xl I I)E AC 2 (R) [sincel IE!if (Ho)] and 
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(xI/ 2 ) = [2iv'zrJ d,u(y)exp[iv'zlx-yl] (YI/)· 

(2.11 ) 

Its atomic contribution is 

(xI/2)at= [2iv'z] -I I ,u({xJ) 
Xf'C(f'al) 

X exp [iv'zlx - x j I] (x j I I)· (2.12) 

For x Et C(,uat ), the k th derivative ofthejth term in (2.10) 
equals 

,u( {xj }) [iv'zsgn(x - xj )] k'exp[iJilx - xjl] (xjl/). 

Applying Lemma 2.5 with v = ,uat, we find that (2.10) and 
the corresponding series for the derivatives converge abso
lutely, are bounded by an x-independent constant, and van
ish as Ixl-+ 00. Thus (xl Iz)at is arbitrarily often differentia
ble in R" C(,uat ) and possesses a left and right derivative in 
each XjE C(,uat) , their difference being equal to 
,uat ({xj }) (x j I I). In particular, a ~ (xl 12)at = - z/~t(x), 
for x E R"C(,uRt), and it follows that ax (xl Iz)at can be ex
tended to a function contained in BVloc (the left and right 
derivatives of (xllz)at are such extensions). 

Next we consider the continuous contribution 

(xI/2 )c= [2i~-I{exp[i~x]vI« - oo,x» 

+ exp[ - i~X]V2([X,00 »}, 
where 

v l « - oo,x» = J d,uC(y)X( _ oo,X) (y)exp[ - i~y] (YI/), 

v2([x, 00 » = J d,uC(y)X[x,oo) (y)exp[i~y] (YI/)· 

It is easily verified that (xl Iz)C is differentiable, its (contin
uous) derivative being given by 

ax(xllz)C= !{exp[i~x]vI« - oo,x» 

- exp[ - i~X]v2([X,00 »} 

= ~ J d,uC(y)sgn(x - y) 

Xexp[i~lx - yl] (YI/), 

which vanishes as Ixl-+ 00, according to Lemma 2.5. 
The same result holds for (xl II) [,uc is replaced by 

Lebesgue measure and (y I f) by g(y) ] . 
We note in passing that, for XE R"C(,uat), 

ax (xllz) =! J dysgn(x - y)exp[i~lx - yl]g(y) 

-! J d,u(y)sgn(x - y)exp[i~lx - yl] (YI/)· 

(2.13 ) 

( c) Since v I and v 2 are Borel measures, their derivatives 
with respect to Lebesgue measure exist and equal 
± exp [ + i~x] (xl I) for almost every x so that 

Dx (ax (xl Iz)C) = - z(xl Iz)C + Vex) (xl I), 
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Vex) being defined by d,uac (x) = V(x)dx. Similarly 

Dx(ax(xl/l » = -z(xl/l ) +g(x), 

for almost every x. Combining results {z + Dx ax 
- V(x)}(xl/) =g(x) and,sinceg= (z-H)f, 

(H I)(x) = { - Dxax + Vex) }(xl I) 

= {-D~ + V(x)}(xl/), (2.14 ) 

for almost every x. 
(d) Since ax (xl f) hasanextensioninBVloc we can split 

it into its singular and absolutely continuous parts and write, 
assuming ax (xl I) to exist in X O' for a.e. x, 

ax(xl/) = (ax(xl/»'+ (ax(xl/»~c=x" 

+ l~ dyDy ay(YI/)· 

Then, for arbitrary hEY, 

~(f,h) = - J dx(ax(xl/»Sax hex) 

-J dx{Dx ax (xl I)} hex) 

= (Hf,h). 

Hence, using (2.14), 

J dx(ax (xl I»S ax hex) = J d,uS(x) (xl II) h(x), 

which is (2.8). o 
Theorem 2.6: Let I (x) be an absolutely continuous 

square integrable function with square integrable derivative 
aJ (x) = DJ (x), the latter being the restriction to its do
main of existence of a function q:; EBV\oc' In addition, let its 
singular part (aJ)S (x) satisfy 

«aJ)S,axh ) = J d,uS(x) I (x) h(x), V hEY. 

(2.15) 

Then/Eiil' (H). 
Proof Since, according to our assumptions, 

~(/,h) = ({ -D~/+ V(x)}/,h), V hEY, 

and since Y is a core for~, IE iil' (H). 0 
Remarks: Part (a) of Theorem 2.4 shows that in case 

the singular part of,u is nonzero the domains of Hand Ho do 
not coincide. Part (b) expresses the well known fact that {j 
potentials are equivalent to boundary conditions [the jump 
condition on ax (xl I) in the points ofC(,uat )]. We also note 
that in case ,uRt vanishes, ax (xl I) is continuous but is not 
absolutely continuous for nonzero ,use. In fact, we see that 
singular continuous measures do not show up as a boundary 
value perturbation of - a ~ nor as a multiplicative operator; 
they constitute a separate class of local perturbations of the 
Laplacian. 

It is clear from Theorem 2.4 that the conditions of 
Theorem 2.6 are both necessary and sufficient for I to be 
contained in iil' (H). Note that (2.15) implies that the only 
discontinuities in q:; are in the points Xj of C(,uat ), where q:; 
jumps with an amount,uat(xj ) (x j I I), but that it only makes 
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a more implicit statement about the singular continuous part 
ofaxi (in terms of its weak derivative). 

III. THE CASE OF FINITE TOTAL MEASURE 

Throughout this section we assume that 111'11 < 00. Then 
(2.4) defines a lIilbert-Schmidt operator with Schmidt 

norm IIK(z)lb<IIJlII/(2 Im..JZ). In fact, K(z) is even trace 
class, since, writing ..JZ = u + iv, U E R v> 0, 

K(z) = - exp[iuxJ f dv(y) [p - ivJ -lly) 

X (YI [p + ivJ -I exp[iuxJ 

= -eXP[iuxJttl (i)j f dvj(y)[P-ivJ-IIY) 

X (Yl [p + ivJ - I }eXP[iuxJ, (3.1) 

where 
4 

dv(y) = exp[ - 2iuyJdJl(Y) = L (i)j dvj(y), 
, j= I 

with Vj non-negative, IIvlli + II V3 II < 111'11, IIV211 + II V4 II < 111'11· 
Now each 

f dvj(y) [P - ivJ -lly)(Y1 [p + ivJ- 1 

defines a non-negative trace class operator with trace norm 
<lIvj 1I/(2v). Thus we have the following proposition. 

Proposition 3.1: Let 111'11 < 00. Then 
K(z), z E C'\ [0, 00), is a trace class operator with trace 

norm obeying IIK(z) II 1<IIJlII/(Im ..JZ)-I [<ILuIl/(2 Im..JZ) 
in case I' is realJ and operator norm obeying IIK(z) II < 111'111 
(2Im..[z) (since the Schmidt norm majorizes the operator 
norm). It now follows form (2.7) that [z-HJ- I 

- [z - HoJ -1,zEp(H) np(Ho), is trace class and we have 
by some well known results (see Ref. 2, Chaps. IV and X, 
and Ref. 9, Theorem VI-14) the following corollary. 

Corollary 3.2: The essential spectra of Hand Ho coin
cide, O'ess(H) =O'ess(Ho) = [0,00); [z-HJ- I is analytic 
outside C'\ [0,00), except possibly for a set ~ of poles of 
finite multiplicity that can only accumulate in points of 
[0,00 ). In case I' is real, so that H is self-adjoint, the abso
lutely continuous spectra of H and Ho coincide, O'ac (H) 
= 0', (Ho) = [0,00), and the wave operators O± (H,Ho) 
exista~nd are complete. In this case ~ C [ -1111'112,0) and 
can only accumulate in zero. (Note that for a single {j poten
tial with strength - A, so that I' is concentrated in a single 
point, I' < ° and 111'11 = A, H possesses a single eigenvalue 
E = 1A 2 = -1111'112.) 

Proposition 3.3: Suppose I' is real so that H is self-ad
joint. Then the singular continuous spectrum of H, O'sc (H), 
is contained in the interval [0,1I1JlIl2J. This result follows 
from the lemma below and the fundamental criterion (see 
Ref. 10, Theorem XIII. 19 ). 

Lemma 3.4: Let ({J(x)eL 2nL'" (R,dx). Then 
M(z) = ({J[z - HJ -I({J satisfies 

(3.2) 
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Proof We note that for Im..JZ > !IIJlII the series 

'" 
M(z) = L Mn (z), 

n=O 

Mn(z) =({J [..JZ +p] -IK(z)n[..JZ_p]l({J 

is norm convergent. On the other hand, Mn (z) possesses the 
integral kernel 

(xlMn (z) Ix') = ((J(x)({J(x') f dJl(YI)" J dJl(Yn )(2i..JZ)-1 

xexp[i..JZlx - YIi] ... (2i..JZ)-1 

xexp [i..JZIYn - x'I], 

so that 

I (xlMn (z) Ix') 1< 1({J(x) 1({J(x') I (21..JZ1) -I [IIJlII/(21..JZ1) ] n. 

Consequently Mn (z) is Hilbert-Schmidt with Schmidt 
norm 

so that the series for M(z) converges in Schmidt norm and 

hence in operator norm for I..JZI > !ILuIi. 0 
Remark: If I' is absolutely continuous dJl(x) 

= Vex )dx, with VEL I (R, dx), we can proceed as for the 
Rollnik class in three dimensions. In the latter case, 
II VI/2[z - HoJ -I V I/2 11 can be smaller than 1, uniformlyinz, 
leading to an empty singular continuous spectrum. Here the 
situation is different as a result of the factor (..JZ) -I in the 
integral kernel for [z - HoJ -I; we encounter a dependence 
on the dimension. On the other hand, the Agmon-Kato-
Kuroda theorem does have its counterpart in the present 
case. 

Proposition 3.5: Let v be a real regular Borel measure 
with finite total measure and let 

dJl(x) = (1 +X2)-1I2- E dv(x), e>O. 

Then H, associated with 1', has empty singular continuous 
spectrum. 

We omit the (lengthy) proof, which is an adaptation to 
the form case of the prooffor the operator situation (see Ref. 
10, p. 169, TheoremXIIl.33, andp. 373, exercise 71). There 
is a further corollary to Proposition 3.1 that, although math
ematically quite trivial, is important in physical applica
tions. It allows us to perturb H with, for instance, a step 
potential, giving rise to interesting quantum tunneling situa
tions, while maintaining the existence and completeness of 
wave operators. 

Corollary 3.6: Let V be an (Ho, 1 - e)-bounded and 
(H,l - e)-bounded operator. Then HI = Ho + V, 
9J (HI) = 9J (Ho), H2 = H + V, 9J (H2) = 9J (H), are 
closed operators and, for zEp(HI ) np(H2), 
[z-H2J- I - [z-Hd- I is trace class, so that O'es. 

(HI) = O'es. (H2). In caseJl is real and Vsymmetric, HI and 
H2 are self-adjoint, their absolutely continuous parts unitari
ly equivalent and the generalized [HI can possess further 
spectrum in addition to O'ac (HI)] wave operators 0 ± (H2, 
HI) exist and are complete. 

These statements directly follow from the relation, valid 
for suitable z, 
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[Z-H2] -1- [z-Hd- I 

= [1- [z-Ho] -IV]-I 

X{[z-H] -1- [z-Ho] -I} 

'[1- V[z-H] -I] -I. (3.3 ) 

IV. A UNICITY THEOREM FOR EIGENFUNCTIONS OF H 

Consider the case that H = p2 + Vex), with Vex) a 
smooth bounded function of x. The eigenvalue equation 

H/=E/ (4.1 ) 

can be written as 

ax~) = (V(X~ -E ~)~) oraxf= M(x)"f, (4.2) 

where/ 1=/' /2 = ax! We can interpret (4.2) as an evolu
tion problem with the unique solution 

f (x) = U(x,xo)"f (xo)' (4.3) 

Thus/(xo) andf'(xo) determine/ex) andf'(x), for all x; 
this property is referred to as unicity. In this section we shall 
derive a similar result for our class ofform perturbations. We 
have to proceed in a different way, however, since we can no 
longer write H as an operator sum. Thus let Hbe associated 
with,u Em as before and suppose / E~ (H) obeys (4.1) for 
some E EC. Then, Vg E~, 

(H/,g) =E(J,g) = (p/,pg) + f d,u(x)/(x)g(x) 

[in this section/ex), g(x), etc., will always be the contin
uous version] or, with dv(x) = d,u(x) - E dx, 

- (p/,pg) = f dv(x)/(x)g(x), 

so that 

- (/,p2g) = f dv(x)/(x)g(x), VgE~oC~. 
(4.4) 

Next we consider a special set of functions g E ~ 0' vanishing 
outside the finite interval (a,b), defined as follows: let hex) 
be a smooth function of x with the properties 

Lb dx xkh(x) = 0, k = 0,1. (4.5) 

Thus in RP =L 2[a,b],dx), hE QRP, the orthogonal com
plement ofthe subspace PRP, spanned by the constant and 
linear function. Now let 

g(x) = X[a.b ,(x) LX dy(x - y)h(y) 

= - X[a,b ,(x) Lb dy(x - y)h(y). (4.6) 

Then 

g'(x) = X[a,b ,(x) LX dy hey) 

= - X[a,b ,(x) Lb dy hey), 

and 

g"(x) =0, xEt[a,b], g"(x) =h(x), xE(a,b), 

Although g" (x) can have discontinuities in a and b, it is 
contained in ~ 0 and 

- (/,p2g) = Lb dx/(x) hex). 

Next we calculate the right-hand side of (4.4): 

f dv(x)/(x)g(x) = - f dV(X)/(X)X[a,b'(X)[ dy(x-y)h(y) 

Hence 

Lb dx/(x) hex) 

= - f dV(X)/(X)X[a,b leX) Lb dy X[x,b ,(y)(x - y) hey) 

= - f dy f dv(x)X[a,b,(x)/(x)X[x,b,(y)(x-y)h(y) 

= Lb dx f dV(Y)X[a,b I (Y)X[y,b ,(x)(x - y) hex) 

= f dx f dV(Y)X[a,x' (y)(x - y)/(y) h(x). 

Lemma 4.1: For q; E ~ = C( [a,b] ), equipped with the 
sup-norm, define 

= Lb dx f dV(y)X[a,xl(y)(X-y)/(y)li(x). (4.7) 

(LqJ)(x) = LX du f dv(Y)X[a,lI) (y)q;(y). (4.8) 

Then L is a compact operator on ~ and 
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(Lq;)(x) = J dV(Y)X[a.x) (y)(x - y)q;(y). (4.9) 

Proof: Let 1Iq; II be the sup-norm of q; E '?!i and let 
IIvll = Ivl ([a,b]). We have 

I (Lq;)(x l ) - (Lq;)(x2) I 

= li~2 du J dV(Y)X[a,u) (y)q;(y) I 
<Ixi - x2111 vllllq; II, 

so that (Lq;) (x) is continuous on [a,b] and in the same way 
we find that ilL 11«b - a)llvll. Now let {q;n}:= I C'?!i with 
lIq;n II<M. The estimate above shows that (Lq;n )(x) 
is equicontinuous on [a,b ] and we also have 
ILq;n )(x) I < (b - a) IIvIlM, so that, according to Ascoli's 
theorem, {Lq;n} possesses a convergent subsequence. This 
settles the compactness property. Finally 

IX du J dV(Y)X[a.u) (y)q;(y) 

= IX du J dV(Y)X[a,x) (Y)X[a.u) (y)q;(y) 

= J dV(Y)X[a.x) (y) IX du X[a,u) (y)q;(y) 

= J dV(Y)X[a,x) (y) (x - y)q;(y), 

which is (4.9). o 

Now (4.7) takes the form 

Ib dxl(x)fz(x) = Ib dx(LI)(x) hex), 

so that (PI) (x) = (PLI) (x), for almost every x, and 
hence,/(x) and (LI)(x) being continuous, for every x. 
Consequently 

I(x) = e + d(x - a) + (LI)(x). (4.10) 

Since (LI) (a) vanishes, e = I(a). According to Theorem 
2.4, I (x) is differentiable in each x E R \ C(,uat) and a 
glance at (4.8) shows that 

/'(x) =d+ J dV(Y)X[a.x) (y)/(y), (4.11) 

for such x. Now if a E R \ C(,uat ) also, then the second term 
in (4.11) vanishes for x = a. Thus d =/,(a) and 

I(x) =/(a) + /'(a)(x - a) + (LI)(x) 

=/o(x) + (LI)(x), a E R\C(,uat). 

Since L is compact, (4.12) implies 

I(x) = ([1-L]-l/o)(x), 

(4.12) 

(4.13 ) 

provided that 1 is not an eigenvalue of L. Then unicity fol
lows. 

Theorem 4.2 (unicity theorem): Suppose that 
a E R \ C(,ual ) and suppose further that/is an eigenfunction 
of H, HI = Ef Then/(x) is uniquely determined by I(a) 
and/'(a). 

Proof: Let, for x E [a,b], 

In(x) = (Ln/o)(x) = J dv(xl)X[a.x) (XI)(X-XI) .. J dv(xn)X[a.x,,_t) (xn)(xn_ 1 -xn)/o(xn) 

= J dv(x l )" J dv(xn )O(x - xl)(x - XI)" ·O(xn_ 1 - Xn )(xn_ 1 - Xn )/o(xn), 

where the integration intervals are [a,x) (or [a,x], due to the 
factors (Xj _ 1 - Xj ». Next we show, by an induction argu
ment, that 

max (x-xl)(XI-X2)"'(Xn_1 -xn) 
X>X1"'>xn>a 

«(x - a)/nY«x - a)nln!. (4.14) 

We observe that 

(x - XI)(X I - a) = «x - a)/2)2 - (XI - !(x + a»2 

<((x - a)/2)2. 

Assuming that 

(x - XI)'" (xn _ 2 - Xn_ 1 )(xn_ I - a)«(x - a)/nY, 

it follows that 

(x-xl)"'(Xn_ 1 -xn)(xn -a) 

«x - XI)«X I - a)/nY«(x - a)/(n + 1)Y + \ 
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where the last inequality follows by observing that the mid
dle term attains its maximum for XI = (nx + a)/(n + 1). 
Thus (4.14) holds and consequently [llvll = Ivl([a,b]), 
11q; II is the sup-norm of q; E C( [a,b] ) ] 

I In (x) I <llvlln(x - a)nll /0 II/(n!), (4.15) 

so the series 
co 

I(x)= I/n(x) ( 4.16) 
n=O 

converges uniformly. Thus/(x) is continuous and, more
over, since In + I (x) = (Lin )(x), (LI)(x) 
=/(x) -/o(x), which is (4.12). Second, (4.15) gives 
IILn II <en I(n!), e = Ilvll (b - a). Thus 

n-oo n-oo 

and consequently u(L) = {a} by the spectral radius formu
la. Thus 1 is not an eigenvalue of Land lis given by (4.13), 
or, alternatively, by the expansion (4.16). 0 

Remark' In the preceding we only proved statements 
about/(x) in terms of/(a) and/'(a), for x>a. The case 
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x<,a is handled in precisely the same way. Second, it is not 
necessary to assume a E R\C(JLat ). We can allow 
a E C(JLat ) provided we take forI' (a) the right derivative in 
x=ain (4.12). 

Corollary 4.3: Under the conditions of Theorem 4.2, 
there exists an expression of the type (4.3) for x>xo = a and 
12(X) the right derivative of/(x) [which coincides with 
I' (x), for x E R \ C(JLat ) ]. A similar result holds for x<,a. 

Proof: Let uo(x) = 1, ul(x) = x, tPo(x) = 
([I-L]-I UO )(X), and tPI(X) = ([I-L]-IUI )(X). 
Then, from (4.13), for x > a, 

I(x) =tPo(x)/(a) + {tPI(X) -atPo(x)}I'(a). 

Second, from (4.11), for x E R\C(JLat ) n (a, 00 ), 

I'(x) =I'(a) + f dV(Y)X[a,x) (y) 

X{tPo(y)/(a) + [tPI(Y) -atPo(y)]j'(a)}, 

whose relation remains true in points of C(JLat) ifl'(x) is 
replaced by the right derivative. From these expressions the 
components ofU(x) can be pieced together. Note that, since 
(LljJ)(a) = 0, so that ([ 1 - L] -lljJ)(a) = ljJ(a), U(a,a) is 
the unit matrix. 

Corollary 4.4: Suppose that JL is concentrated in a finite 

or semi-infinite interval. Then I Rei=E I > 0 so that in the 
self-adjoint case E must be strictly negative. 

Proof: Without loss of generality we can suppose that 
C(JLat ) C ( - 00 ,0). Then dv(x) = - E dx, for x>O, and, 
forx>O, 

I(x) =/(0) +1' (O)(x-a) -E LX dy(x-y)/(y), 

so that a; I (x) = - E I (x), for x> O. Square integrability 

now requires IRei=E1 >0. 0 
Application 4.5: Let v EW1 be real with C( v) c ( - 00 ,0) 

and let dJL(x) = dv(x) - a(J(x)dx, a> O. Then the self-ad
joint operator H, associated with JL, has no eigenvalues 
>-a. 

v. DISCUSSION 

The advantage of our approach through form perturba
tions in terms of measures is the unified treatment of both L l_ 

and 8-function perturbations. Although L I perturbations 
can be handled by means of a factorization procedure 
[ Vex) = VI (x) V2 (x), Vj (x) E L 2(R, dx)] in a quite satis
factory way,9 this is clearly not possible for 8 potentials. The 
method loses its flavor if one attempts to generalize it to 
higher dimensions since the relation g (p) C Co(R" ) breaks 
down for n > 1. In fact, singular point interactions, such as 
the Fermi (or zero range) potential in three dimensions, 
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cannot be handled in this way (a treatment for such cases in 
terms of resolvent expressions is given in Ref. 4). The rela
tive ease with which we obtained a unicity (or unique con
tinuation) theorem is also deceptive. In higher dimensions 
the situation is much more complicated (cf. Ref. 10, Chap. 
XIII and notes). In Sec. IV we mentioned the case of a mea
sure with support in ( - 00,0) and a negative step - a(J(x), 
a> 0, in the origin. This is a standard example of a quantum 
mechanical tunneling situation. Without the step there can 
be an eigenvalue E E ( - a,O), but, as we have seen, with the 
step added, this is not possible. The situation was analyzed 
by Howland II in terms of spectral concentration for the case 
of an L I potential. In the case of a 8 potential with suitably 
chosen negative strength, centered in some Xo < 0, the asso
ciated resonance pole in the resolvent can easily be calculat
ed. 12 For sufficiently negative xo, there exists indeed a pole 
E(xo) with nonzero imaginary part but as Xo tends to zero it 
changes into a real number in a different Riemann sheet (a 
so-called virtual state). This suggest a dilatation-analytic 
treatment of this case (some further brief remarks can be 
found in Ref. 13). Here the idea is to dilate for x>O but not 
for x < O. Then both JL and - a(J(x) are not affected by the 
dilatation transformation but Ho is (leading to additional 
boundary conditions in zero). 
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The noncommutative differential geometry of the algebraMn (e) of complex nXn matrices is 
investigated. The role of the algebra of differential forms is played by the graded differential 
algebra C(sl(n,C) ,Mn (e» = Mn (e) ® /\ sl(n,e) *,sl(n,e) acting by inner derivations on 
Mn (e). A canonical symplectic structure is exhibited for Mn (e) for which the Poisson 
bracket is, to within a factor i, the commutator. Also, a canonical Riemannian structure is 
described for Mn (e). Finally, the analog of the Maxwell potential is constructed and it is 
pointed out that there is a potential with a vanishing curvature that is not a pure gauge. 

I. INTRODUCTION AND PRELIMINARIES 

Let V be a smooth manifold. The differential geometry 
of V can be described by using the algebra C'" ( V) of smooth 
complex functions on V considered as an abstract commuta
tive*-algebra. The Lie algebra of complex vector fields coin
cides with the Lie algebra Der(C'" (V» of derivations of 
C'" ( V). By definition, the Lie algebra Der( C'" ( V» acts by 
derivations on C'" (V), therefore I the complex 
C(Der(C'" (V»,C'" (V» of cochains of Der(C'" (V» with 
values in C'" (V) is a graded differential algebra and one 
observes2 that the graded differential algebra n ( V) of differ
ential forms on V is the smallest differential subalgebra of 
C(Der(C'" (V»,C'" (V» which contains C'" (V). This led 
one of the authors2 to propose the following noncommuta
tive generalization of the differential calculus. Let .Ji'I be an 
associative algebra with unit, then the complex 
C(Der(.Ji'I) ,.Ji'I), of .Ji'I-valued cochains of the Lie algebra 
Der (.Ji'I) of derivations of .Ji'I is again a graded differential 
algebra and the smallest differential subalgebra n D (.Ji'I) of 
C(Der(.Ji'I),J<1') which contains .Ji'I is a natural generaliza
tion of the algebra of differential forms, with Der (J<1') 
playing the role of the Lie algebra of vector fields. 

Since there are several noncommutative generalizations 
of the de Rham complex,3,4,2 it is interesting to consider the 
simple case where J<1' is thealgebraMn (e) of complex nXn 
matrices (n>2).1t is the aim of this paper to develop various 
concepts of differential geometry of Mn (e) using 
n D (M n (e) ) as algebra of differential forms. We shall show, 
in particular, that there is a canonical invariant symplectic 
form wEnt(Mn (e» for which the corresponding Poisson 
bracket {-,.} is given by {A,B} = i[A,B). We have then, in 
this simple case, a precise meaning for the statement that 
quantum mechanics is noncommutative symplectic geome
try. We shall introduce a canonical invariant Riemannian 
structure for Mn (e), describe the corresponding Hodge the
ory on n D (M n (e» and, in the case n = 2, diagonalize the 

Laplacian. Finally, we shall also describe the analog of Max
well's electromagnetic potential: It is a Hermitian connec
tion on the free Hermitian Mn (e) module of rank one, We 
show that, in contrast to the commutative case, there is a 
unique potential with vanishing curvature which is not a 
pure gauge. This potential is gauge invariant and is related to 
the above-mentioned canonical invariant symplectic form. 

The plan of the paper is as follows. In Sec, II, we de
scribe in some generality, the differential calculus that we 
use. In Sec. III, we give a presentation in terms of generators 
and relations of our analog of the differential algebra of dif
ferential forms. In Sec. IV, we describe the canonical sym
plectic structure of Mn (e). In Sec. V, the analog of integra
tion theory is introduced. Section VI deals with the 
canonical Riemannian structure and the corresponding 
Hodge--de Rham theory. In Sec. VII, we construct the ana
log of electromagnetism. In Sec. VIII, we diagonalize the 
Laplacian on forms in the case of 2 X 2 matrices. Section IX 
contains our conclusions. 

Our notations are more or less standard. We use the 
Einstein convention of summation of repeated u~own in
dices. 

II. DIFFERENTIAL CALCULUS FOR Mn(C) 

A. The graded differential algebra Oo(Mn(e» 

Any derviation of Mn (e) is an inner derivation thus the 
Lie algebra Der(M n (C) identifies canonically with sl (n, e) . 
It was pointed out in Ref. 2 that the smallest differential 
subalgebra nD(Mn (e» of C(Der(Mn (e», Mn (e» 
which contains Mn (e) is C(Der(Mn (e», Mn (e» 
itself. Therefore, one has nD(Mn (e» 
= C(Der(Mn (e» = Mn (e) ® /\sl(n,C)*. Anelementaof 
01, (Mn (e» is a p-linear antisymmetric mapping of Der 
(Mn (e» to Mn (e), (X1, ... ,xp) ~(XI"",xp )EMn (e), 
and its differential daEn1,+ I(Mn (e» is given by5,6,I: 
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• v 

da(Xo,Xt,···,xp) = L (-l) kX ka(XO .. ··,xp) 
O<k<p 

r s 
vv 

+ L (_l)r+sa<[Xr,xs],xO····,xp) 
O<r<s<p 

k 
V 

for Xo, ... ,xpeDer(M,. (C»( = sl(n,C», (where' means that 

the k th term is omitted). 

B. The cohomology of fio(Mn(C» 

The only elements of M,. (C) invariant under 
Der(M,. (C» [i.e., by the adjoint action ofsl(n,C)] are the 
multiples of leM,. (C) thus, it follows from the semisimpli
city of sl(n,C) that the cohomology Ho(M,. (C» of 
Oo(M,. (C» identifies with the Lie algebra cohomology 
H-(sl(n,C» of sl(n,C) (Ref. 2). This cohomology is well 
known (Ref. 1); it is the free graded-commutative algebra 
with unit 1\ (c3 , ••• ,C2,. _ t) generated by elements c2p _ t , 

pe{2,3, ... ,n},with c2p _ t of degree 2p - 1. In particular, one 
has 

and 

c. The operation of Der(Mn(e» In fio(Mn(e» 

As in the general case,2 there is an operation of the Lie 
algebra Der (Mn (Cn in the graded differential algebra 
Oo(Mn (C» in the sense of Ref. 7 which we now describe. 
For any XeDer(Mn (C», one verifies that one defines an an
tiderivation ix of degree - 1 of OD(M,. (C» by 
ixa(Xt,. .. ,Xp_ t ) = a(X,xt, ... ,xp_t) for aeOMMn (C» 
with p> l,xieDer(Mn (C» and ixO~(M,. (Cn = O. Then, 
Lx = dix + ixd is a derivation of degree 0 of OD(Mn (C» 
which extends X. Here, i x is the analog of the inner product 
of forms by a vector field and Lx is the analog of the Lie 
derivative of forms by a vector field. One has the following 
characteristic relations of operations 7: 

ix,ix, + ix,ix, = 0, [Lx, ,ix,] = i[x,x, i 

and 

[Lx, ,Lx,] = L[x,.x, i' VXt,x2eDer(Mn (C». 

An element a ofOD(Mn (C» will be said to be invariant 
ifLxa = o for any XeDer(M,. (C»; invariant elements form 
a graded differential subalgebra with unit of OD(Mn (C». 

III. PRESENTATION ASSOCIATED TO A BASIS 

A. Basis for Mn(C) 

Let E k ,ke{1,2, ... ,n2 
- I} be a basis of Hermitian trace

less n X n matrices. Then 1, EI" .. ,E,.2 _ t is a basis of M,. (C) 
consisting of Hermitian matrices. One has a multiplication 
table of the form 

(I) 
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where gkl = glk = (1/n)Tr(EkE t ), ski = s'/k, and 
C ki = - C'ik are real numbers. These numbers are canoni
cally the components of three ad-invariant SU(n) tensors. 
ThuSsk,. = C~,. = Oandgk/Os~ms;::, C~mC;:: are the compo
nents of three bilinear forms proportional to the Killing form 
of SU(n). Finally, (S~I - (i12) C~/)g,.m 

= (l/n)Tr(EkEIEm) implies that Skim = s~/g,.m is com
pletely symmetric and that Cklm = C~/g,.m is completely 
antisymmetric. 

B. Associated basis of Der (Mn(C» 

Settingak = ad(iEk ), theak, ke{1,2, ... ,n2 
- I}, form a 

basis of Der(M,. (C» = sl(n,e) and one has 
[ak,ad = Ckiam· The real combinations of the ak's form a 
real Lie algebra DerR (M,. (C», which identifies to su(n); 
these derivations of M,. (C) are real in the sense that one has 
ak (A *) = (akA) * for AeMn (C), i.e., they preserve hermi
ticity. 

C. Generators of fio(Mn(e» 

Let OkEOb(Mn (C», ke{1,2, ... ,n2 
- I}, be defined by 

o k(al ) = 87'1, i.e., (0 k) is the dual basis of (ak) in sl(n,C) * 
identified to 1 ®sl(n,C)*COb(Mn (C». One has in 
OD(Mn (C». 

(2) 

and 

OkOI = - OIOk. (3) 

The differential d of !lD(Mn (C» is then given by 

dEk = - CkiEmO I (4) 

and 

dO k = -! C7mOlom (5) 

(d 2 = 0 follows from the Jacobi identity). Relations (1) to 
(5) for generators E k' 0 I and differential d give a presenta
tion ofOD(Mn (C». 

It is worth noticing here that one could see the dEk's 
instead of the 0 koS as generators of Ob(Mn (e» as left (or 
right) Mn (C) module; however their commutation proper
ties in OD(Mn (C» are more complicated, in particu
lar,EkdEI ¥= (dEl )Ek. 

D. Reality 

When M,. (C) is the analog of complex functions, the 
analog of a real function is the real subspace of Hermitian 
matrices. Thus the analog of real vector fields are the real 
derivations in the sense of Sec. III B and the 0 k'S must be 
considered as real. Therefore, one is led to define an antiIin
ear involutive mapping of OD(Mn (e» on itself, a 1--+ a, by 

AOi""Oip =A *Oi,. ··Oip. 

The elements a of OD(Mn (Cn satisfying a = ex will be 
called real elements. The real vector space of real elements of 
OD(Mn (C» is the analog of the space of real differential 
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forms, [!l D (Mn (C» being the analog of the algebra of com
plex differential forms]. Notice that the definition of a ~ 
is independent of the chosen basis (Ek ) of Hermitian trace
less matrices; furthermore, if a is real, then da is also real 

(da= da). 

IV. CANONICAL SYMPLECTIC STRUCTURE 

A. The canonical invariant element 9 of O~(Mn(C» 

With the notations of Sec. III, consider the real element 
() = Ek()k of !lb(Mn (C». The first observation is that () is 
independent from the chosen basis (Ek ) of Hermitian trace
less matrices. The second almost obvious observation is that 
() is invariant. Since we shall need at several places the 
expression of d(), let us check carefully this last point. 

One has ia, () = Ek so, in view of (4), 

dia, () = - C ,!:!Em () I. On the other hand one has, in view of 
(4), (5): 

(6) 

or 

(6') 

Thus ia, d() = C,!:!Em()1 and therefore 
La, () = (dia, + ia, d)() = 0, which shows that () is invariant. 

Moreover, any invariant element of !lb(M" (C» is a (com
plex) multiple of (). 

B. Symplectic structures for Mn(C) 

Let Vbe a smooth manifold and recall that a symplectic 
structure (or a symplectic form) on Vis a real closed nonde
generated two-form w. Given such a two-form, one defines 
the Hamiltonian vector field Ham ( j) associated to 
feG''' (V) by w(X,Ham (j) = XJ, for any vector field X, and 
one defines the Poisson bracket {(,g} of J,geCOO (V) by 
{(,g} = w(Ham(j),Ham(g»; dw = 0 implies the Jacobi 
identity for {-,.}. 

Here, the rules of the game are that Mn (C) is the analog 
of the algebra of smooth functions, Der(Mn (C» is the ana
log of the Lie algebra of vector fields and !l D (M" (C) ) is the 
analog of the algebra of differential forms. Therefore, it is 
natural to call symplectic structure a real closed element w of 
!l1(Mn (C» such that for each AeMlI (C), 
w(X,Ham(A»=XA VXeDer(MII (C» has a unique solu
tion Ham(A)eDer(MII (C». One defines the Poisson 
bracket {A,B} of A,BeMn (C) by {A,B} = w(Ham(A), 
Ham(B». One has, by definition {A,B} = Ham(A)B 
= - Ham(B)A; using this, one sees that dw(Ham(A), 

Ham(B),Ham(C» = 0 is the Jacobi identity 
{A,{B,C}} + {B,{C,A}} + {C,{A,B}} = 0 and that 
dw(X,Ham(A),Ham(B» = 0 VXeDer(MII (C» is equiva
lent to [Ham(A),Ham(B)] = Ham({A,B}). Furthermore, 
it also follows from {A,B} = Ham(A)B that one has 
{A,BC} = {A,B}C + B{A,C}. Everything works as in the 
commutative case. 

Notice that w must be exact since H1(MII (C» = o. 
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C. The canonical symplectic structure 

It is natural to consider the closed real invariant element 
w = d() of !l1(Mn (C». From formula (6), it follows that 
one has W(ak,a/ ) = C,!:!Em = i[ Ek,E1] = akEI • This 
shows that w satisfies the conditions of Sec. IV B and that 
Ham(A) = adUA), AeMn (C). Thus the corresponding 
Poisson bracket {-,.} is given by 

{A,B} = w(Ham(A),Ham(B» = i[A,B], A,BeM" (C). 
(7) 

We refer to this structure as the canonical symplectic struc
ture for Mn (C). 

D. Remark 

If one replaces () by fl() for some fzeR, i.e., w by fzw, then 
{A,B} = i[A,B] is replaced by {A,B} = (i/fl) [A,B]. 

V.INTEGRATION: THE CYCLE (Oo(Mn(C»,f) 

A. Structure of O~-1 (Mn(C». 

As left (or right) Mn(C) module, !l~-l(Mn(C» is 
generated by () 1 () 2 ... () n' - 1, however, this element depends 
on the basis (Ek ). Letg = det(gkl) be the determinant of the 
real positive definite (n 2 

- 1) X (n 2 
- 1) matrix defined in 

Eq. (1). Then.,Ji() 1 ••• f) n' - le!l~ - l(M" (C» does only de
pend on the orientation of the basis (Ek ); thus this real ele
ment is intrinsically defined up to a factor ± 1 and one fixes 
it by choosing an orientation. An arbitrary element 
ae!l~-I(Mn(C» is of the form A.,Ji f)1"'f)n'-1 for a 
unique AeMn (C); we define a linear mapping 
S:!l~-I(Mn (C»-.C by Sa = (lIn)Tr(A), where a and A 
are as above. 

Lemma: (a) S is a closed graded trace, i.e., one has 

and 

f eTT = ( - l)pq f TeT 

for 

ue!lMM" (C» and 'TE!lb(Mn (C» with p + q = n2 
- 1. 

(b) .,Ji()1()2 ... (),,'-1 is invariant i.e., 

Lx (.,Ji() 1()2 ... f) n' - I) = 0, VXeDer(MnC». Therefore, (a) 
means that (!lD(Mn (C»,f) is a cycle of dimension n2 

- 1 in 
the sense of Ref. 3. 

Proof: It follows from formula (5) and from the com
plete antisymmetry of Ck1m = C~/gnm that one has 
d( ()il ... () in' 2) = 0, this implies statement (b) of the lemma 
and shows that the only contributions to d/3 comes from the 
differential of linear combinations of terms of the form Ek 
«()il .•. () in 2) but then, formula (4) shows that d/3 is of the 
form E() I ... ()n 2 - I for some traceless matrix E. Therefore, 
Sd/3 = ° follows from the definition of S. D 
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VI. CANONICAL RIEMANNIAN STRUCTURE 

A. The metric 

The element .{gO I .. ·on'-I of O~-I(Mn (C» intro
duced in Sec. V A looks like the volume element of a metric. 
This suggests to introduce the object 

gkl O k ® OIEMn (C) ®S2si(n,C)* 

x (C01(Mn (C» ® 01(Mn (C»). 
M"(C) 

Here, gklO k ® 0 I is really the analog of an invariant Rieman
nian metric [for M n (C) ] and we shall call this structure the 
canonical Riemannian structure. The inverse matrix of (gkl ) 
will be denoted by (~I ). 

B. The star isomorphism 

One defines a linear mapping 

by 

and by 

*(AOi""Olp) =A *(Oi""Oip) for AEMn(C) 

(where Ej, •... J"' _ I is completely antisymmetric with 
E1•2 •...• n'-1 = 1). One has *(OMMn(C»CO~-I-P 
X(Mn (C») and *(*a) = ( - 1)n'Pa if aEOb(Mn (C». 

Setting (a IP> = Sa' * (P) if a and P are of the same 
degree and (a IP) = 0 otherwise, one has (a IP> = (P la) in 
view of the graded trace property of S and this inner product 
is a real positive-definite bilinear form on the real subspace of 
real elements of OD(Mn (C». It follows that 
(a,p) ~(aIP) = (alP> is a positive-definite Hermitian 
form on OD(Mn (C»; so, equipped with (.1.), OD(Mn (C» is 
a (graded finite-dimensional) complex Hilbert space. 

C. The Laplacian 

We define D:OD(Mn (C» ~OD(Mn (C» by (daIP) 
= (aIDP), Va,pEOD(Mn (C». One verifies by using the 

fact that S is closed that 15 is given by 

Da= (-1)(n'-l)p+n'*d*aforaEOMM,,(C». 

We define the Laplacian !:.. on 0 D(M n (C» by 
!:.. = dD + Od. From (al!:..a) = (DaIDa) + (dalda) 
= IIDall 2 + IIda11 2

, it follows that !:..;;;.O as operator on the 
Hilbert space (OD(Mn (C», (.1.». It also follows that 
!:..a = 0 if and only if da = 0 and Da = 0; such an a will be 
called harmonic, the space Ker(!:..) of these elements is the 
kernel of!:... 

By definition, the orthogonal complement of 
DOD(Mn (C» is the space of aEOD(Mn (C» satisfying 
da = 0 and the orthogonal complement of dOD(Mn (C» is 
the space aEOD(M" (C» satisfying Da = O. It follows that 
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one has a decomposition OD(M" (C» = dOD(Mn (C» 
~ DOD(M" (C» ~ Ker(!:..) o/OD(Mn (C» in three orthogo
nal subs paces (for (.1.» which is the analog of Hodge--de 
Rham decomposition. 

Proposition: The linear mapping of Ker(!:..) in 
HD(Mn (C» which associates to aEKer(!:..) its class [a] in 
HD(Mn (C» is an isomorphism of graded vector spaces. 
Furthermore, aEKer(!:..) ifand only if a is an invariant ele
ment of the subalgebra 1 ® t\ sl(n,C)* ofOD(Mn (C» gener
ated by the Ok, kE{1,2, ... ,n2 

- n. 
Proof: Let aEKer(!:..), then if a + d{3EKer(!:..) one has 

Odp = 0 so <P IDdP) = IldP 112 = 0 which implies dP = O. 
This shows that a ~[a] is injective from Ker(!:..) in 
HD(Mn (C». 

The subalgebra 1 ® t\ sl(n,C)* of OD(Mn (C» genera
ted by the (Jk is a differential subalgebra ofOD(Mn (C». Let 
f denote the algebra of the invariant elements of 
1 ® t\ sl(n,C)*. By using the Koszul formula6 and thedefini
tions of 15, one checks that, if aEf one has da = 0 and 
Da = O. On the other hand, one knows6 that a ~[a] is a 
bijection off ontoHD(Mn (C» = J:r(sl(n,C». This shows 
that a ~[a] is surjective and therefore bijective from 
Ker(!:..) onto HD(Mn (C» and that Ker(!:..) therefore coin
cides with f. D 

Remark: The last statements have a classical geometri
cal interpretation. If one identifies the Ok with the compo
nents of the Maurer-Cartan form of SU(n), then 
1 ® t\ sl(n,C) * becomes identified with the differential alge
bra oft eft-invariant forms on SU (n) and f with the algebra 
ofbi-invariant forms on SU(n). Then, gkl(Jk ® Ok is up to a 
factor the metric of SU(n) and on SU(n), the harmonic 
forms are the bi-invariant forms (this is true for any compact 
semisimple Lie group). 

VII. CONNECTIONS ON THE FREE HERMITIAN Mn(C) 
MODULE OF RANK ONE 

A. The free Hermitian module K 

Let vR be a right Mn (C) module. A Hermitian structure 
onvR (Ref. 8) isanMn (C)-valued positive definite Hermi
tian form h(¢,t/J)EMn (C) ¢,~ such that h(¢A,t/JB) 
=A *h(¢,t/J)B, V¢,~, VA,BEMn (C). The pair (vR,h), 
or simply vR if there is no ambiguity, will be called a Hermi
tian module. A 0 D -connection, or simply a connection on vR 
(Ref. 3), is a linear mapping 

V:vR ~VR ® Ob(Mn (C» 
M,,(C) 

such that V(¢A) = (V¢)A +¢®dA, V¢eJ/, VAEMn(C). 
Here, V is a Hermitian connection on (vR,h) if 
dh(¢,t/J) = h(V¢,t/J) + h(¢,Vt/J), V¢,~. Connections al
ways exist on projective modules of finite type.3 

We denote by K the simplest Hermitian Mn (C)-mod
ule, namely, the free Hermitian module of rank one. An ele
ment e of K such that h (e,e) = 1 will be called a unitary 
generator oJ Koragauge. One then hasK = eMn (C) and 
h(eA,eB) = A *B, VA,BEMn (C). Here, U~Uisabijection 

Dubois-Violette, Kerner, and Madore 319 



                                                                                                                                    

of the group U(n) ofunitaryelementsofMn (e) onto the set 
of unitary generators of 2'. Such a change of unitary gener
ator is a gauge transformation. The group of gauge transfor
mations is therefore U( n). 

B. Connections on 2' 

Let V be a Hermitian connection on 2'. Given a gauge e, 
any ~is of the form rp = eB for a uniqueBeMn (e); thus 
Vrp = (Ve)B + e®dB where Ve = e®a for a unique 
aEnh(Mn (e» satisfying a = - ain view of the Hermitian 
property of V; B and a as above will be called the compo
nents of rp and V in e. Under a change of gauge e t-+-eU, 
UEU(n), they transform according to the rules: 

Bt--+U-1B and at--+U-1aU + U-1dU. 

Remember that Mn (e) is the analog of CO<> (V). So U( n) is 
the analog of U( 1 )-valued functions on V, one sees that what 
we are introducing is the analog of electromagnetism. 
Namely, B and a as above are, respectively, the analogs of 
the component of a charged scalar field and Maxwell poten
tial in a given gauge. 

(e) 

Given a gauge e, there is a unique connection V on 2' 
(e) (e) 

such that Ve = ° (i.e., V (eB) = e®dB, 'tIBeMn (e»; the 
(e) 

component of V in e vanishes and its component in an arbi-

trary gauge eUis given by U- I dUo Conversely, if the com
ponent a of a connection V on 2' in a gauge e is a = U - 1 dU 

(eU- I ) 

for some UEU(n) then one has V = V . These connec-
(e) 

tions V when e runs over the set of unitary generators of 2' 

(i.e., over the gauges) will be called pure gauge connections, 
they are automatically Hermitian connections on 2'. 

If V and V' are connections, one has as usual 
(V - V') (rpB) = «V - V')rp)B so V - V' is a right module 
homomorphism; if a and a' are the components of V and V' 
in a gauge e then under a gauge transformtion e t-+-e U, a - a' 
transforms homogeneously as a - a' t--+U -I (a - a') U. 
Connections on 2' form an affine space, however, here there 

o 
is a natural origin V in this affine space which we now intro-

duce. 
o 

Lemma: Define the linear mapping V:2' 
o 

-+2' ® nh(Mn(C»byVrp= -irp®(},'tIrpE7r',where(} 
M .. (C) 

is the canonical invariant element ofnh(Mn (C» defined by 
o 

Sec. IV A. Then, V is a Hermitian connection on 2' which is 
o 0 

gauge invariant in the sense that Ve = V(eU), 'tI UEU(n); in 
o 

fact, Ve=e®(-i(}) and U-I(-i(})U+U-1dU 

= - i(}, 'tIUEU(n). Let V be a gauge invariant connection 
on 2' [i.e., Ve=V(eU), 'tIUEU(n)], then one has 
Vrp= -irp®«(} +Ak(}k) for some AkEe, 
k = 1,2, ... ,n2 

- 1; Furthermore, V is Hermitian if and only if 
AkER, 'tIkE{1,2, ... ,n2 - n. 
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Proof: In terms of () = E k (Jk , formula ( 4) can be written 

dB = i[(},B), 'tIBeMn (e). (4') 

o 
This implies V(rpB) = - i (rpB)(} = (irp(})B + rpi[(},B) 

o 0 

= (Vrp)B + rp dB, so V is a connection which is obviously 

Hermitian. Its component in any gauge is, by definition, 
- i() and one verifies directly, by using (4') that 
U- 1( - i(})U + U- 1 dU= - i(}. 

Let V be any connection on 2' and let 
- i«(} + p)Enb(Mn (e» be its component in gauge e. 

Then, its component in gauge eU, UEU(n), is 
- i( () + U -IPU) so V is gauge invariant if and only if one 
hasp = U-1pU, 'tIUEU(n), which impliesp = Ak(}k with 
AkEe, 'tI k. Finally, V is Hermitian if and only ifP = p, i.e., 
Ak ER, 'tI k. 0 

o 
Here, V will be called the canonical connection on 2'. 

o 
Remarks: (a) V cannot be a pure gauge connection [i.e., 

there is no UEU(n) such that - i(} = U -I dU), since it is 
gauge invariant [i.e., one has U -I ( - i(}) U + U -I dU 
= - i(}, 'tI UEU(n) ). 

o 
(b) V is gauge invariant and Hermitian but is not unique 

under these conditions since these properties are also true if 
o 

one replaces () by () + Ak (Jk for AkER. However V is com-

pletely specified by the fact that it is the only connection with 
vanishing curvature which is not a pure gauge connection. 
We now describe curvature for connections on 2'. 

C. Curvature 

Let V be a connection on 2'. Then, one extends Vasa 

linear mapping, again denoted by V, of 2' ® n D(Mn (e» 
M .. (C) 

in itself by setting3 

V(rp®a) = (Vrp)a+rp®da, 'tI~, 

'tIaEnD(Mn (C». 

Consider \72:2' -+2' ® nMMn (e». One has 
M .. (C) 

V2(rpB) = (V2rp)B, 'tIrpE7r', 'tIBeMn (e), i.e., V2 is a right
module homomorphism which is the curvature of V. One 
defines the component ({J of V2 in gauge e by V2e = e ® ({J; 
({JEnMMn (e» is given by ({J = da + (a)2 where a is the 
component of V in e. Under a gauge transformation e t-+-eU, 
(UEU(n», ({J transforms homogeneously as ({J t--+U-1({JU. 

Pure gauge connections have vanishing curvature; in-
(e) (e) 

deed one has Ve = 0, V (eB) = e®dB so 
(e) (e) 

V 2(eB) = (Ve)dB +e®d2B=0, 'tIBeMn(e). 

Formula (6') reads d( - i(}) + ( - i(})2 = 0, which is 
o 0 

equivalent to V2 = 0. Thus V has a vanishing curvature. 
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If V is a gauge invariant connection, 
V¢J = - i¢J® «() +AkO") for AkEe in view of the Lemma. 
Then V2¢J = - i¢J ® d(Ak ()k ) = i¢J ® C 7m Ak () I() m so V2 = 0 

o 0 

is equivalent to Ak = 0, i.e., to V = V. Thus V is the only 

gauge invariant connection with vanishing curvature. One 
has, in fact, the following stronger result. 

Proposition: Let V be a Hermitian connection on:Jr with 
vanishing curvature (i.e., V2 = 0). Then either V is a pure 

I~ 0 
gauge connection V or V is the canonical connection V. 

Proof.' It is sufficient to work in a gauge e. Then 
Ve = e ® a with a = - a and V2e = e ® <p is equivalent to 
da + (a) 2 = <po Setting a = (3 - i(), the last equation reads 
d{3 + {32 - i( (){3 + (3() = <p, i.e., 

i[ Ek,Bd - i[ EI,Bk ] - Bm C~ + [Bk,Bd 

- i[ Ek,B/ ] - i[ Bk,EI ] = Fkl , 

where (3 = BI()I and <p = ¥"kl() k() I. Thus one has 

<p = ~q Bk,Bd - C'll,Bm){} k()l. (8) 

Therefore, <p = 0 is equivalent to [Bk,B/ ] = C~Bm so the 
n X n anti-Hermitian matrices Bk satisfies the commutation 
relations of a basis of SU (n), thus either the corresponding 
representation of SU (n) is trivial, i.e., 

o 
Bk = OVkE{I, ... ,n2 -l} which means V = V or the repre-

sentation is unitarily equivalent to the fundamental repre
sentation of SU(n), i.e., Bk = U-1(iEk)U, 
Vke{I, ... ,n2 - l} for some UEU(n), that reads 

leU-'J 

a = U-1(i() U - i8 = U- 1 dU,whichmeansV = V .0 

D. The analog of Maxwell action 

Let V be a Hermitian connection on :Jr, let a be its 
component in a gauge e, and let <p = da + a2EnMMn (e» 
be the component of its curvature V2 in e. The expression 
(<p l<p) = - S<p. (*<p), (~= - <p fromhermiticityofV),is 
independentofe. We denote it by IIV211 2 = (<p l<p). This nota
tion is clearly justified and !IIV2112 is the analog ofthe classi
cal action of the electromagnetic field. Writing a = P - i() 

one has a view of ( 8 ) : 

IIV211 2 = - _1_ L Tr{( [Bk,B/ ] - C~Bm )2}, 
8n k.l 

II V2112;;;.0 and its minima correspond to V2 = 0 and consist of 
two distinct gauge orbits: The pure gauge connections and 

o 
the gauge invariant connection V, which is a singular gauge 

orbit reduced to a point. 

VIII. MISCELLANEOUS RESULTS FOR Mz(C) 

A. Paull matrices 

As basis of Hermitian traceless 2 X 2 matrices, we take 
the Pauli matrices: 

(
0 1) (0 - i'l (1 0) 

U, = 1 0 ' U2 = i 0)' U3 = 0 - 1 . 
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One has: UkUI = 8kl 1 + i ~m€klmUm' Thus comparing to 
(1), one obtains gkl = 8 kl , C~ = Cklm = - 2€klm and 
~=O. 

As in Sec. III, one introduces ak = ad(iuk ) and the 
() kEnb(M2(e» satisfying () k(a/ ) = 871. In this case, it is 
easy to diagonalize the Laplacian on nD (M2 (e». 

B. Dlagonallzatlon of the laplacian 

Since the Laplacian is invariant in the sense that one has 
Lxii = tiLx , VXEDer(M2(e», it follows that the irreducti
ble components of nD (M2(e» for the representation of 
sl(2,C) given by Xt--+Lx are the eigenspaces for Ii. [This 
representation is a representation of the adjoint representa
tion, i.e., of so( 3)]. Furthermore, one has *Ii = Ii* so it is 
sufficient to look at n~(M2(e» and nb(M2(e». 

Here, n~(Mn (e» = Mn (e) splits into two irreducti
ble components: The one-dimensional subspace spanned by 
1 and the three-dimensional subspace spanned by the Uk'S. 

One has iiI = 0 and liUk = 8Uk' 

Then, n1(Mn (e» splits into four irreductible compo
nents: The three-dimensional subspace spanned by the ()k'S, 

the three-dimensional subspace spanned by the Uk () I - UI () k 

or equivalently by the dUk'S, the five-dimensional subspace 
spanned by the Uk () I + UI() k - j 87un () n and the one-di
mensional subspace spanned by () = Un ()n. One has 
Ii()k = 4()k , 

liduk = 8duk' 

Ii(Uk() I + UI()k - j 8~un()n) 

= 16(uk () I + u l () k - j 8~un() n), and Ii() = 4(). 

For nMMn (e» one takes the star of the decomposition of 
n1(Mn (e», and for n1(M2(e» one takes the star of the 
decomposition ofn~(M2(e». 

Similar consideration of invariance and commutation 
with the star isomorphism apply for Mn (e), however, to 
compute the eigenvalues of Ii one needs explicitly the coeffi
cients in formula ( 1 ). 

IX. CONCLUSION 

We have shown that, in spite ofthe fact that the deriva
tions of Mn (e) are inner, one may develop a relatively rich 
differential geometric structure by using nD(Mn (e» as al
gebra of differential forms. It is worth noticing here that in 
quantum mechanics the derivations are also, in some sense, 
inner derivations and that the discussion of Sec. IV on sym
plectic structure is clearly relevant there. 

This paper is self-contained. Nevertheless, it is a pre
liminary for our next paper9 which will deal with the non
commutative differential geometry of algebras of matrix
valued functions on space-time and new types of gauge 
theory. The content of Sec. VII will be especially relevant for 
these developments. 
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The noncommutative differential geometry ofthe algebra COO (V) ®Mn (C) of smooth Mn (C)
valued functions on a manifold Vis investigated. For n;;;.2, the analog of Maxwell's theory is 
constructed and interpreted as a field theory on V. It describes a U (n)-Yang-Mills field 
minimally coupled to a set of fields with values in the adjoint representation that interact 
among themselves through a quartic polynomial potential. The Euclidean action, which is 
positive, vanishes on exactly two distinct gauge orbits, which are interpreted as two vacua of 
the theory. In one of the corresponding vacuum sectors, the SU(n) part of the Yang-Mills 
field is massive. For the case n = 2, analogies with the standard model of electroweak theory 
are pointed out. Finally, a brief description is provided of what happens if one starts from the 
analog of a general Yang-Mills theory instead of Maxwell's theory, which is a particular case. 

I. INTRODUCTION AND NOTATION 

Let Vbe a smooth manifold and let Coo ( V) be the alge
bra of smooth complex functions on V considered as an ab
stract commutative *-algebra. Given a smooth complex vec
tor bundle E on V, one denotes by r (E) the space of smooth 
sections of E. This r(E) is a finite projective Coo ( V) mod
ule. The correspondence E-+r(E) is an equivalence of the 
category of smooth complex vector bundles on V with the 
category of finite projective Coo ( V) modules. There is a no
tion of connection on finite projective Coo ( V) modules that 
corresponds to the notion of connection on vector bundles. 
To define it, it is convenient to use the graded differential 
algebra fi (V) of complex differential forms on V. The Lie 
algebra of complex vector fields on V can be identified with 
the Lie algebra Der( Coo ( V) of derivations of Coo ( V). 

In noncommutative differential geometry, the role of 
Coo (V) is played by a noncommutative associative algebra 
d. 1,2 Modules of sections of vector bundles are replaced by 
finite projective d modules. I

•
2 In order to define connec

tions on d modules and more generally to define noncom
mutative generalization of differential calculus, one needs a 
generalization of differential forms. There are several non
commutative generalizations of the de Rham complex.2

-4 

Here, as in Ref. 5, we use as a generalization of the algebra of 
differential forms for d the graded differential algebra 
fi D (d) introduced in Ref. 4. We now recall the construc
tion of fiD (d). 

Let Der(d) be the Lie algebra of derivations of d. 
This is a generalization of the Lie algebra of vector fields. 
Recall that ap cochain w on the Lie algebra Der(d) with 
values in d is a p-linear antisymmetric mapping of Der ( d ) 

a) Laboratory associated with Centre National de la Recherche Scientifique. 

in d, i.e., a linear mapping w: 1\ p Der( d) -+ d. The space 
of p cochains of Der(d) with values in d is denoted by 
CP (Der ( d ), d). The direct sum 

C(Der(d),d) = Gl CP(Der(d),d) 
peN 

is naturally a graded algebra. It is a graded differential alge
bra with differential d defined by 

dw(Xo,xI""'Xp) 
k 

= L (- 1) kX k W(XO,.':'.,Xp) 
O<;.k<;.p 

rs 

+ L (- 1)'+ Sw([ X,,xs] ,xo,:-:~,Xp)' 
O<r<s<.p 

for wECP(Der(d),d) and Xo,xI, ... ,XpeDer(d). One has 

d = CO(Der( d) ,d) C C(Der( d) ,d) 

and the graded differential algebra fiD (d) is defined to be 
the smallest differential subalgebra of C(Der(d),d) that 
contains d. Any element of fi~ (d) is a sum of elements of 
the form Ao dAI ... dAp with Ao.AI, ... .ApEd. Here 
fiD(Coo (V) coincides with the graded differential algebra 
fi (V) of differential forms on V. 

In this paper, we investigate the noncommutative differ
ential geometry of the algebra d = Coo (V) ® Mn (C) of 
smooth Mn (C)-valued functions on a connected, simply 
connected manifold V. Some aspects of the noncommutative 
geometry of algebras of that type were investigated in Ref. 6 
in a different context. We use fi D (d) as the analog of the 
differential algebra of exterior forms. We show in Sec. II that 

fiD (d) = fiD(C 00 (V) ® fiD(Mn (C». 

The second factor fiD(Mn (C» was investigated in Ref. 5. 
We introduce in Sec. III the analog of a metric for d and the 
corresponding scalar product on fiD (d). In Sec. IV, we 
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study connections on the free Hermitian d modules. It is 
shown that, for n>2, there are several gauge orbits of flat 
connections. 

In Sec. V, Vis the (s + 1) -dimensional Euclidean space
time RS + 1 and we describe the analog for d of the Maxwell 
action. This is an action for connections on the free Hermi
tian d module of rank 1. We interpret the corresponding 
theory in terms of a field theory on space-time. It consists of 
a U (n)-Yang-Mills field minimally coupled to a set of sca
lar fields with value in the adjoint representation that inter
act among themselves through a quartic polynomial poten
tial. The Euclidean action, which is positive, vanishes on two 
distinct gauge orbits. These are interpreted as two vacua for 
the corresponding quantum field theory. In one of the corre
sponding vacuum sectors, the SU (n) part of the Yang-Mills 
field is massive. This sector is the most natural one from the 
point of view of the noncommutative geometry of d since 
the vacuum there corresponds to the pure gauge connec
tions, i.e., the pure gauge noncommutative Maxwell poten
tials. For the case n = 2 we discuss the analogies and the 
differences with the standard model of the electroweak inter
actions (see, for example, Ref. 7). Finally, we describe the 
analog for d of the U (r) - Y ang-Mills action. It is an action 
for connections on the free Hermitian d module of range r. 
In Sec. VI we present our conclusions. 

II. DIFFERENTIAL CALCULUS FOR d =COO(V)eMn(C) 

A. The Lie algebra Der(d) 

We have that d = COO (V) ®Mn (C) and Mn (C) are 
naturally *-algebras with units. Associated with any point 
XEV, there is a homomorphism Yx: d --+Mn (C) of *-alge
bras with units defined by Yx (j® M) = j(x)M, VjECoo (V) 
and VMEMn (C). This Yx is the evaluation atxEV. The sub
algebra COO ( V) ® 1 of d is the center of d. The Lie algebra 
Der(d) of all derivations of d is a module over the center 
COO (V) ® 1 of d, so it is a COO (V) module. Here 
Der( COO ( V) ) is the Lie algebra of smooth vector fields on V 
and Der(Mn (C» is the Lie algebra sl(n,c).4,51t is clear that 
(Der(Coo (V) ® 1) e (Coo (V) ® Der(Mn (C») is a Lie sub
algebra and a Coo (V) submodule ofDer(d). It is, in fact, 
Der(d). 

B. Lemma 2.1 

Lemma 2.1: One has 

Der(d) = (Der(C OO( V) ® 1) e (C oo( V) ® Der(Mn (C»). 

PrOOF LetXbe a derivation of d. Thenj-+X(j® 1) is a 
Mn (C)-valued vector field on V. One has 

X(j®M) = X«(j® 1)(1 ®M» =X«I ®M)(j® 1», 

i.e., 

X(j® 1)1 ®M + j® I X(I ®M) 

= 1 ®M X(j® 1) + X(l ®M)j® 1 

and therefore 

X(j® 1)1 ®M = 1 ®M X(j® 1), 

VjECOO(V), VMEMn(C). 
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It follows that X(j® 1) is in Coo ( V) ® 1, V/ECoo ( V). This 
shows that the restriction X t Coo ( V) ® 1 is in 
Der(Coo (V) ® 1. The mapping Mt-+-yx (X(I ®M»isaderi
vation of Mn (C), VXEV. This implies that the restriction 
X t 1 ®Mn (C) is in Coo (V) ® Der(Mn (C». 0 

C. The graded differential algebra fio(d) 

We recall that if 0 0 and 0 1 are graded differential alge
bras with differentials do and d I' then 0 0 ® 0 1 is naturally a 
graded differential algebra if one defines the product by 

(x®y)(z®t) = (- 1)rsxz ®yt, 

forxEOo, yeO" ZEO~, tEO l , 

and the differential d by 

d(x®y) =doX®Y+ (-1)px®diY, VXEOg, VyeOI' 

It follows from Lemma 2.1 that 

C(Der(C 00 (V),C 00 (V) ® C(Der(Mn (C»,Mn (C» 

is a graded differential subalgebra of C(Der( d) ,d). On the 
other hand, 0 D (COO ( V) is the smallest differential subalge
bra of C( Der( Coo ( V), Coo ( V) that contains Coo (V) and 
OD(Mn (C» is the smallest differential subalgebra of 
C(Der Mn (IC),Mn (C» that contains Mn (C). Therefore 
the smallest differential subalgebra 0 D ( d ) of 
C(Der(d),d) that contains d = Coo (V) ®Mn (C) is 
OD«COO (V)® OD(Mn (C». Thus one has 

ODed) = OD(C 00 (V) ® OD(Mn (C». 

In fact,4 OD(Coo (V) is the graded differential algebra 
O( V) of exterior differential forms on V and OD(Mn (C» 
coincides with4,5 

C(Der(Mn (C»,Mn (C» =Mn(C) ® AsI(n,C)*. 

So one has 

ODed) = O( V) ®Mn (C) ® Asl(n,C)*. 

D. Remark 

Remark 2.2: For algebras gj and C(J, OD (gj ® C(J) is 
generally distinct from 0 D ( gj ) ® 0 D ( C(J ). For instance, 

OD(M, (C» = M,(C) ® A sl(r,C)*, 

OD(Ms(C» = Ms(C) ® Asl(s,C)*, 

OD(M, (C) ®Ms (C» = M, (C) ®Ms (C) ® A sl(rs,C)*. 

In fact, one has 

sl(rs,C) = (sl(r,C) ® sl(s,C» 

e (sl(r,C) e 1) ® (1 ® sl(s,IC). 

E. fio(.If) as bigraded differential algebra 

Now 0 D ( d) is naturally a bigraded algebra if one sets 

ObS(d) = 0'( V) ® O~(Mn (C». 

We identify O( V) [resp. OD(Mn (C»] with the differential 
subalgebra O( V) ® I [resp. 1 ® OD(Mn (C»] of OD (d). 
We denote by d the differential of OD (d). Let d' be the 
unique antiderivation of 0 D (.If) extending the exterior dif
ferentialofO( V) such thatd 'OD(Mn (C» = Oandletd" be 
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the unique antiderivation of 0 D (.s;f) extending the differen
tial of OD(M" (en such that d N O( V) = O. Then d' is of 
bidegree (1,D) , d" is of bidegree (0,1), and one has 
d = d' + d " , d' 2 = d" 2 = d " d' + d 'd " = O. In other 
words, OD (.s;f) is a bigraded differential algebra. 

F. Reality 

Now .s;f is an *-algebra. We denote by DerR (.s;f) the 
real Lie subalgebra of Der(.s;f) of derivations X such that 
X(A *) = (XA)*. One has 

DerR (.s;f) = (DerR(C 00 (V» ® 1) 

® (C;( V) ®DerR(Mn (en), 

where Der R (C 00 ( V» is the real Lie algebra of real vector 
fields on V, DerR(Mn(e» is the Lie algebra su(n) for its 
adjoint action on M n (e), and C; ( V) is the real algebra of 
real functions on V. Correspondingly, there is an antilinear 
involution ~ on OD (.s;f) that extends the involution of 

.s;f. One has a®a' =a®a', for aeO(V) and 
a' eO D (M n (e», where a.-;a is the complex conjugation of 
differential forms on V and a'l--'I>7i' is the involution of 
OD(M" (e» defined in Ref. 5. An element w ofOD (.s;f) will 
be said to be real (resp. imaginary) if W = w (resp. 
w= -w). 

III. METRIC FOR Jf AND SCALAR PRODUCT ON flo(Jf) 

A. Basis for Mn(C) and expressions for d" 

For the differential calculus of Mn (e) [or 
OD(Mn (e»)] we use the notation of Ref. 5, except that, 
since we consider OD(Mn (e» to be embedded in OD (.s;f), 
the differential of OD(Mn (e» will be denoted d" (or d) to 
be consistent with Sec. II E. We shall use a basis E k , 

ke{I, ... ,n2 
- n, of Hermitian traceless nXn matrices, 

which is orthonormal in the sense that (lin )Tr(EkEI) 
= /jkl' So one has a multiplication table in Mn (e) of the 

form 

(1) 

with Skim = SlkmelR and Cklm = ClkmelR. Associativity then 
implies that Skim is completely symmetric, that Cklm is com
pletely antisymmetric, and that they satisfy some relations 
(see Ref. 8, for instance). It follows from these relations that 
one has 

L CklrCkls = 2n2/jrs· 
k,/ 

Let us introduce the basis ak = ad(iEk ) of 
DerR(Mn (en = su(n). One has 

[ak,al ] = L Cklm am· 
m 

Define 

OkeOl(Mn (e»COD (.s;f), ke{I, ... ,n2 
- n, 

by 
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One has, in OD (.s;f), 

AO k = 0 kA, VAe.s;f, 

and 

OkOI = _ OIOk. 

The differential d N is then characterized by 

dNa = 0, VaeO( V), 

d"Ek = - L CklmEmOI, 
m,l 

and 

(2) 

(3) 

(4) 

(5) 

d "Ok = - 1.. L CkimO 10 m. (6) 
2 I,m 

By introducing the canonical element 0 of 0 b(Mn (e», 5 de
fined by 0 = E k 0 k and using Eq. (4), Eq. (5) can be rewrit
ten in the form 

d" A = i[O,A], VAe.s;f. 

Relation (6) may be inverted to yield 

Ok= - :2 ~EIEk d"EI' 

(5') 

The differential d' is characterized by the fact that it 
coincides with the exterior differential on O( V) COD (.s;f) 

and that it satisfies d ' E k = 0 and d ' (Jk = 0, for 
ke{I, ... ,n2 

- n. 

B. Metric for Jf 

We now asume that Vis an oriented Riemannian mani
fold with metric d~. In local coordinates (xI'), 
d~ = gpv dxl' ® dxv , and (gPV) will denote the inverse ma
trix of (gpv ). 

In Ref. 5, we introduced what we called there the ca
nonical Riemannian structure for M" (e), which becomes, 
with conventions adopted here, 

~ Ok®Ok. 

It is natural to combine these structures by introducing the 
metric 

d~ + (~r ~ Ok®Ok, 

for .s;f, where 11m is a positive constant. 
We have in mind the case where V = RH 1 is the 

(s + 1 )-dimensional Euclidean space-time and where 

has the dimension of the square of a length. In this case 11m 
is a length, i.e., m is a mass in standard units where 
Ii=c= 1. 

C. Scalar product for fln(Jf) 

Associated with the metric and the orientation of V, 
there is the star isomorphism ~*a ofO( V) and the corre-
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sponding positive Hermitian scalar product on .o( V) such 
that 

(al.B) = Iv aA*.B, for a,.Be .oP( V), 

and (a I.B) = 0, if a and.B have different degrees. Strictly 
speaking, this scalar product is defined on .0 ( V) only if V is 
compact. Otherwise one has to restrict attention to forms for 
which (ala) < 00, for instance, to forms with compact sup
port. However, we shall not be concerned with this here 
since the scalar product will be used only to write formal 
actions for Euclidean field theories. 

In Ref. 5, we constructed a star isomorphism of 
.oD(Mn (C»associated to :Ik 8 k ® 8 k and then defined asca
lar product on .oD(Mn (C» by using this star isomorphism 
and a generalization of integration (essentially the trace). 
The only thing that the rescaling 

changes is the scalar product (a" I.B") of 
a""B "e.o~(MD (C».ltbecomes (lIm)n

2 

- 1 X m 2p times the 
scalar product of Ref. 5, which corresponds to the case 
m=1. 

We now define a scalar product ( '1' ) on .0 D (d) by 

(a' ® a"I.B' ®.B") = (a'l.B ') (a"I.B"), Va',.B 'e.o( V), 

Va",.B "e.oD(Mn (C». 

This is just the scalar product we would obtain from 

d~+(!r~8k®8k 
by proceeding as in Ref. 5. 

IV. CONNECTIONS ON HERMITIAN d MODULES 

A. Hermitian d modules 

An element P of d is positive if P = A * A, for some 
Aed. The set d+ of positive elements of d is a convex cone 
in d. Let 1 be a right d module. A Hermitian structure on 
1 is ad-valued positive-definite Hermitian form on 1, 

('I', cI> ).-h ('I', ct» ed ('I', ct>eJI), 

such that one has 

h('I'A,cI>B) = A *h('I',ct> )B, V'I',cI>eJI, VA,Bed. 

Positive definite means that h('I','I')ed+, V'I'eJI, and 
that h('I','I') = 0 implies 'I' = O. 

A right d module equipped with a Hermitian structure 
will be called a Hermitian d module. 

Now d' is naturally a right d module: 

(A1, ... ,A,)A = (A1A, ... ,A,A), 

V(A1,. .. ,A,)ed', VAed. 

It is a Hermitian d module if one defines its Hermitian 
structure by 

a=r 

h«Al> ... ,A,),(B1,· .. ,B,» = L A *aBa' 
a=1 
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Conversely, let Kr be a free Hermitian d module of 
rank r with Hermitian structure h. Then one can construct 
an orthonormal basis (ea ), ae{l, ... ,r} of K', i.e., eaeKr 

such that 

h(ea,eb ) = ~ab 1, Va,be{l, ... ,r}. 

We shall call such an orthonormal basis a gauge. Given such 
a gauge, 'l'eK' can be written 

in a unique way with Aa ed. 
Furthermore if 

is another element of K', then 

h('I',ct» = LA *aBa· 
a 

Thus each gauge gives an isomorphism K' _ d' ofHermi
tian d modules. A change of orthonormal basis will be 
called a gauge transformation. Such a gauge transformation 
U is a unitary element of 

d ®M,(C) = C "" (V) ®Mn (C) ®M,(C) 

= C""( V) ®Mn,(C). 

So U is a U(nr)-valued function on V. 

B. Connections 

Let 1 be a right d module. A .0 D connection or simply 
a connection on 1 (see Ref. 2) is a linear mapping. 
V: 1-1 ® .o1(d) such that 

.0/ 

V(cI>A) = (VcI»A + ct> ®dA, Vct>eJI, VAed. 

If 1 is a Hermitian d module with Hermitian structure h, 
V will be called a Hermitian connection if it satisfies 

dh(ct>,'I') = h(VcI>,'I') + h(ct>,V'I'), VcI>,'I'eJI. 

Connections always exist on projective modules of finite 
type.2 

Let V be a connection on 1. One extends V as a linear 

mapping, again denoted by V, of 1 ® .0 D ( d) in itself set-
.if 

ting2 

V(cI>®a) = (VcI»a + cI>®da, VcI>eJI, Vae.oD(d). 

Consider 

V2
: 1-1 ® n~(d). 

.if 

One has 

V2(cI>A) = (V2ct»A, Vct>eJI, VAed .. 

Thus V2 is a right d module homomorphism which is the 
curvature of V . 

C. Connections on the free Hermitian d module 
of rankr 

We consider d' as a Hermitian right d module as 
explained in Sec. IV A. The canonical basis of d' will be 
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denoted by e = (el, ... ,er ). We denote by UU r the group of 
gauge transformations, i.e., the group of unitary elements of 
Mr (d) = d ®Mr (e). Any orthonormal basis, or gauge, 
of d r is of the form eU for a unique UEUU r' 

Let V be a connection on dr. Then Vea = eb ® w:, for 
aE{1, ... ,r}, WbEnb (d). Furthermore, V is Hermitian if and 
onlyifwb = - w:. We write the relations Vea = ebw: in the 
form Ve = ew with 

W = (wb)EMr(nb(d» = nb(d) ®Mr(e). 

The element W of n b (d) ® Mr (e) will be called the compo
nent of V in e or simply the component of V. Each 
WEn b (d) ® Mr (e) is the component in e of a unique con
nection V. We could define similarly the component of V in 
an arbitrary gauge eU: If W is its component in e, then its 
component in eUis U-1wU + U- I dUo Here, however, we 
consider U -IWU + U -I dU as the component in e of an
other connection denoted V U

• The V~Vu, UEUU r is a right 
action of the gauge group UU r on the space of connections on 
dr. The connection V U is Hermitian if and only if V is 
Hermitian. The set {V U IUEUU r} will be called the gauge 
orbit of V. In the same way, V2e = eq;, with 
rpEn~ (d) ®Mr(e). One has q; = dw + w2 in the algebra 
n D (d) ®Mr (e), where d is defined by 

d(a ®x) = da®x, VaEnD(d), VxEMr(e). 

Here q; will be called the component of the curvature V2 of V. 
If q; is the component of V2, then the component of the cur
vature (Vu)20fVu is U-1q;U. 

D. Flat Hermitian connections on d' 

A connection is called a flat connection if its curvature 
vanishes. Thus a connection V on d r with component w is 
flat if and only if dw + w2 = 0. If UEUU r' then V U is flat if 
and only if V is flat. 

For each gauge eU -I (UE UU r ) there is a unique connec-
(eU-'> (eU-'> 

tion V such that V (eU - I) = 0. Its component in e is 
(eU-'> (e> 

U -I dU so one has V = V U and it is a flat Hermitian 
(e> 

connection. These connections V u, UE UU r' will be called 

pure gauge connections. The set of pure gauge connections is 
a gauge orbit of flat Hermitian connections on dr. In the 
commutative case where d = Coo ( V) they are the only flat 
Hermitian connections on dr. However, for 
d = Coo (V) ®Mn (e), with n;;;'2, there are other gauge or
bits of Hermitian flat connections on dr, which we now 
describe. 

Wenowassumethatd = COO (V) ®Mn (e), withn;;;.2, 
and we let r denote a positive integer with r;;;.1. Let R ~, 
kE{1,2, ... ,n2 

- I}, ae{O,l, ... ,N(n,r)}, be a set of anti-Her
mitian elements of Mn (e) ®Mr (e) such that 

R ~ = 0, R 1 = iEk ® I, [R ~,R iJ = L Ck1mR::' 
m 

[i.e., R a is a representation ofsu(n) in en ®C'], Va,k,l, 
and such that, if (R k ) are n2 

- 1 anti-Hermitian elements of 
Mn (e) ®Mr (e) satisfying 
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m 

then there is a unique ae{O,l, ... ,N(n,r)} and a unitary 
VEMn (e) ®Mr(e) such thatRk = V-1R ~v, Vk. 

In other words, (Ra) is a complete set of mutually ine
quivalent anti-Hermitian representations of su(n) in 

a 

en ® er . Let V be the connection on d r with component 

(R ~ - iEk ® 1){}kEnb(d) ®Mr(e), 

VaE{O, 1, ... ,N(n,r)}. 
a 

The V are Hermitian connections and one has the following 

result. 

E. Theorem 4.1 
a 

Theorem 4.1: (a) The V are flat Hermitian connections 
a P 

and, if a is distinct of P, the gauge orbits of V and of V are 

distinct. 
(b) A Hermitian connection V on d r is flat if and only 

a 

if it is an element of the gauge orbit of V for some 
a 

ae{O,l, ... ,N(n,r)}, i.e., V = V U with UEUU rand 

ae{O, ... ,N(n,r) }. 
Proof" Let V be a Hermitian connection on d r with 

component W. Write w in the form 

w=A+(Bk -iEk®I){}k, 

whereA is a one-form on Vwith values in the anti-Hermitian 
elements of Mn (e) ®Mr(e) and where the Bk are func
tions on V with values in the anti-Hermitian elements of 
Mn (e) ®Mr(e). One has 

dw+w2 =d 'A +A2+ (d'Bk + [A,Bd)Ok 

+ ! ([ BkBd - ~ CklmBm) {} k{} I. (7) 

Here V is flat if and only if 

d 'A+A2=0, d'Bk + [A,Bd =0, Vk, 

and 

m 

a p a 

It follows that the V are flat connections. If V = V U, U may 

be chosen to be constant and then R f = U - 1 R ~ U, which is 
in contradiction with the assumptions on the R a 

• 

Suppose that V is a flat Hermitian connection. Then 
d 'A + A 2 = ° implies A = U -I d'U and 

[Bk,Bd = L CklmBm 
m 

implies Bk = V-IR~V for some ae{O,l, ... ,N(n,r)} and 
U,VEUU r. Furthermore d'Bk+[A,Bk]=O implies 
d I ( UV - 1 R ~ VU -I) = 0, so one can choose U and V such 

a 

that U = V. This implies V = V u. o 
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F. Remarks 

(a) Under a gauge transformation V ........ Vu , UEUIt" A 
andBk as above transform asA ........ U-IAU + U- I d'Uand 
Bk ........ U-IBk U. Thus the Bk transform homogeneously. 
This is, in fact, the reason why we represent the component w 
of V in the form w = A + (Bk - iEk ® l)Ok and why we 

a 

introduce the component of V in the form (R k 
- iEk ® 1)0". It is connected with what was described in 

Ref. 5, Lemma 7.3, for matrix algebras. 
I (el 

(b) One has V = V so the pure gauge connections on 
I 

.!if' are the elements of the gauge orbit of V. 

(c) For any r;;;.l, N(n,r);;;.1 (n;;;.2), so one has at least 
two gauge orbits of flat Hermitian connections of .!if': The 

o I 

orbit of V and the orbit of V, which is the set of pure gauge 

connections. In the case r = 1, N(n,l) = 1, so one has only 
these two gauge orbits. 

(d) Formulas like (7) naturally appear in the double
bundle structures (see, for example, Ref. 9). 

v. MODELS OF GAUGE THEORY 

A. Classical Euclidean Maxwell and Yang-Mills actions 

Throughout Sec. V, V = RS + I is the (s + I)-dimen
sional Euclidean space-time with metric 

JJ = S 

d?- = L (dxJJ)2 
JJ=O 

and 

.!if = CCO(Rs + I ) ®Mn(C). 

We recall here in the case n = 1, i.e., .!if = C co (Rs + I), the 
definition of the Maxwell action and, in general, that of the 
U(r)-Yang-Mills action. 

The Maxwell action is an action for connections on a 
U ( 1) principal bundle over RS + I. One can also say that it is 
an action for Hermitian connections on a Hermitian vector 
bundle of rank lover Rs+ I. Finally, since Rs+ I is contracti
ble, it is an action for Hermitian connections on the free 
Hermitian C co (RS+ I) module of rank 1. Let V be such a 
connection with component 

A = AJJ dxJJEOI( V) = Ob(C co (Rs+ I» 

(the Maxwell potential), and component 
F=! FJJ" dxJJ Adx" of the curvature V2 (the corresponding 
electromagnetic field). One has FJJ" = aJJA" - a"AJJ . The 
Maxwell action S(V) for V is 

S(V) = IIV2
11

2 = - ! J L (aJJA" - a"AJJ )2 ds+ IX. 

JJ." 
(8) 

This action is gauge invariant, positive, and vanishes 
only on the gauge orbit of pure gauge connections. Two con
nections in the same gauge orbit are considered as physically 
equivalent. 

In the same way, the U(r)-Yang-Mills action is an ac
tion for Hermitian connections on the free Hermitian 
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C co (RS + I) module of rank r. If V is such a connection with 
component 

A =AJJ dxJJeOI( V) ®M,(C), 

the Yang-Mills action is given by 

(8') 

This action is again gauge invariant, positive, and vanishes 
only if V is a pure gauge connection. It coincides with Max
well action for r = 1. 

B. Maxwell action for.!if =Cco(R·+1 )8Mn(C} 

It is natural to generalize the Maxwell action for arbi
trary positive integer n as IIV2

11
2 on Hermitian connection V 

on the free Hermitian .!if module of rank 1. Let WEO b (.!if) 
be the component of V; then IIV2

11
2 means 

(dw + w21dw + ( 2) with the scalar product defined in Sec. 
III C on OD (A). 

Since, from Sec. III C, we know that there is an overall 
scale factor (1/m)n2 - I in front of this scalar product we 
define the generalized Maxwell action as 

S(V) = (m)n
2
-I(dw + w2 1dw + ( 2

). 

Writing w again as 

w = AJJ dxJJ + (Bk - iEk ) () k 

with anti-Hermitian n X n-matrix-valued functions AJJ' 
jlE{O,I, ... ,s}, andBk , ke{I, ... ,n2 

- n, S(V) is given by 

which can also be written 

S(V) = - r _1_ Tr(FJJ"FJJ") JRH I 4n 

+ _1_ Tr«V"tPk )(V"tPk» 
2n 

+ -4
1 L Tr([ tPk,tPl] - m L Ck1m tPm)2, (9) 
n k,/ m 

where 

FJJv = aJJAv - avAJJ + [AJJ.Av ] = FJJv, tPk = m Bk, 

V"tPk = a"tPk + [A",tPk] = V"tPk. 

Under a gauge transformation V ........ Vu , UeUlt I' the AJJ 
transform as AJJ ........ U - IAJJ U + U - I a JJ U, the tP k transform 
as tPk ........ U-ItPk U, and the VAtPk transform as 
V "tPk ........ U-I(V AtPk) U. The action (9) is gauge invariant, 
positive, and, for n;;;.2, vanishes (in view of Theorem 4.1 ) on 
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the gauge orbit of (All = 0, ~k = 0) and on the gauge orbit 
of (All = 0, ~k = imEk )· 

C. Discussion 

The action (9) can be interpreted as the Euclidean ac
tion of a field theory on RS + I. It is then the Euclidean action 
for a U(n)-Yang-Mills field minimally coupled to n2 

- 1 
scalar fields ~k with values in the adjoint representation of 
U (n) that interact among themselves through a quartic 
polynomial potential. 

We now assume that n>2 and s + 1>2. Then the two 
gauge orbits where the action vanishes are separated by an 
infinite barrier; there is no instanton interpolating between 
these two gauge orbits. This follows from the translation 
invariance. Therefore, by standard arguments,7 each of these 
orbits corresponds to a vacuum for the corresponding quan
tum field theory in Minkowski space. Let 0 0 be the vacuum 
corresponding to the gauge orbit of (All = 0, ~k = 0) and 
let 0 1 be the one corresponding to the gauge orbit of 
(All = 0, ~k = imEk )· 

To specify a quantum theory, one has to choose a vacu
um. Then in order to develop the theory, one has to use the 
field variables adapted to the corresponding vacuum sector. 
These field variables must vanish up to a gauge transforma
tion on the gauge orbit corresponding to the chosen vacuum 
in order that the vacuum expectation values of the associated 
quantum fields vanish up to a gauge transformation. 

Thus the variablesA~ and ~k are adapted ~o the vacuum 
sector of 0 0 correspondmg to the gauge orbIt of (Ao = 0, 
~k = 0). In this sector, one has an ordinary massless U(n)
Yang-Mills field described by the All minimally coupled to 
the fields ~k' which are massive with the same mass 
m,p=nm. 

The variables adapted to the vacuum sector of 0 1 are the 
A and the tPk = ~k - imEk. The translation ~kl-+tPk gives 
a~uadratic term in the traceless part [i.e., the SU(n) part] 
of the All' which becomes massive with the mass 

mA = ~nm. The U (1) part of the All remains massless and 
the mass spectrum of the tPk becomes complicated. We shall 
describe this spectrum in the case n = 2. 

D. The case n=2ln the sector of.o1 

The vacuum 0 1 corresponds to the gauge orbit of pure 
gauge connections on the free Hermitian d module of rank 
1. The vacuum sector of 0 1 is therefore very natural from the 
point of view of the underlying noncommutative differential 
geometry. We now assume that d = C "" (RS+ I) ®M2 (e) 
and we compute the mass spectrum of the tPk (for 0 1), For 
that we write tPk as tPk = i( ¢It 1 + r/I"E1) and decompose tP~ 
into its irreducible parts as tP~ = r 8~ + ai + a~, where 
r = !tP:, (ai) is symmetric and traceless, and (a~) is anti
symmetric. One then obtains from (9) and tPk = ~k - imEk 
the following mass spectrum. The fields ¢It have mass 
Mo = 2m, the field r has mass mT = 2m, the fields ai have 
mass ma = 4m, and the fields a~ are massless ma = 0. No
tice that, in contrast to the ~ k' the tPk transform inhomogen
eously under a gauge transformation and that one can fix the 
gauge by imposing a~ = 0. 
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E. Generalization 

One can generalize similarly the U(r)-Yang-Mills ac
tion by writing the action for a Hermitian connection on the 
free Hermitian d module of rank r. The action again has the 
form (9) but now the All and the~k are (nrXnr)-anti-Her
mitian-matrix-valued. Thus, using Theorem 4.1, there are as 
many gauge orbits of connections on which the action van
ishes as there are unitary classes of anti-Hermitian represen
tations of SU(n) in enr

• One thus has vacua Oa' 
aE{O,I, ... ,N(n,r)}, for the quantum theory. The number 
N(n,r) grows very quickly with rfor n>2. 

VI. CONCLUSION 

For A = C""(R4
) ®Mn(e), i.e., on four-dimensional 

space-time with n = 2, the theory described in Secs. V B
V D has similarities with the bosonic part of the standard 
model of electroweak theory. The ~k plays the role of the 
Higgs fields and the sector of 0 1 is similar to the broken 
phase. One has then a U ( 1 ) X SU (2) gauge theory and the 
mechanism that produces a mass for the SU(2) part ofthe 
gauge field is very similar to the Higgs mechanism. There 
are, however, two main differences. The first one is that here 
one has two stable gauge invariant vacua. The second one is 
that since the ~k or the tPk are the components of a Hermi
tian connection, they are anti-Hermitian and thus they do 
not interact with the electromagnetic field, i.e., with the 
U (1) part of the AIt' Thus there is nothing here like the 
Weinberg angle and the U ( 1 ) -gauge field is completely de
coupled. 

From the point of view of perturbation theory in R4, the 
theory we have presented is renormalizable. To carry out the 
renormalization program one has to use standard BRS tech
nique. However, the usual BRS invariance does not forbid 
terms like Tr(~i) with arbitrary coefficients. These would 
break the form of (9), which is the square norm of a curva
ture and one must therefore find an extended BRS or some 
other invariance that takes into account the fact that the 
action is a functional of a curvature. Another point we did 
not discuss here is the theory of spinor fields in the context of 
our model. Work on these points is currently in progress. 

In Ref. 10, we give an informal discussion of the models 
of gauge theory presented here with a presentation of the 
analog of the scalar field for d = C "" (RS + 1) ® Mn (e) and 
a discussion of the analogies and the differences of our work 
with the theories of Kaluza-Klein type. 
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The definition of a bi-Hamiltonian structure is reviewed, and it is shown that for systems of 
differential equations of the form x = v(x) on even-dimensional manifolds, there always exists 
locally a bi-Hamiltonian structure. If this structure is "global," then the system of equations is 
integrable. Furthermore, the· geometry and canonical forms for such structures are discussed. 

I. INTRODUCTION 

In recent years there has been a great deal of interest in 
systems of first-order differential equations that possess 
what is referred to as a bi-Hamiltonian structure. 1-6 Most 
often this interest has centered on the properties of particu
lar systems, with the emphasis frequently being on partial 
differential equations, e.g., KdV, nonlinear Schrodinger, etc. 
Due to this interest in particular equations and the inherent 
complexity of partial differential equations (PDE), as com
pared to systems of ordinary differential equations (ODE), 
frequently sight was lost of the general geometric ideas un
derlying these structures. It is the purpose of this paper to 
show that there is a very simple geometric idea associated 
with these bi-Hamiltonian structures, and that in fact every 
set of equations of the form x = v(x) on an even-dimension
al manifold possesses, locally, a bi-Hamiltonian structure. 
When this structure can be extended "globally," then the 
equations form an "integrable" system. We give a canonical 
form for a bi-Hamiltonian structure and its related recursion 
operator, and show the existence of a unique polarization of 
the phase space of a system that admits a bi-Hamiltonian 
structure. 

In Sec. II we will give some examples and discuss some 
relevant simple facts and ideas concerning dynamical sys
tems, i.e., systems of equations of the form 

xa = va(x), a = (1,2,00.,N). (1.1 ) 

(We note that many PDE's can be written in this form if we 
let N go to infinity. Questions of convergence, existence, etc., 
in the infinite-dimensional case, will not concern us.) 

In Sec. III we will give a brief outline of symplectic ge
ometry and define what is meant by a bi-Hamiltonian struc
ture. We furthermore discuss properties of bi-Hamiltonian 
systems. Though this discussion is a combination of 0lder l

,6 

and new material we present it in a unified manner. Roughly 
speaking, a bi-Hamiltonian structure associated with a sys
tem ( 1.1) consists of two independent symplectic structures 
(with an important compatibility condition on them) and 
two different Hamiltonians, so that ( 1.1 ) gives the canonical 
equations of motion for both Hamiltonians. In Sec. IV we 
will show that every system of the form ( 1.1 ) can be given, in 
a trivial fashion, locally, a bi-Hamiltonian structure, and 
that in fact many such bi-Hamiltonian structures exist. One 
can furthermore see, in this simple case, certain general 
properties of bi -Hamiltonian structures. We will also show 
that if one begins with a Hamiltonian system, i.e., where 
( 1.1) is given as a Hamiltonian vector field, then there will 

exist, again locally, an alternative Hamiltonian and alterna
tive symplectic form with the required properties, so that it 
also becomes a bi-Hamiltonian system. We will see that 
when this structure is global, the equations are those of an 
integrable system. 

II. LOCAL DYNAMICAL SYSTEMS 

We will consider a vector field va (x) on an even-dimen
sional manifold, dim = 2N, with local coordinates xa. We 
will restrict ourselves to an open region u, a neighborhood of 
a point where va does not vanish. u will be taken sufficiently 
small so that it is foliated by a (2N - I )-dimensional set of 
integral curves of va, i.e., the curves crossing some 
(2N - 1 )-dimensional "initial data surface." These integral 
curves satisfy the set of equations xa = va(x), 

a = (1,2,00.,2N). Here are some examples. 

or 

( I) Damped harmonic oscillator: 

x+ax +bx=O, 

(2) Canonical equations of motion: 

xa = (qi,Pi)' va = (aH _ aH) . 
api aq' 

(3) Nonlinear partial differential equations: 

u = F(u,uy,Uyy,oo.), 

where u = u(t,y), y is a point in some finite-dimensional 
manifold M, and Fis a nonlinear function of its arguments. If 
Ua (y) is a orthonormal basis on M, then one can write 

u(t,y) = I xa(t)Ua (y), 
a 

from which it follows, at least formally, that xa = va, 
a = (1,2,00.,00), with 

va = f ua (y)F dy. 

We will not concern ourselves with the issue of convergence 
or existence of this representation of the equation u 
= F(u,uy,Uyy,oo.). We note, however, that most of the ideas 

expressed here can be reformulated and restated in the lan
guage of function spaces, permitting a complete discussion 
of partial differential equations. Our representation is in
tended only to give a uniform discussion of the geometric 
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ideas common to both partial and ordinary differential equa
tions. 

By assumption, there is a (2N - 1) -dimensional surface 
in U which can be given local coordinates /, so that the 
integral curves have the form 

x a =r(/,t), i = (2,3, ... ,2N). (2.1) 

If we now consider a change of local coordinates x a ~ya 

= (t: = i ,/) given by (2.1), then (1.1) becomes, in the 
new (special) coordinates, 

(2.2) 

In other words, locally, all first-order systems (1.1) become 
trivial and equivalent. In practice this transformation de
pends on being able to integrate the original equations and is 
thus usually not of any value; however, in principle, it makes 
proving certain local theorems very simple. We will use this 
result frequently. 

The local symmetries of a system (1.1) can be defined in 
the following way: if we are given an arbitrary single integral 
curve of (1.1), say x a = x a (t), and a vector fieldfa(x) such 
that 

(2.3 ) 

is also an integral curve, i.e., also a solution of (1.1), then we 
say thatfa (x) is a local symmetry. Substituting (2.3) into 
(1.1) we obtain the condition onr(x) that is Lie derivative 
along v vanishes, i.e., 

!/vr= [vJ]a=vb aJa - fb abva = O. (2.4) 

One now has the natural question, given the field va, how 
many local symmetries or fieldsfa , other than v itself, exist? 
It is clear from (2.2) that the answeris 2N - 1. In the special 
coordinate system of (2.2) we have the 2N - 1 independent 
solutions of (2.4), with i = (2,3, ... ,2N): 

(2.5) 

Note that the/cil also have vanishing Lie derivatives among 
themselves. This means that if we include the original v as 
one of the j's, i.e., v : = /c I)' then the original differential 
equation determines (not uniquely) 2N vector fields with 
vanishing Lie derivatives among themselves on U. Among 
the set ofvectorsf~il we will refer to v = /cl) as the primary 
field. 

Note further that these 2N j's define a stepping opera
tor l:ab , so that 

l:aJtil =ff;+ I)' (2.6) 

If one defines the dual basisf1;) to the vectorsftil' i.e., by 
f1 ilffi) = 8:, then !,a b can be defined by 

2N 
~a. ~ fa f(i) 
~b·=£.J (i+I) b' 

;=1 

(2.7) 

where we useff2N+ I) =ffl)' It is obvious that (2.6) is satis
fied. 

Equations (2.6) and (2.7) can be generalized in the fol
lowing fashion: 

2N 
~a . _ ~ fa f(i) 
~ b . - £.J 1T(i) b , 

;=1 

(2.8) 

where 1T is some permutation of the indices i = 1,2,3, ... ,2N; 
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Eq. (2.6) is then a special case involving the cyclic permuta
tion on the 2N values of i. Using the special coordinate sys
tem, !,a b would have the form of a permutation of the rows 
(or columns) of the unit matrix and is thus clearly nonsingu
lar. Note that the action of l: defined by (2.8) is slightly 
different from that defined by (2.7): in (2.7) repeated action 
ofl: on any vectorftil cycles it among a1l2Nvectors, while 
for (2.8) it might get cycled over a lower rank cycle, and 
then other starting vectors are needed to obtain all 2N vec
tors. 

Of particular interest to us is the case where the set of2N 
vectors is divided into two sets of N each with some N cycle 
taking place over each set. This choice of l: is a special case of 
what we will refer to as a recursion operator, denoted by S; it 
will playa crucial role later. 

III. SYMPLECTIC AND BI-HAMIL TONIAN STRUCTURES 

A. Symplectic structure 

A symplectic structure on U is a tensor field nab satisfy
ing the following conditions: (1) It is skew; (2) it is nonde
generate; and (3) it is closed, i.e., a[anbcl = O. 

We will impose a further condition on .0, namely, that 
its Lie derivative along some vector field va (the primary 
vector field of Sec. II) must vanish, i.e., 

(3.1 ) 

The importance of this latter condition is that it allows the 
primary vector field to be considered (as is always possible, 
e.g., Ref. 7) as a Hamiltonian vector field, i.e., to be derivable 
from some Hamiltonian H(xa

) via 

va = nab abH, (3.2) 

where nab is the inverse of nab' i.e., nab nbc = 8a c. The 
equations (1.1) would then be the canonical equations of 
motion with Hamiltonian H. 

These conditions can easily be satisfied locally, and in 
fact there are many inequivalent symplectic structures satis
fying (3.1). To see this one takes the 2N dualformsf~;) and 
arbitrarily separates them into two groups of N, each in
dexed respectively by (a) and (N + a), a = 1,2, ... ,N, and 
thereby paired via the same value of a, so that we have 
f (i) = {J(a) f(a + N)} 

a a 'a • 

We can define 

N 
n . _ ~ f(a>j(a + N) Uab . - £.J [a b 1 • 

a=l 

(3.3 ) 

From the construction it is clear that conditions ( 1 ) and (2) 
are satisfied. Condition (3) and Eq. (3.1) are also satisfied, 
which can be seen by first going to the special coordinates 
(2.5) where they are immediately satisfied; hence they are 
true in any coordinate system since they are tensor equa
tions. 

The inverse to nab so defined, namely, nab, is easily 
seen to be given by 

N 
nab. _ ~ f[a fbI 
U • - £.J (a) (a + N) . (3.4) 

a=1 
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B. Bi-Hamlltonian structure 

A bi-Hamiltonian structure on U is defined as two sym
plectic structures nab and Oab on U that satisfy the follow
ing relationship: construct the ( 1,1 ) tensor, referred to as the 
recursion operator, 

b bc-
S a = n n ca ' (3.5) 

and require that its associated Nijenhuis tensor (or torsion 
tensor) Ns-or simply N-vanish, i.e., 

N~b : = 2Sd[ascb],d + 2S c
dS d[a.b] = 0, 

or abstractly 

N(X,y) = [SX,SY] +S2[X,Y] 

- S [SX,Y] - S [X,SY] = 0 

(3.6) 

(3.6a) 

for any vectors X and Y. Equation (3.6a) is more useful and 
easier to manipulate than (3.6). 

If furthermore the Lie derivatives of both nab and Oab 
along the primary vector field va vanish, i.e., 

(3.7) 

are also satisfied, then we will say that it is the bi-Hamilto
nian structure associated with va . 

The proof of the following two theorems on the algebra
ic implications of the existence of a bi-Hamiltonian structure 
are given in Appendix A. 

Theorem 1: Recursion operators [defined by (3.5)] 
have the following algebraic property: given any vector v in 
the 2N-dimensional tangent space, then the set of N + 1 vec
tors 

(3.8) 

is linearly dependent. 
Note that there is no implication that the first N vectors 

in (3.8) are linearly independent; one can easily construct 
cases where they are and cases where they are not. In the case 
where there are N linearly independent vectors we will refer 
to the bi-Hamiltonian structure as a maximal bi-Hamilto
nian structure. 

Theorem 2: Given a maximal bi-Hamiltonian structure 
n, 0, then at each point there exists a basis of the tangent 
space at that point such that the matrix representation of n, 
0, and Sare 

n = (0 1), 0 = ( 0 
-10 -A 

A,\ s=n-'o=(A 0 ) 
0)' 0 A' ' 

with 

0 0 ao 
1 0 0 a, 

A= 0 a2 . . . 
0 1 an _, 

The invariance group of this structure is an N-dimensional 
subgroup ofSp(N), the symplectic group in 2N dimensions, 
that is isomorphic to RN. 

We note that from the skew symmetry of n and 0, the 
characteristic polynomial of S is a perfect square, i.e., that 
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PS(A) =det(Sab -A8a
b ) 

= PA (A)2 = (A N - aN_ ,A N-' - aN_ 2A N- 2 

- ... - alA - ao)2. 

This shows that every eigenvalue is degenerate with an even 
multiplicity. Note that this does not imply that Sis diagona
lizable. It is easy to construct examples where it is not. If, for 
a maximal bi-Hamiltonian structure, the recursion operator 
is such that 

V=SNV, 

then we will refer to the bi-Hamiltonian structure as a per
fect bi-Hamiltonian structure and to the recursion operator 
as a perfect recursion operator. 

Ifwe try to extend the algebraic normal form of S from a 
point to a local neighborhood of that point, we need integra
bility conditions. Here the Nijenhuis condition comes into 
play. 

Remark 1: We point out the following properties and 
equivalent formulations of the Nijenhuis condition. Since 
the proofs are either straightforward calculations or rather 
technical we omit them. 

(i) If S can be written as in (3.5), we have the following 
equivalence: Ns = 0 iff for every closed one-form OJa the 
one-form S\OJa is also closed. This is an important result, 
since it implies that S "maps gradients into gradients." For 
general (1,1) tensor fields, N s = 0 is not sufficient for this 
property. 

(ii) For arbitrary real numbers A, the (2,0) tensor field 
nab + AOab is the inverse of a symplectic form iff Ns = O. 
This calculation is rather lengthy. 

(iii) If S satisfies the Nijenhuis condition, so does its 
inverse and all its powers. 

Theorem 3: Assume that we have a bi-Hamiltonian 
structure associated with the primary vectpr field va . It then 
follows that the vectors 

hi) = v, h2) = Sv, h3) = S2V,... (3.9) 

have a vanishing Lie derivative with each other, i.e., 

X' f(a)hp) = [hal' hp) ] = 0, a,{3 = 1,2,.... (3.10) 

If the bi-Hamiltonian structure is maximal for if, then the 
first N vectors form a linearly independent set of symmetries 
of va . 

Proof We give an outline of the proof here; the complete 
proofis given in Appendix A. We first note that from (3.7) 
we have X' vS = 0, which implies that v commutes with the 
other/'S: 

X'v(Sv) = [v,Sv] =0, X'v(S2V) = [V,S2V] =0, .... 
(3.11 ) 

This result is used as the first step in an induction process on 
the number of S 's appearing in the commutator. The induc
tion step is carried out by using the Nijenhuis condition 
(3.6). • 

We see that the main result of requiring the vanishing of 
the torsion tensor is to make the set of vectors /'(a) [i.e., 
(3.9)] commuting symmetries of va . Another consequence 
of this theorem is as follows: From the algebraic results of 
Appendix A we know that in the maximal case at every point 
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of the manifold there exists a Lagrangian subspace generated 
by v and its S iterates. Theorem 3 then tells us that the distri
bution so defined is locally integrable, i.e., that the phase 
space can be locally foliated by Lagrangian submanifolds. In 
other words, there exists a preferred polarization. 

In the case where we have a maximal bi-Hamiltonian 
structure, we can write I~N+ I) = ao/~l) + al/~2) + ... 
+ aN-I/~Nl' where aO, ... ,aN_ 1 are now functions on the 
phase space. Not surprisingly, they are constant on the La
grange submanifolds; namely, we have 

0= [ftk)J;N+ 1)] 

= dao( J;k) )J; 1) 

+dal(J;k»J;2) + ... +daN-1(J;k»J;N)' 

SinceJ;1) , ... J;N) are linearly independent at every point we 
obtain 

.!.t'r ak = 0, for O<;;;a, k<;;;N - 1. 
J(u) 

Hence the coefficients of the minimal polynomial of a maxi
mal bi-Hamiltonian structure are conserved quantities. Note 
that in the case of a perfect S we have ao = 1, and all the other 
a's vanish. In other references 8-11 the emphasis lies on an
other set of conserved quantities, viz., the traces of the var
ious powers of S. Clearly, it is possible to express one set in 
terms of the other. However, this formula is quite complicat
ed and will not be given here. It is a common misbelief that in 
a bi-Hamiltonian structure the a's have to be nonconstant 
functions. We will show below that is not necessarily true. 

We now come to the main theorem of bi-Hamiltonian 
structures. 1 

Theorem 4: Given a maximal bi-Hamiltonian structure 
associated with the primary vector field va , there will exist N 
scalar functions H(a) that are unique up to constants, pairs 
of which act as the two Hamiltonians (associated with the 
two different symplectic forms nab and nab) for each of the 
N vector fields/~a); more specifically, we have 

I~a) = nab abH(a) = nab abH(a) , a = 1,2, ... ,N, 
(3.12) 

with H(a) = H(a + I) and H(N + I) a linear combination of 
theH(a)' 

Proof: Again, the complete proof is given in Appendix B. 
We show that all the vector fields are Hamiltonian for both 
symplectic structures by showing that they Lie derive the 
symplectic forms. Then we show that there exists a ladder
type relationship among the H(a)' i.e., the Hamiltonian 
H(a) associated with n becomes the Hamiltonian for the 
next vector but now associated with the n. • 

Remark 2: (a) All the I~a) are Hamiltonian vector 
fields for both nab and nab' i.e., .!.t' Jnab = .!.t' Jnab = 0, for 
allf~a) . 

(b) For each vector Ita) there are (via 3.12) two asso
ciated one-forms, abH(a) and abH(a + I)' and, conversely, 
for each one-form abH(a) there are two associated vectors, 
Ita) and Ita _ 1) • Furthermore, we have that 
nab abH(a + 1) = nab abH(a) and hence abH(a) S ba 
= abH(a + I) , i.e., S acts as a recursion operator on the one
forms as well as on vectors (cf. Remark 1). 
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Theorem 5: The functions H a of Theorem 4 have van
ishing Poisson brackets with each other with respect to ei
ther symplectic structure, i.e., 

{Ha,Hp} = nab aa H(a) abH(p) = 0, 

{Ha,Hp}- = nabaa H(a)ab H(m = O. 
(3.13 ) 

Proof: The assertion follows from the fact that the Pois-
son bracket between two functions is equal to the Lagrange 
bracket of the corresponding Hamiltonian vector fields, 
which vanishes by Lemma 1 of Appendix A. • 

As an immediate consequence of Theorem 5 we find 
that if the bi-Hamiltonian structure is maximal and global 
then the system is Liouville integrable. 

IV. EXISTENCE OF BI-HAMILTONIAN STRUCTURES 

In this section we will discuss the existence ofbi-Hamil
tonian structures in three different contexts. Specifically, we 
will study (1) the local existence when there isjust a dynam
ical system, i.e., x = v(x); (2) the local existence when there 
already exists a Hamiltonian structure, i.e., x = n-'VH; 
and (3) the global existence when there already exists a 
Hamiltonian structure. 

A. Local existence 

Theorem 6: Every dynamical system, in the neighbor
hood of a regular point of the field, possesses a bi-Hamilto
nian structure and, in fact, many such structures. In particu
lar, one can always choose the bi-Hamiltonian structure so 
that it is perfect. 

Proof: The proof of the above contention is most easily 
given by using the special coordinate system of Sec. II. In Eq. 
(3.3) we saw that we could divide the set ofvectors/ti) and 
dual vectors/~i) into two groups of N, each indexed respec
tively by (a) and (N + a), a = 1,2, ... ,N, thereby pairing 
them via the same value of a, so that we have, e.g., 
I~i) = {f~a)J~N+a)}. We defined the symplectic form in 
(3.3) by 

N 

nab : = L If~lJbal + N). 
a= 1 

In the/~i) basis we have that 

nab = (~l ~). 
A second symplectic form, n, can be constructed from the 
same set of vectors in the following manner: Consider the set 
I~i) = {f~a) J~N + a)}; now reorder the first N vectors by 
performing a permutation on the index, af--->.1Ta, or 
l(a)f--->./(7ra); we obtain the new paired set 
I~i) = {f~7ra) J~N + a)}' We now construct 

or 

N n ._ ~/(17-a)'f(a+N) 
"~ab . - ~ [a b I ' 

a=l 

- (0 A) n= _At 0 ' 

(4.1 ) 

where A is the permutation 1T of the columns of the identity 
matrix 1. We have for the recursion operator S= n-1n 
[see Remark 2 (b) at the end of Sec. III] 
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S= (
-AI 

o 
The Nijenhuis condition is obviously satisfied since nand n 
are constant, and we thus have a bi-Hamiltonian structure. 
It is easily seen that if the permutation is the cycle 
(l,2, ... ,N)f-+(N,I,2, ... ,N - 1), the bi-Hamiltonian struc
ture and recursion operator are perfect. • 

B. Local existence with a Hamiltonian 

We now assume that the primary field v is already a 
Hamiltonian field, i.e., there exists a symplectic structure n 
and a Hamiltonian H( \) . It thus takes the form 

va = nab JbH(\). 

I t is well known 12 that locally there will always exist N func
tions (including H( 1) ) on the 2N-dimensional phase space 
that have vanishing Poisson brackets with each other, i.e., 
are in involution. We will refer to them as H(a)' with 
H( N + 1) = H( 1) • Locally, they all define Hamiltonian vector 
fields, 

f~a) = nab JbH(a) a = 1,2, ... ,N, 

which in canonical coordinates (q,p) have the form 

f~a) = (apH(a)' - JqH(a»· 

We can now consider a local canonical transformation 
whose form is 

Pta) = H(a) (q,p), 

Q(a) = Q(a)(q,p). 

The existence of a generating function for this type of ca
nonical transformation, i.e., where the H's become the new 
p's, is guaranteed by the involutive property of the H ·s. In 
this new canonical coordinate system we have that 

f~a) = (c5~a»O). 
By defining H(a) = H(a+ 1) and using (3.12). 

f~a) = nab JbH(a) = nab JbH(a), a = 1.2 •...• N. 

we obtain in the new canonical coordinate system that 

nab = ( ~ 1 ~) and n = (0_ A I ~), 
with A being the first permutation on the columns of the 
identity matrix. 

We thus have the result that locally every Hamiltonian 
system can be extended into a perfect bi-Hamiltonian sys
tem. 

C. Global bi-Hamiltonians 

In the above local proof of the bi-Hamiltonian structure 
we assumed that we knew N local involutive functions H(a) 

which always exist. If, however. we had assumed that these 
functions were global (true only in special systems known as 
integrable systems). then the proof of the bi-Hamiltonian 
structure would have been exactly the same, and we would 
have had a global bi-Hamiltonian structure, i.e., an integra
ble system implies a global perfect bi-Hamiltonian structure. 

The converse, that a global perfect bi-Hamiltonian 
structure implies an integrable system. follows from the glo-
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bal existence of the N involutive independent H(a) 's in Eq. 
(3.12). • 

Note that the bi-Hamiltonian structures we have con
structed are in some sense trivial; they do not contain any 
information about the dynamical system that we are consid
ering. Also. it is worthwhile to point out that the bi-Hamilto
nian structure of a system is by no means uniquely deter
mined. 

v. DISCUSSION 

We have shown that all dynamical systems on an even
dimensional manifold locally possess many bi-Hamiltonian 
structures. However. for specific equations it will, in general, 
be extremely difficult or impossible to construct even a single 
one. Even in the case of a Hamiltonian system the problem of 
finding a second symplectic form usually depends on finding 
N involutive (local) integrals of the system. Hi-Hamiltonian 
systems thus do not seem to be. of great practical use for 
general systems. becoming of use only when the system is 
integrable. It nevertheless appears that the existence of such 
a structure might be of use in theoretical discussions of dy
namical systems. In a future paper this possibility will be 
investigated in connection with the existence of Lax pairs 
(i.e .• linear equations whose integrability conditions yield 
the dynamical system in question) for general dynamical 
systems. 

Bi-Hamiltonian might also apply to the problem of the 
quantization of general dynamical systems. The usual quan
tization procedure suffers from the fact that there is no 
unique polarization of the phase space that would allow one 
to uniquely reduce the number of independent variables in 
the wave functions from 2N to N. If. however. there is a bi
Hamiltonian structure for the system in question. then there 
also exists a preferred polarization. Those situations where 
one usually believes that the quantization process is under
stood appears to be either a integrable system or perturba
tions off an integrable system. 
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APPENDIX A: ALGEBRAIC PROPERTIES OF A BI
HAMILTONIAN STRUCTURE 

Let E be a real vector space of dimension 2N. Let nand 
n be skew nonsingular bilinear forms on E. We define an 
isomorphism of Eby Sba : = nocnca or. equivalently, by 

O(u.v) = U(Su.v). for all u.v in E. (Al) 

The fact that n is skew implies 

U(Su.v) = n(u.sv). (A2) 

for arbitrary vectors u,v in E. Note that there is a 1-1 corre
spondence between skew nonsingular bilinear forms and lin-
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ear isomorphisms that satisfy condition (A2). We will f~cus 
on S most of the time and then obtain statements about 0 by 
means of (Al). 

A first simple consequence of the definition of S is the 
following: the characteristic polynomial of S is given by 

Ps (A) = det(Sab - At5a
b) = det(OOb)detd'iab - AOab)' 

Since Oab and iiab are skew, and since the determinant of a 
skew matrix is a perfect square, the square of its Pfaffian,13 
we obtainps (A) = (QN(A»2, whereqN is a polynomialinA 
of degree N. This implies that the roots of p s (as a polynomi
al over the complex field) come in pairs-the multiplicity of 
each root is even. From the Hamilton-Cayley theorem we 
know that S annihilates its characteristic polynomial. If Sis 
diagonalizable, then it also must annihilate q N' To show that 
this is true in general, we move on to give a canonical form 
for the matrix of S. 

Lemma 1: Given 0 and S satisfying (A2), we have (i) 
o (S" v, S'" v) = 0, for v in·E and arbitrary integers n, m; and 
(ii) For every vector v in E, the set of N + 1 vectors 
{V,SV,S2V, ... ,SN v} is linearly dependent. 

Proof: Note that o(snv,snv ) = 0, and that from (A2), 
O(S"v,S" + IV) =O(S"+I V, snv) = -O(S"v,sn+lv) 
= O. In the general case we can use (A2) to put 

O(S" v,S'" v) into one of the above forms. This proves (i). 
Point (ii) follows from the fact that 0 restricted to the span 
of the iterates of v vanishes. If this were an (N + 1 )-dimen
sional subspace, this would be in contradiction with the re
gularity of O. _ 

For every v, there is a maximal number m such that the 
first m iterates of v are linearly independent. By Lemma I, 
m<.N. Ifv is such that m = N, we say that Sis maximalfor v. 
In the following we will restrict ourselves to the case where S 
is maximal for some v, since this is the most important case 
for us and in the applications. 

Let Vi: = SiV. Then n(Vi,Vk) = 0 and 
SNv=aOv+a1vI + .,. +aN_IvN_ I , for Nreal numbers 
ao, a I, ... ,a N _ I . From a general result of linear algebra 13 we 
can put 0 in Darboux form, i.e., we can find N vectors 
UO,UI, ... ,UN_ I such that the set {vO,vl,···,VN_ I'UO' 

ul' ... 'UN _ I } constitutes a basis of E, and such that 
O(Ui,Uk) = O(Vi,Vk ) = 0 and O(Vi,Uk ) = t5ik . From (AI) 
we also have ii (v jJV k) = O. In this basis the matrix represen
tation of 0, ii, and S are the following: 

o = ( ~ 1 ~), ii = ( ~ A ~ ') , 
- (A -B) S =O-IO= 0 

A' ' 

whereBisan arbitrary skew (N XN) matrix. We know that 
the matrix of S restricted to the subspace spanned by v and its 
iterates is 

0 0 ao 
0 0 a l 

A= 0 0 a2 

---
0 0 1 aN_I 

We are now in a position to prove Theorem 2 from Sec. III. 
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Theorem 2: Given a maximal bi-Hamiltonian structure, 
n, ii on E, there exists a basis such that the matrix represen
tations of n, ii, and S are 

n=(~l)' ii=(~A~). S=O-lii=(~ ~,), 
with A as above. The invariance group of this structure is an 
N-dimensional subgroup ofSp(N), the symplectic group in 
2N dimensions, that is isomorphic to RN. 

Proof: We try to find symplectic transformations with 
respect to n that transform B in ii to O. We consider the 
ansatz 

For T to be symplectic for n, it is necessary that /3 = I and 
that a is symmetric. Then ii is transformed into 

TnT= . - (0 AI) 
-A B-Aa+aA ' 

Now Twill transform n into the desired form if we can find a 
solution a to the equation 

B=Aa - aA I, (A3) 

for arbitrary skew B. Consider the linear map ar--.Aa - aA I , 

which maps the ~N(N + l}-dimensional vector space of 
symmetric matrices into the ~N(N - I )-dimensional space 
of skew matrices. We will show that the null space of this 
map is exactly N-dimensional, which implies by linearity 
that the map is onto and hence there exists a solution for 
every skew B. In fact, the solution space will be N-dimen
sional, which implies that the invariance group is an N-di
mensional subgroup of the symplectic group Sp(N). It is 
Abelian, and each of its elements is uniquely determined by 
Nreal numbers (the last row of the corresponding a). This 
shows that it is isomorphic to RN. 

In order to solve the homogeneous equation (A3 ), write 
a in the form 

OJ 
with N row vectors al, ... ,aN' The product Aa can then be 
written as 

aoaN 

alaN +a l 

a2a N + a 2 

aN_IaN +aN_ I 

The homogeneous equation (A3) then requires Aa to be 
symmetric. In terms of its matrix elements this reads 
/3ik = ai_laNk + a i _ Ik = ak_IaNi + ak_Ii =/3ki' From 
this equation we can determine the matrix elements of a in 
the following way: we specify freely the last rowaN I , ... ,a NN' 

and then use the equation as a recursion relation to deter
minethekthrowfrom the previously known (k - I )throw, 
keeping in mind that a is symmetric. The first row is given by 
a 1i _ 1 =aOaNi -ai_IaNI,forl<.i<N,aIN =aNI·Forthe 
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kthrowwehaveaki_1 =ak_ Ii + (ak_IaNi -ai_laNk)' 
for (k + 1) <i<N, akN = aNk' This completes the proof .• 

This result shows again that the characteristic polyno
mial of S is P s (A) = (P A (A»)2, a perfect square. Also, this 
implies that S annihilates the Nth degree polynomial P A (A). 
Now, the minimal polynomial of S, by definition, divides P A • 

On the other hand, the assumption of maximality of S im
plies that its minimal polynomial is at least of degree N, 
hence it must be equal top A • A simple calculation shows that 

PA(A) = (-l)N(AN-aN_,AN-' 

-aN_2AN-2- ... -aIA-ao)' 

We have proved the following corollary. 
Corollary: A maximal bi-Hamiltonian structure on a 

2N-dimensional vector space is completely characterized by 
its invariant (aO,al, ... ,aN _ 1 ), an N-tuple of real numbers. 

The geometry of the situation is as follows: Given Sand 
v such that S is maximal for v, there exists a unique Lagran
gian subspace L for both symplectic forms fl and n that 
contains v. The remaining RN freedom corresponds to the 
choice of different transversal Lagrangian subspaces. It is 
effectively the choice of one vector transversal to L. Then S 
determines a unique Lagrangian subspace containing this 
vector that is transverse to L. 

APPENDIX B: PROOF OF THEOREMS 3 AND 4 

Theorem 3: Assume that we have a bi-Hamiltonian 
structure associated with the primary vector field if . It then 
follows that the vectors (3.9), 

fc.1) = v, fc.2) = Sv, fc.3) = S2V, ... 

have a vanishing Lie derivative with each other, i.e., 

.!f f(u,fc.P) = [fc.a) ~fJ) ] = 0, a,/3 = 1,2, .... 

If the bi-Hamiltonian structure is maximal for va, then the 
first N vectors form a linearly independent set of symmetries 
of va . 

Proof' The first statement is proved in the following 
manner: We first note that from (3.7) we have .!f vS = O. 
This can be written as 

[v,SX] = S [v,X], (Bl) 

for every vector field X. Hence we have 
[v,sn+ 1 v] = S[v,snv]. Using induction on n-the case 
n = 0 being trivial-we find that v commutes with all sm v 
for all positive integers m. 

We now show that [S n - mv,S mv] = 0, for all O<m<n, 
n > I. We use induction on n. The case n = 2 is proved with 
the above result. Now suppose the assertion is true for all 
O<m<k, k<n. The Nijenhuis condition (3.6a) can be writ
ten in the form 

[SX,Sy] =S[SX,Y] +S[X,Sy] -S2[X,Y], 

for arbitrary vectors X, Y. From this we obtain 

[sn+l-mv,smv] =s[sm+l-mv,sm-lv] 

+ S [sn - mv,smv] 

_ s2[sn- mv,sm-1v], 

but this vanishes by the induction hypothesis. 
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Theorem 4: Given a maximal bi-Hamiltonian structure 
associated with the primary vector field va , there will exist N 
scalar functions H(a) , that are unique up to constants, pairs 
of which act as the two Hamiltonians (associated with the 
two different symplectic forms flab and nab) for each of the 
N vector fields/ea); more specifically, we have 

lea) = nab JbH(a) = nab JbH(a) , a = 1,2, ... ,N, 

with H(a) = H(a+ I) and H(N+ I) a linear combination of 
theH(a) . 

Proof" First we show that.!f s"vS = 0, for all n. We use 
induction on n, with the case n = 0 being true from (3.7) 
and the definition of S. Let X be an arbitrary vector field. 
From the Nijenhuis condition we get 

[Sn+ IV,SX] = S [Sn+ IV,X] 

+ S [snv,SX] - S2[snv,X]. 

By the induction hypothesis we have 
[S nv,SX] - S [S nv,x] = O. This implies 
[S n + IV,SX] = S [S n + IV,x], for all vector fields X, which 
is equivalent to .!f sn + 'vS = O. 

Next we show that this implies.!f s"vn = 0 = .!f s"vn, 
for all n. From the definition of S we have 

(B2) 

from which we get (.!f S"vn)ab = (.!f S"vn)cbSca' On the 
other hand, with (S nv)a = ven) = sabvfn _ I) we obtain 

(.!f S"vn)ab = nab,cV~n) + ncbV~n).a + naCV~n).b 
= ~n[ab.clv~n) + (ncbV~n) ).a - (flcav~n) ).b 

= (ncbV~n - I) ).a - (ncav~n - I) ).b' 

with n[ab.c] = 0 and (B2). Since n[ab.C] = 0, we finally ob
tain 

2"s"vn=.!fS"-1vn. (B3) 

Takin~ these relationships together, 2" s .. - 'vn = 0 implies 
.!f s"vn = 0, and hence .!f s"vfl = O. Induction on n estab
lishes the result. The fact that all the iterates of v Lie derive 
Om and Omt implies the existence of functions Hn,Hn-
unique up to constants-such that (snv)a = nabJbHn 
= nabJbHn. Equation (B3) then tells us that 
dHn = dHn _ I' and we can choose Hn = Hn _ I . • 
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On the convergence of the Magnus expansion in the Schr~dinger 
representation 
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The convergence properties of the Magnus expansion in the Schrodinger representation are 
investigated. A quite general result is rigorously derived from first-order perturbation theory. 
A finite matrix representation is presented for obtaining the exponential time-evolution 
operator more easily. Two time-dependent models, an oscillator and a spin system, are 
considered as illustrative examples. 

I. INTRODUCTION 

There has recently been great interest in the conver
gence properties of the Magnus expansion 1-3 because it is the 
basis of the average Hamiltonian theory that proves to be 
useful in analyzing magnetic resonance experiments4

-
8 (and 

references therein). Since addressing this question in a gen
eral rigorous way seems to be a very hard task, some authors 
have resorted to the investigation of simple models, where 
large-order calculations are possible.6-8 For instance, Salz
man7.8 considered problems of the form H = Ho + /3V(t) , 
where Ho and V(t) describe the isolated time-independent 
system and the time-dependent perturbation, respectively. 
After studying a number of simple cases, Salzman 7.8 con
cluded that the Magnus expansion in the Schrodinger repre
sentation diverged for all t> To = 21TIOJo, where OJo is the 
natural frequency of the isolated system. When t = T = 21TI 
OJ, where OJ is the driving frequency, the condition above 
becomes OJ > OJo, which severely limits the application of the 
exponential perturbation theory in the Schrodinger repre
sentation.8 

Salzman's conclusions appear to be /3 independent. 7,8 
On the other hand, the convergence properties of the Mag
nus expansion are known to depend strongly on the repre
sentation.4

•
5 

On using an appropriate expansion procedure,9 Salz
man7,8 obtained a large number of terms of the Magnus ex
pansion for a given order in /3 and managed to work out the 
sum exactly. He argued that if the sum of the terms propor
tional to /3 diverged, then the series was not useful at higher 
orders of /3. 

Some of Salzman's conclusions have recently been con
firmed rigorously in the case of the linearly driven harmonic 
oscillator. 10 

The purpose of the present paper is twofold. First, pre
vious results based on perturbation theory5,7,8 are more ri
gorously derived in Sec. II. Second, some properties of Lie 
algebras are shown in Sec. III to be suitable for investigating 
the convergence properties of the Magnus expansion. Two 
simple models are discussed in Sec. IV as illustrative exam
ples. 

II. THE MAGNUS EXPANSION 

The Magnus expansion has been obtained in more than 
one way before. 1-3,9 However, for the sake of completeness 

and in order to introduce useful notation an alternative deri
vation is presented in this paper. 

The Schrodinger equation is a particular case of 

d 
-U=FU, 
dt 

(1) 

where U and F are linear operators. Without loss of genera
lity the initial condition is chosen to be U(O) = I, where I is 
the identity operator (throughout this paper I will also rep
resent the identity matrix). 

The operator ji = U -lyU satisfies the following equa
tion of motion: 

~ji= U-I(SYF+~Y) U, 
dt dt 

(2) 

where Sy is the superoperator defined over the space oflinear 
operators as Sy x = yx - xy. 

When U is chosen to be of the form 

then 

ji=~ye-A=y+SAy+!(SA)2y+'" =eSAy 

and Eq. (2) becomes 

(3) 

~ ji = eSA (~ y + Sy F) = ~A (~ Y - SF y) , (4) 
dt dt dt 

which enables one to define the time derivative of eSA as fol
lows: 

~~A = _ eSASF. 
dt 

Wheny =A (A =A), Eq. (4) becomes 

~A =~A = U- I (~A +SAF) U 
dt dt dt 

(5) 

= ~A (:t A + SA F), (6a) 

which can be solved for (d Idt)A leading to 

d 
-A = G(SA)F, (6b) 
dt 

where G(x) = xl (e - X_I). This function can be expanded 
in Taylor series around the origin: G(x) = Go + G1x + "', 
where Go = - 1 and 
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(7) 

The fact enables one to solve Eq. (6b) iteratively and, as a 
result, the operator A can be expressed as the infinite series 

A = Al + A2 + .. , , (8) 

where Aj is of order j in F. I
-

3 The first two terms are 

Al = - So' F(t')dt', 

A2 = - ~ r ( [F(t'),F(t ") ]dt' dt". 
2 Jo Jo 

(9) 

The Magnus expansion converges in a neighborhood of 
t = 0, where A exists and is differentiable. The convergence 
interval of the Magnus expansion can, in principle, be ob
tained as follows. Let {ap laj ) } be the set of eigenvalues and 
eigenfunctions, respectively, of A. For the sake of simplicity 
we assume that F is anti-Hermitian. Since 

(ajl(SA)nFlak) = (aj -ak)n(ajIFlak)' 

it is concluded that 

(aj l ~~ lak)=G(aj-ak)(ajIFlak)' (to) 

from which it follows that A is not differentiable when 
aj - ak is a multiple of21Ti and (aj IF lak) #0. Clearly, the 
Magnus expansion diverges for all t> tc , where tc is the 
smallest time value leading to the above-mentioned condi
tion. Unfortunately, this criterion does not enable one to 
determine tc beforehand because the spectrum of the un
known operator A is required. 

A reasonable way of estimating tc has been put forward 
by Maricq.5 Assume that F is of the form 

F = Fo + f3FI (t), (11) 

where the time-independent operator Fo has eigenvalues ej 

and eigenfunctions I j). For small enough 13 values, 
laj > "'" I j) and aj "", - ter Therefore, 

tc"",21T/l:1e, (12) 

where l:1e is the largest value of lej - ek I for which 
(jIFdk) #0. (This last condition is not always taken into 
account.5

) 

The result above can be obtained in a more rigorous way 
by means of perturbation theory. We first notice that Eq. 
(6a) can be rewritten SU dA /dt = (SA F) U. Upon ex
panding every operator in f3-power series (e.g., A = A (0) 

+ A (1)13 + ... ) we have 

dA (I) 
SU(O) - - SU(1)Fo 

dt 

= SU(O) .!!... A (I) + SFoU(1) 
dt 

= (SA (1)Fo) U(O) + (SA (O)FI ) U(O) 

= - {SFo(A (I) + tFI)}U(O), 

because A (0) = - tFo' Therefore 

(
jl.!!...A (l)lk) = (e. - ed (e'ek - e -lei) -1(jI{U(I) 

dt J 

(13) 
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since (jISFoWlk) = (ej -ek)(jIWlk), for every linear 
operator W. For this reason A (I) is not differentiable when 
(ej - ek)t is a multiple of21Ti and 

(jiFI + t -IA (I) - (te ,ek )-IU(1)lk) #0. 

Equation ( 13) clearly accounts for all the particular results 
obtained by Salzman7,8 from simple models. Since the Mag
nus expansion converges whenf3 = 0 we can reasonably sup
pose that tc <.21T/l:1e. 

III. FINITE MATRIX REPRESENTATION 

Although the properties of the Lie algebras are known 
to be useful in studying the dynamics of quantum-mechani
cal systems,11.12 some of them are sometimes overlooked. A 
few such properties relevant to the subject of the present 
paper are briefly discussed below. 

Let L be the Lie algebra spanned by the set 
X = {X I'X2'.oo,xn} oflinearly independent and time-indepen
dent operators xj' All the operators SXjXk belong to £.11,12 
Given an operator B belonging to L we define an n-dimen
sional square matrix B ' = (B ik) as follows: 

n 

SB Xj = L B ikXk, j = I,2,oo.,n. 
k=1 

(14) 

If the function K(z) is defined on the spectrum of B', then 
n 

K(SB)xj = L {K(B')}jkXk' (15) 
k=1 

Also, K(B') is found to be a polynomial function of B' of 
degree s<.n. 13 When B' has n distinct characteristic values 
b l ,b2,oo.,bn, such a polynomial is of the form 13 

n n 

K(B') = L K(bj ) IT (bj - bk )-I(B' - bkI). (16) 
j=1 k=1 

k#j 

If 
n 

F= L jj(t)xj , (17) 
j=1 

where the jj (t), j = I,2,oo.,n, are continuous functions of 
time, then 11 ,12 

n 

Xj = L Qik (t)xk, j = I,2,oo.,n, (18) 
k=1 

where the functions Qik (t) satisfy the equations of motion 

.!!...Q'=-F'Q', Q'=(Q~k)' (19) 
dt J 

with the boundary condition Q ' (0) = l. This last equation is 
a finite matrix representation of ( 1 ), which enables one to 
handle the problem much more easily. 

When F belongs to L the operator A also belongs to L 
and can be written 

n 

A = L aj (t)xp 
j= 1 

(20) 

whereaj(O) = 0 (j= I,2,oo.,n). A straightforward calcula
tion using Eqs. (6b) and (15) shows that 

. Q' = ~', (21) 

and 
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!!...aj = i. {G(A ')hj!k' j= 1,2, ... ,n. (22) 
dt k=1 

It is worth noticing that G(A ') = A 'Q'( 1 _ Q') -I. 
This finite matrix representation is useful in investigat

ing the convergence properties of the Magnus expansion for 
some simple systems. In order to show it, let us look for an 
operator x belonging to L so that SA x = AX. If such an oper
ator is found, then A will be the separation between two 
eigenvalues of A because 

(ajISAxlak) = (aj -ak)(ajlxlak) =A (ajlxlak)' 

It is not difficult to verify that the separation constant A and 
the coefficients of the expansion x = CIX1 
+ C:zX2 + .,. + CnXn are solutions of the secular equation 

n 

L (A "j - A8kj )Ck = 0, j = 1,2, ... ,n. 
k=1 

(23) 

In other words, the separation constant is an eigenvalue of A ' 
and the operator A will not be differentiable when A is a 
multiple of 21ri as shown by Eq. (22). (A = 0 is always an 
eigenvalue of A ' because SAx = 0 when x is proportional to 
A.) 

The dimension of the representation can be reduced 
when there is a set of operators Y = {YI,Y2, ... ,Ym}' m < n, so 
thatSxjYk (j = 1,2, ... ,n, k = 1,2, ... ,m) belong to Cy (the set 
of all linear combinations of operators in Y). In such a case, 
given an operator B belonging to L we may define an m
dimensional square matrix B " = (B;,,) as follows: 

m 

SB Yj = L B ;"Yk' j = 1,2, ... ,m. (24) 
k=1 

Besides, 
m 

Yj = L Q;"Yk, j= 1,2, ... ,m, 
k=1 

(25) 

where 

!!... Q" = - F" Q " , Q" = (Q;,,), (26) 
dt 

and Q" (0) = 1. It follows immediately that 

Q"=~.. (27) 

In the examples of the next section we choose x 1,x2, ••• ,Xn 

to be anti-Hermitian operators so that F is anti-Hermitian 
when the.lj(t) are real functions of time. The Hamiltonian 
operator H = iF is thus Hermitian and U and A are unitary 
and anti-Hermitian operators, respectively, when aj (t) are 
real functions of time. (The eigenvalues of A are imaginary 
numbers.) 

In order to determine the convergence interval of the 
Magnus expansion we simply solve the linear equations of 
motion (26) for increasing time values until an eigenvalue of 
Q " equals unity (i.e., an eigenvalue of A " equals 21ri). When 
the dimension of the representation cannot be reduced, we 
use Eq. (19). 

The equations developed in this section can be viewed as 
a generalization of the method proposed by Fernandez10

,I4 

to obtain the exponential form of the time-evolution opera-
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tor that proved to be useful in studying the convergence of 
the Magnus expansion for driven oscillators. 10,IS In addition 
to this, expressions of the form exp (uSxJ )Xk, which are nec
essary to build the time-evolution operator for collisional 
problems,16 are easily derived from the matrix elements of 
exp(xj). 

IV. EXAMPLES 

Our first example is the time-dependent oscillator 

H = ~!I(t)(p2 + q2) + h(t)q + /;(t)p, (28) 

where p = - i d / dq. This operator reduces to the one dis
cussed by Salzman7 and Fernandezlo when It = Wo, 

h = cos wt, and/; = O. Although the Magnus expansion for 
this problem converges for all t values in the interaction rep
resentation,3 the convergence interval may be finite in the 
Schrodinger representation as shown below. 

The algebra L is spanned by the operators 

XI = - (i12) (p2 + q2), X2 = - iq, 
(29) 

X3 = - ip, X4 = - i1. 

A straightforward calculation using the commutation rela
tions of the operators Xj shows that the nonvanishing matrix 
elements of A ' are 

A ;2 = A 24 = - a3, A;3 = A 34 = a2, 

A 32 = - A 23 = a l • 

(30) 

The eigenvalues of A ' are found to be 0 (twofold degenerate) 
and ± ia l • Besides, since A;I = O,j = 1, ... ,4, it follows that 
(A ,n)jl = 0 and {G(A ')}jl = - 8jl • For this reason, Eq. 
(22) leads to 

al(t) = - LIt(t')dt', (31) 

which shows that the Magnus expansion diverges for all 
t">tc' where 

(32) 

When!1 = Wo, it is concluded that tc = 21r/wo, disregarding 
the form ofh and/;. We have thus generalized the results 
obtained by Salzman7 and Fernandezlo and shown the use
fulness of the finite matrix representation developed in the 
previous section. 

This example is useful to point out a very important fact. 
The eigenvalues of the operator A are easily shown to be 
given by 

aj = - i{a l (j +!> + a4 + (a~ + aD/2a I }, j = 0,1, .... 

Therefore, since laj - a k I can be chosen as large as desired 
when t> 0, the Magnus expansion appears to have a zero 
convergence radius. However, (aj IFlak) = Oiflj - k I > 1, 
and tc is given by Eq. (32). It is surprising that the condition 
about the matrix elements of Fis frequently omitted.4,s,8 

The remaining coefficients aj ( t) are more easily ob
tained by solving the Schrodinger equation in the reduced 
matrix representation provided by the algebra spanned by 
Y = {X2,X3'X4}. Notice that the coefficient a4(t) cannot be 
obtained from the finite matrix 'representations because X 4 

commutes with all the other operators. This fact is not a 
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serious drawback because such a coefficient only contributes 
a trivial phase factor to the time-evolution operator. The 
calculation of a2(t) and a3(t) is not relevant to the present 
paper. 

We next consider the case 

(33) 

where O"x' O"y' and o"z are the Pauli spin matrices (0" J = J). 
Since SX1X2 = - be3, SX~3 = - iXI' and SX3X1 = - iX2' it 
is found that the nonvanishing elements of A I are 

A ;1 = A ~I = ia3, A;3 = A iT = ia2, A ~f = A i2 = ia l , 

(34) 

where. stands for complex conjugation. The eigenvalues of 
A I are 0 and ± ia, where a = (ai + ai + a~ )1/2. 

The matrix A I is anti-Hermitian, therefore G(A ') + 

= G(A 1+) = G( - A '), where + stands for adjoint. Since 
the coefficients aj andij are real and G( - SA)A = - A, it 
follows from Eq. (22) that 

~ a· .!!...a. = ~ ~ fkG(A ')k·a. + J dt J "1~ ~ J 

which finally leads to 

a(t)<i'f(t')dt ', 

(35) 

(36) 

wheref = (fi + fi + f~ ) 1/2, in agreement with Maricq.17 
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V.COMMENTS 

The main result of Sec. II [i.e., Eq. (13) ] shows that the 
conclusion obtained by Salzman 7,8 from particular examples 
is quite general and that the applicability of the methods 
based on the Magnus expansion is rather limited. 

The finite matrix representation developed in Sec. III 
greatly facilitates the calculation of the exponential time
evolution operator and thereby the investigation of the con
vergence properties of the Magnus expansion. More com
plex problems than those in Sec. IV will be treated elsewhere 
in a forthcoming paper. 

The accurate determination of the convergence interval 
of the Magnus expansion is of utmost importance in most 
physical applications because it would help to choose a more 
appropriate representation of the Schrodinger equation. 5 
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On the convergence of the Feynman path integral for a certain class 
of potentials 
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A direct proof is given of the convergence of the discretized Feynman path integral to the 
fundamental solution ofthe (time-dependent) Schrodinger equation, for potentials which are 
bounded, integrable and continuous on the real line. No further smoothness assumptions are 
required. 

I. INTRODUCTION. THE SCHRODINGER EQUATION 
AND THE DlSCRETIZEDFEYNMAN PATH INTEGRAL 

The one-dimensional Schrodinger equation, after a real 
scaling of x and t, can be written in the reduced (dimension
less) form 

~ Jk =~ J
2
k +q(x)k, tE(O,oo), XE( - 00,00), 

iJt 2Jx2 

(1) 

(where - q is what is usually called "the potential"). We 
are interested in the fundamental solution (Green's func
tion) k( t,x,y) of (1), namely, the solution with initial condi
tion 

k(O,x,y) = 8(x - y), 

in the sense that, if w( f,x) is a solution of ( 1) with 

w(O,x) =/(x), /EL2(R I), 

then, for all t> 0, 

w(t,x) = L"oo k(t,x,y)/(y)dy, 

and if/is smooth enough, 

/(x) = lim foo k(t,x,y)/(y)dy. 
nO - 00 

Ifwe set 

1 d 2 

L=2 dx2 +q, 

(2) 

then the function k(t,x,y) is the. kernel of the unitary opera
tor eitL

• One consequence of that is that k(t,x,y) must be 
symmetric in x andy. In the finite interval case a<.x<.b, with 
certain boundary conditions, k(t,x,y) exists only in the dis
tributional sense, since unitary operators are not compact. 
But in the infinite case (our case) k(t,x,y) can be bounded 
and continuous. If the operator Lis of the limit point type at 
± 00 (which is the case if, for example, q is bounded), then 
k(t,x,y) is unique. 

Feynman conjectured that k is given by 

k(t,x,y) = lim Km (t,x,y) , (3a) 
m-OO 

whereKm is the discretized path integral 

Km(t,x,y) 

= (~)mI2 foo ... foo exp[i f (Zj - Zj_1 )2] 
2mt - 00 - 00 j= 1 2~t 

xexp[i ~~II q(Zj)~t ]dZ I " 'dzm_ l , (3b) 

with Zo = x, Zm = y, ~t = tim, m>2. The expression il/2 is 
meant to be eill

/
4 and the integrals are in the improper (Rie

mann) sense, namely, 

Loooo/(X)dX= M~~~oof:M/(X)dX. (3c) 

For the cases q(x) = e, ex, or ex2 (e is a constant), formula 
(3a) can be verified directly. Thecaseq(x) = ex2 is the most 
interesting" Fujiwara2

,3 showed the validity of (3a) for a 
class of Coo potentials. Nelson4 showed that, under very gen
eral assumptions for q, the operators with kernels Km (t,x,y) 
converge, as m -+ 00 , to the operator eilL

, in the strong opera
tor topology, but this is not enough to prove (3a). 

In this work we give the proof of (3a) for qELCb (R I), 
i.e., for q bounded, continuous, and integrable on the line 
(not necessarily real valued). As far as we know, all existing 
proofs require q to be C 00 and they depend on Fourier trans
form techniques (see also Ref. 1). Our way is direct and we 
do not need more smoothness. Notice that LCb (R I) is a 
Banach space with norm 11'11 =max{II'III,II'lloo} (say). 
Moreover, if qELCb (R I) and p> 1, then q" and eq 

- 1 are 
both in LCb (R I). In fact 

11q"111 <. IIqll':" - Illqlll (4a) 

and 

II. THE BORN EXPANSION 

There is a way to construct the fundamental solution of 
( 1) as an infinite series. This series is usually called Born 
expansion and it is a perturbation series near q=O. 

We start with the fundamental solution for the case 
q=O, namely, 

1 [i(X_y)2] ko(t,x,y) = exp -'----'--
~21Tit 2t 

(Sa) 
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and. for n = 1.2 •...• we set 

k n (t.x.y) = i l' fO 00 ko(s.x.z)q(z) 

Xkn _ I (t - s,z,y)dz ds. 

or equivalently 

k n (t.x.y) 

(5b) 

= f1'- s
O ···f-so- ... -sn_'Hn[SI.···.Sn](t.X.y) 

Xdsn" 'ds2 ds l• (5c) 

where 

Hn [Sl'·· .sn] (t,x.y) 

=r f_oooo "'f_oooo kO(SI.X,zI)···ko(sn.Zn_I.Zn) 

Xko(t-sl - ... -sn.zn.y)q(zl)···q(zn)dzn···dzl· 
(5d) 

Then 

00 
k(t.x.y) = L k n (t.x.y). (6) 

n=O 

[This can be viewed as an analytic continuation of the funda
mental solution of the parabolic equation obtained from (1) 

by dropping the factor 1/ i] . 
Each k n (t.x.y) is symmetric in x and y by induction on 

(5b). The assumption qELCb (R I) together with dominated 
convergence imply that kn (t.x.y) is continuous in (t.x,y). 
Furthermore. by (5b). for n> 1 we have 

Ikn (t.x,y) I ..;lIqll~ (1/.fiii)n + IMn (t). (7) 

where 

Mo(t) = 1//1 

and, for n>l. 

Mn(t) = n- I - ds. i tM (t s) 

o IS 
In other words [as in (5c) and (5d)]. 

Mn(t) 

(8a) 

(8b) 

((-so (-So - ... -Sn-'-;:::====ds:;n=' =' '=dS=2=d=sl====~ 
= Jo Jo ""10 ~SIS2""Sn(t-SI _ ... -sn) 

Lemma 1: Formulas (8a) and (8b) imply 

Mn (t) = Ant (n -1)12. 

(8c) 

(9a) 

where 

A 2, = (41T),r!/(2r)! and A 2,+ I = 1T'+ 1/r!. (9b) 

In particular 

343 

lim(An + I IAn) = O. (9c) 
n 

Prooj: Elementary calculus exercise. • 
Remark: By using Stirling's formula in (9b) we obtain 

An+ IIAn = O(1I{ii). 

An immediate corollary is that the series in (6) con-
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verges absolutely and uniformly in (t.x.y) provided that 
0< €..;t..;b < 00. Therefore. k(t,x,y) of (6) is continuous on 
(0.00 ) X R I X R I and symmetric in x and y. In fact. (7) im
plies that k(t,x.y) is uniformly bounded if we restrict tin 
some interval of the form [€,b]. To see that it is the funda
mental solution. of ( 1 ), at least in the weak sense, we notice 
the following. 

For n>l. Eq. (5b) implies (we have used the notation 
DI and D22 in a few places below to denote partial deriva
tives. because our usual notation could cause confusion) 

1 akn (t.x.y) 

i 

and 

at 

= q(x)kn - I (t,x,y) + l' roo 00 [D\ko(s.x,z) 

Xq(z)kn _ I (t - s,z.y) ]dz ds. 

1 a 2kn (t,x,y) . it Joo 1 
- 2 = I -D22ko(s,x.z)q(z) 
2 ax 0-002 

Xkn _ I (t - s.z.y)dzds 

= l' roo 00 [Dlko(s.x.z )q(z) 

Xkn _ I (t - s.z.y) ]dz ds, 

since, by (5a). 

1 ako(t,x,y) 1 a 2ko(t,x,y) = - ---"-'-:--~ 
i at 2 ax2 

By summing the first two equations for all n> 1. and then by 
comparing their right-hand sides (using at the same time the 
third equation), we conclude that k(t.x.y) satisfies (1). To 
assure convergence we need x 2q(x) to be integrable on the 
line and in this case. k (t.x.y) is a strong solution of ( 1 ). Since 
such q's are dense in LCb (R I), we can establish the general 
case by dominated convergence, but. in general. our k(t.x.y) 
is only a weak solution of ( 1 ). To verify the initial condition 
(2) we just observe that 

ko(O.x,y) = 8(x - y). 

while. by (5b). 

kn (O.x.y) = 0 n> 1. 

Remarks: It is a standard calculus exercise that 

roo 00 ko(t,x,y)dy = 1, ( 10) 

which implies immediately that ko(t.x.y) satisfies the Chap
man-Kolmogorov (matrix mUltiplication) equation 

ko(s + t.x,y) = roo 00 ko(s.x.z)ko(t.z,y)dz. (11) 

Both ( 10) and (11) are in the sense of (3c). Equation (11 ) 
is crucial for what follows. Since k(t.x.y) is the kernel of eitL

, 

namely the analytic continuation (in t) of a heat kernel. it 
must also satisfy 

k(s + t.x.y) = roooo k(s.x.z)k(t.z.y)dz. (12) 

in a certain improper sense. 
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Can we extend the analysis of this section to the multidi
mensional case xeR d,d>2? In this case Iko(t,x,y) I 
= (217"t) - d 12, therefore we cannot use the same techniques 
[namely (7) and Lemma 1] to get bounds for k n (t,x,y) that 
guarantee the convergence of the series in (6). But, possibly, 
these bounds can be achieved by allowing q to be smoother 
(see also Ref. 3). 

III. THE CONVERGENCE OF THE DISCRETIZED PATH 
INTEGRAL 

We start with a small lemma which justifies the inter
change of summation and integration for certain improper 
integrals. 

Lemma 2: LetfjELCb (R I) and t:.j > O,j = 1,' .. ,m - 1. 
Then 

where the multiple integrals are in the (improper) sense of 
(3c). 

Proof Induction on m. For m = 2 we have 

exp[mi1fj(Zj)] =e"(z,) = 1 + [e"(Z,) -1], 
J= 1 

bute" - 1 isinL I(R I) by (4b) and hence, one can apply the 
Dominated Convergence Theorem to get (13). The contri
bution of the term 1 above is finite because of ( 10) and ( 11 ). 

The same idea works for the general case, namely, 

exp[."tl1fj(Zj)] = ~.till [e'i(Zj) -1] + l: + (_1)m, 

where the product is in L 1 (R m - I) and l: is a finite sum of 
terms of the form 

exp [ L fj(Zj)], 
jEs(m - I) 

with S(m - 1) being a proper subset of {1,2, ... ,m - n. 
Thus, the inductive hypothesis can be applied to l:. Notice 
that we have used (10) and (11) again. • 

Lemma 2 implies that K m (t,x,y) of (3b) can be written 
as 

00 

Km (t,x,y) = L Km,n (t,x,y) , (14a) 
n=O 

where 

Km,n (t,x,y) 

= J..(....!!!:..-)m/2 foo ... foo exp [i f (Zj - Zj - 1 ) 2 ] 

n! 21Tit - 00 - 00 j = 1 2t:.t 

(14b) 
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To finish the proof of (3a), we need to show that, in 
(14a), it is permissible to bring limm inside the summation, 
namely, 

00 

lim Km (t,x,y) = L lim Km.n (t,x,y) 
m n=O m 

(15) 

and also that 

lim Km.n (t,x,y) = kn (t,x,y) , (16) 
m 

where k n (t,x,y) is defined by the formulas (5). In fact, the 
central idea of this work is that, for any fixed n>O, 
K m.n (t,x,y) is approximately a Riemann sum associated to 
k n (t,x,y) of (5c). 

Proofof(15} and (16): Formula (15) is valid if, for each 
t> 0, we can find numbers Bn (I), n> 1, independent of m, 
such that 

IKm.n (t,x,y) I <Bn (t), for all m>2 (17) 

and 
00 

L B n (t) < 00, for all t > O. (18) 
n=O 

We set 

(19) 

where Ek consists of the terms of the expansion with exactly 
k distinct factors. For example 

EI = q(ZI)n + ... + q(zm _ I )n, 

E2=q(ZI)n-Iq(Z2) +q(ZI)n-2q(Z2)2+ ... 

+ q(zm _ 2 )q(Zm _ 1 )n - t, etc. 

In general we can write 

Ek = Iq,<".~<m_I[' + '~k=n nl!'~!'nk! 
n,>I.I- I ..... k 

X q(z)y" .. q( ZJ. ) oJ (20) 

Notice that, if m - 1 < n, then Ek = 0 for k> m - 1. 
Next we set (k, here, is a superscript) 

N~.n (t,x,y) 

= (it:.t) n (....!!!:..-)m12 
n! 21Tit 

f
OO foo [m (z. - z· 1)2] 

X'" exp i L J J- Ekdzl'''dzm_ l , 
-00 -00 j=1 2t:.t 

and so 
n 

Km.n (t,x,y) = L N~.n (t,x,y). 
k=1 

Here is our main estimate. 

(21) 

(22) 

Lemma 3: The quantities N~.n (t,x,y) , defined by (21) 
and (20), satisfy 

IN ~.n (t,x,y) I < (nn In!) Q nt:.t n - kAk t (k - \)/2, 

with Q = max( Iiqll 00 ,liqlil) andA k given by (9b). 
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Proof: Let m>2, n, and k<n be fixed positive integers. For 1= 1, ... ,k we choose integers nl>l and jl' such that 
n, + ... + nk = nand 1~, < ... <jk <m - 1. By (Sa) and (11) we have 

(24a) 

where 

JUI, .. ·jk,Zj, "",Zjk,m,at,x,y) = koU,at,x,zj, )ko( U2 - jl )at,zj, ,Zj,)'" ko«m - jdat,Zjk'y)· 

Thus, involving (4a), the expression in (24a) is bounded by 

(24b) 

at
n 

1 J'" J'" --- -:~:::;==;::;::::;=-' . . Iq(zW'''' Iq(zWkdz 
n! ~21Tjlat ~21TU2 - jl )at ~21T(m - jdat - '" - '" 

<_at_n _1_--,~=1:;:::;:::;:= 1 Ilqll:-kllqll~ 
n! ~jlat ~U2 - jl)at ~(m - jk )at 

Qnatn 1 1 
<-------;=:==::::::;=::;= 

n! ~jlat ~U2-jl)at 

where t>O and Q=max(lIqll""lIqll,), Observe that the 
bound in (24c) is independent of the n/s. 

To continue, we need a trivial estimate, namely, 

Combining (20), (21), (24), and (25) we obtain 

IN~,n (t,x,y) 1< (nnln!)Q nat n - kM~ (t), 

where we have set (for convenience) 

(25) 

(26) 

(27) 

(again, k is a superscript). But M~ (t) is a Riemann sum 
associated to Mk (t) of (8c). In fact, for all k and all m>2, 

M~(t)<Mk(t) =A k t(k-I)12, (28) 

where Ak is given by (9b) [for the proof of (28) see the 
Appendix]. We combine the above formula with (26) and 
the lemma is proved. • 

Corollary 1: There are constants C and B such that 

IKm.n (t,x,y) I<CBn[t (n-I)/2 + l/.Jt] (at In12] +A lnI2 ]), 
(29) 

for all m>2,t> O,x,yeR I. Here, [n/2] is the greatest integer 
<nI2. 

In particular, 

'" L IKm,n (t,x,y) I <B(t) < co, (30) 
n~O 

where B(t) depends only on t. 
Proof: By (22) and (23) 
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(24c) 

Let A = l:. k ~ oA k' This is finite, by (9b). Thus, the above 
inequality becomes (the factor nn In! is estimated by Stirl
ing's formula; C and B are constants) 

since A k of (9c) is eventually decreasing. We can absorb the 
factor Anl2 in CB n by increasing C and B a little, hence (29) 
is proved. 

If m > B 2t, then (30) follows from (29) because at = t I 
m and An+ ,IAn -0. For the smaller m's, (30) is true by 
(14b). • 

Corollary 2: For each t> O,x,yeR , and n>O, 

lim K m •n (t,x,y) = k n (t,x,y). (31) 
m 

Proof If k < n, (23) implies (because of the factor 
at n - k in the right-hand side) that 

lim N~,n (t,x,y) = O. 
m 

Therefore, by (22), 

lim K m.n (t,x,y) = lim N';".n (t,x,y). 
m m 

But, from (21) and (20) we get (without loss of generality 
m - l;;;.n, since n is fixed and m- co) 
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N':",n (t,x,y) = NJ.t n L (~)m/2 
I~, < .. 'jn<m - I 21Tlt 

J
oo JOO [m (Z.-Z. 1)2] 

X ... exp i L J J- q(Zj, )" 'q(Zj)dzl " 'dzm _ I' 
-00 -00 j=1 26.t 

Using (5a) and (11) as in the proof of Lemma 3, we obtain [see (24b) for the definition of Jbelow] 

N':",n (t,x,y) = ;n6.t n I~, < .~<m _ I f_oooo ." f_oooo JUI'''' In,Zj,,'' ·,zjn,m,6.t,x,y)q(Zj, ) .. 'q(zj)dzj , . "dzjn ' 

which is a Riemann sum associated to kn (t,x,y) of (5c) and 
(5d). • 

Therefore, we have established the following. 
Theorem: For qELCb (R I) let k(t,x,y) be the funda

mental solution of the Schrodinger equation (1), as ex-
plained in Sec. I. The associated discretized path integral is 
(m:;;.2) 

Km (t,x,y) 

( 
m )m/2Joo foo [m (Zj-Zj_I)2] = --. ". exp i L ~--'---

2mt -00 -00 j=1 26.t 

with Zo = X, Zm = y, 6.t = tim, m:;;.2 and i l
/
2 = ei1T

/
4 [the 

integrals are in the improper (Riemann) sense]. Then, for 
each t> 0, there is a number B(t) < 00 (depending only on t) 
such that, for all m, x, and y, 

IKm (t,x,y) I,B(t), 

and 

lim Km (t,x,y) = k(t,x,y) 
m 

pointwise in (t,x,y). 
Remarks: For qELCb (R I), our result implies the earlier 

known fact (see for example Sec. 4 of Ref. 4) that the opera
tors with kernels Km (t,x,y) , acting on L 2(R I), converge to 
eitL [where L = !(d 2Idx2) + q, as in Sec. I] in the strong 
operator topology. 
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APPENDIX 

Here we give the proof of (28), namely that 

M':" (t),Akt (k-I)/2, t>O, 

where M':" (t) is given by (27) andA k by (9b). Notice that 
M':" (I) = 0, if k:;;.m, because the sum in (27) is empty. 
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For k:;;.1 we set 

(Al) 

Therefore, (27) becomes 

M':" (t) = 6.t (k- \)/2Fk (m). (A2) 

But, for k:;;.2, by setting lr = jr+ I - jl' r = 1, ... ,k - 1, we 
obtain 

or 

(A3) 

If we set Fo (m) = 1/..[iii, the above the formula is true even 
for k = 1 (in fact, it becomes an equality). 
To prove (28), it's enough to show [because of (A2) and the 
fact that 6.t = tim] that 

Fk (m),Akm(k- \)/2. (A4) 

Let us use induction. Formula (A4) becomes an equality if 
k = 0. To finish the proof, because of (A3), it suffices to 
show that 

m-IA (m_j')(k-2J/2 L k-I. ,Akm(k- \)/2 
j= I {j 

or equivalently 

m-I (1- jlm)(k-2)/2 1 Ak 
L . -,-, 

j=1 ~jlm m Ak_ 1 

Now, the left-hand side above is a lower Riemann sum of 

i
l (1_X)(k-2)/2 

1= dx 
o IX 

[sinceik(x) = (1-x)(k-2J/2IIXisdecreasingin (O,l),if 
k:;;. 2, and has only one critical point at x = 1/2, if k = 1]. By 
substituting x = sin2 t/J and I and using elementary calculus 
(Wallis formulas) we get 

I =AkIAk_ l , 

which finishes the argument. 
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oscillator 

Nivaldo A. Lemos 
Instituto de RSica, Universidade Federal Fluminense, 24020 Niterbi, RJ, Brazil 

(Received 3 August 1988; accepted for publication 20 September 1989) 

It is argued that the method introduced recently by Wang [J. Phys. A: Math. Gen. 20,4745 
( 1987)] to quantize the damped harmonic oscillator is untenable because it does not 
reproduce the standard results for the quantum oscillator in the limit of arbitrarily small 
damping. The method is also shown to be inconsistent if the friction coefficient is allowed to 
take any positive value. 

I. INTRODUCTION 

The great importance of constrained Hamiltonian sys
tems is witnessed by their occurrence in modern attempts to 
describe the fundamental interactions of elementary parti
cles. The canonical formulation of gauge and string theories 
for instance, leads naturally to constraints and Dirac's for
malism I to deal with them is usually invoked. Sometimes it is 
useful to artificially introduce constraints into certain sys
tems with the intention of bringing forth new symmetries 
that may simplify the analysis of the dynamics of such sys
tems. This is customarily done at the cost of an enlargement 
of the phase space of the system through additional degrees 
of freedom that are eventually eliminated. Another way of 
achieving it is by making use of Lagrangians depending on 
derivatives of higher than first order and thus working in the 
realm of the so-called generalized dynamics. In the case of 
the harmonic oscillator for example, a second-order Lagran
gian2 can be chosen so that it furnishes the correct equation 
of motion. It has been claimed2 that the subsequent quanti
zation on the basis of such a Lagrangian yields results that 
are not equivalent to the standard ones, and this has led to 
the proposal of unorthodox quantization procedures to cure 
what was viewed as a disease.3 A careful treatment of the 
constraints however, has subsequently shown4 that those 
claims were groundless and that there is no need to change 
the canonical quantization procedure in the framework of 
generalized dynamics. 

The phenomenological quantization of dissipative sys
tems is being investigated from several different points of 
view. The canonical quantization based on Bateman's time
dependent Lagrangian5•6 has been criticized as actually re
ferring to a variable-mass system.7.8 Then followed other 
suggestions to attack the problem, such as taking the mass as 
a dynamical variable, 9 or introducing nonlinear Schrodinger 
equations. 10--15 The inclusion of an external stochastic force 
has been studied, chiefly to overcome certain difficulties en
gendered by Bateman's Lagrangian, 16.17 while the exploita
tion of the quantum Liouville equation has also been tried. 18 
Since the variety of approaches is considerably wide, the 
reader is referred to Dekker's review l9 where an extensive 
survey of the literature can be found. As to the phenomeno
logical canonical quantization of dissipative (more general
ly, nonconservative) systems, it has been repeatedly shown 
to be impossible or ambiguous.20--25 

Recently, a new treatment26 of the damped harmonic 
oscillator has been put forward, regarding it to be a con
strained system described by a constrained generalized 
Hamiltonian. To our knowledge, this is the first attempt so 
far to construct a constrained Hamiltonian model for the 
description of a dissipative system at the quantum level. In
stead of artificially enlarging the phase space, as has been 
done for the harmonic oscillator,2-4 Wang26 introduces con
straints in the ordinary phase space in such a way that the 
state vector has to satisfy a nonlinear subsidiary condition, in 
addition to a linear Schrodinger equation. What we under
take to prove in the present paper is that Wang's theory is 
untenable on physical grounds, particularly because it does 
not reproduce standard results for the quantum oscillator in 
the limit of a vanishing friction coefficient. We shall also 
adduce some general arguments to the effect that any other 
theory constructed along the lines suggested by Wang is 
bound to fail. 

II. A PROPOSED CONSTRAINED DYNAMICS FOR THE 
QUANTIZED DAMPED HARMONIC OSCILLATOR 

In a recent paper, Wang26 proposed a new and ingenious 
method to quantize the damped harmonic oscillator by con
sidering the equation of motion. 

x + rx + uix = 0, (1) 

as arising from a constrained Hamiltonian system in the bi
dimensional phase space (x,p). His classical treatment in
troduces a first-class constraint </ll in phase space. According 
to Dirac's theory of constrained systems, I in the quantized 
theory the first-class constraints must be imposed as supple
mentary conditions on the physical state belonging to the 
Hilbert space.if' = L 2 (R). Let Ho be the Hamiltonian oper
ator of a harmonic oscillator of frequency UJ, that is, 

Ho = jJ2/2m + (mUJ2/2)x2, (2) 

where x and jJ are self-adjoint operators obeying the usual 
canonical commutation relations. Then, Wang's supplemen
tary condition (3.17) on the wave function becomes 

~ltP=HotP-ilirtP[lntP-pn(tP·tP)] =0, (3) 

with tP obeying a linear Schrodinger equation 

i."atP = HtP, (4) 
at 
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where the explicit form of the Hamiltonian operator H will 
be irrelevant for our purposes. 

To our knowledge, all phenomenological quantum 
models of the damped harmonic oscillator enjoy the natural 
property that as r-O, any state vector tPr reduces to a state 
vector tPo of the undamped oscillator. This is assumed by 
Wang himself in so far as he considers the case of small 
damping, with~ = r/(m2 

- y2/4) 1/2..( 1, andmakesuseofa 
perturbative approximation method by expanding the Ham
iltonian operator and wave function in powers of the small 
parameter ~. To the first order in ~, one should have [see 
Wang's Eq. (3.5)] 

tP = tPo + ~tPI' tPo,tP1Eil't", 
where tPo obeys the Schrodinger equation 

. atPo A 

Hi - = HotPo' at 

(5) 

(6) 

In other words, tPo is a state vector of the undamped oscilla-
tor. 

Therefore, not being aware of any convincing argument 
to the contrary, we shall adopt the natural point of view that 
any admissible quantum theory of the damped harmonic os
cillator must reproduce the ordinary theory of the quantum 
oscillator as the friction coefficient r tends to zero. What we 
intend to prove in the sequel is that the quantization scheme 
devised by Wang does not meet this requirement, and for this 
reason must be dismissed as unacceptable. As a byproduct of 
our investigation, it will also be shown that Wang's theory 
can only be consistent for a restricted set of values of the 
friction coefficient r, and this is a further fatal objection 
against it. 

III. INCONSISTENCY OF THE THEORY 

Let us define the nonlinear operator & by 

&tP = tP[In tP - pn(tP·tP)]· (7) 

In order to ascribe a precise meaning to &, and therefore to 
Eq. (3), we shall take the principal determination of the 
logarithm.27 Thus, with 

tP= ItPleill
, -1r<O<1r, (8) 

we have 

&tP = iOtP· (9) 

Also, the operator & has a few interesting properties that we 
now explore. From Eqs. (8) and (9~ it follows that 

I (btP)(x) I = IO(x) IltP(x) I <1rltP(x) I, (10) 

whence 

(11 ) 

showing that b is a bounded operator. This does not mean 
that b is necessarily continuous, because it is not a linear 
operator. Notice further that 

(12) 

so that b is a positive-homogeneous operator in spite of its 
nonlinear character. By rewriting Eq. (3) in the form 

HotP - ilirbtP = 0, (13) 

the linearity of Ho together with the positive-homogeneity of 
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b allows us to require that any solution tPrEil't" to Eq. (13) 

be chosen in such a way that IItPr ll = 1. Since the Schro
dinger equation (4) conserves probability, we may always 
regard as normalized any simultaneous solution to Eqs. (3) 
and (4). 

Before going forward to what we want to establish, it is 
necessary to consider an ancillary result. 

Lemma: Let tP be any normalized vector of the Hilbert 
space of states Jr'. Then 

IIHotP1I2> (1i2m2 /4). (14) 
Proof Let {tpn}:=O be the orthonormal basis of Jr' 

made up with the eigenvectors tp n of Ho' which are such that 

Ho'Pn = (n + 1I2)limtpn' (15) 

It is possible to write 
00 

tP = L cntpn' CnEC, 
n=O 

with 

IitPII2 = f ICn 12 = 1. 
n=O 

Therefore, 

so that 

(HotP,HotP) = f 1i2m2(n + ~)2ICn 12 
n=O 2 

Ij2m2 

=4' 
and the proof is complete. 

(16) 

(17) 

(18) 

(19) 

We are now prepared to state and prove our main re
sults. 

Theorem: Let tPoEil't" be a normalized state vector of the 
usual harmonic oscillator. Then there exists no solution 
tP r Eil't" to Wang's equations (4) and (13) such that tP r - tPo 
as r-O. 

Proof As we have previously remarked, any solution 
tP r Eil't" to Eqs. (4) and (13) can be taken to be normalized. 
Accordingly, let us assume that IltPrll = 1 and rewrite Eq. 
(13) in the form 

btPr = (ilir) -IHotPr· 
This equation combined with Eq. (11) leads to 

IItPr Il
2>1r- 2

11 &tPr 11 2 = (rIi2y2) -IIIHotPr 112. 
Having recourse to the Lemma we conclude that 

2 m2 

IItPr ll > 4ry2r-:o 00. 

(20) 

(21) 

(22) 

This contradicts the assumption that tPr is normalized and, 
moreover, shows that tPr does not converge to an element of 
Jr' as r-O. The proof is complete. 

Corollary: There exists no nontrivial solution to Eq. 
( 13) in Jr' if r < m/21r. 

Proof Let tPrEJr'be a nontrivial solution (not necessar-
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ily nonnalized) to Eq. (13). From Eqs. (21), (19), and 
( 17) it follows at once that 

IIt,br I12;;;. (w2/4~r) IIt,brI12, (23) 

hence 

r;;;'W/21T. (24) 

This restriction on the allowed values of r implies the 
rejection of Wang's theory as unphysical, and characterizes 
as meaningless the perturbative approximation scheme em
ployed in his paper, since it presupposes the validity of the 
model for r/w arbitrarily small. 

IV. CONCLUSION 

For one-dimensional nonconservative systems it is not 
difficult to understand why any attempt along the lines sug
gested by Wang will inevitably fail. If one insists that one is 
dealing with a genuine Hamiltonian system, although con
strained, it must be possible to solve the constraint equations 
and go over to a reduced phase space (x*, p*) endowed with 
a Hamiltonian H * (x*, p*) and where there are no con
straints. Making use of the path-integral quantization meth
od, for instance, the formula for the propagator in the re
duced phase space can be expressed in terms of the original 
phase space at the expense of a modification of the integra
tion measure.28 In any case, if the original phase space has 
dimension 2N, the reduced one has at most dimension 
2N - 2, if there is only one first-class constraint. The situa
tion considered by Wang corresponds to N = 1, and in the 
most favourable circumstances one would end up with a 
zero- dimensional phase space. Of course, even at the classi
cal level such a theory is devoid of physical content. 

350 J. Math. Phys., Vol. 31, No.2, February 1990 

ACKNOWLEDGMENT 

This work was partially supported by Conselho Na
cional de Desenvolvimento Cientifico e Tecnologico, CNPq, 
Brazil. 

I P. A. M. Dirac, Lectures on Quantum Mechanics, Belfer Graduate School 
of Science Monograph Series No.2 (Yeshiva University, New York, 
1964); K. Sundermeyer, Constrained Dynamics, Lecture Notes in Phys
ics, Vol. 169 (Springer, New York, 1982). 

2C. F. Hayes and J. M. Jankowski, Nuovo Cimento B 58, 494 (1968). 
3C. F. Hayes, J. Math. Phys. 10, 1555 (1969). 
'c. A. P. Galvao and N. A. Lemos, J. Math. Phys. 29,1588 (1988). 
sH. Bateman, Phys. Rev. 38, 815 (1931). 
6E. Kanai, Progr. Theor. Phys. 3, 440 (1948). 
7D. M. Greenberger, J. Math. Phys. 20, 762 (1979). 
"J. R. Ray, Am. 1. Phys. 47, 626 (1979). 
9D. M. Greenberger, J. Math. Phys. 20, 771 (1979). 
10M. D. Kostin, 1. Chem. Phys. 57, 3589 (1972). 
"R. W. Hasse, 1. Math. Phys. 16,2005 (1975). 
12B. K. Skagerstam, 1. Math. Phys. 18, 308 (1977). 
13W. Stocker and K. Albrecht, Ann. Phys. (NY) 117,436 (1979). 
l4D. Schuch, K. M. Chung, and H. Hartmann, J. Math. Phys. 24, 1652 

(1983); 25, 3086 (1984). 
15L. Briil and H. Lange, 1. Math. Phys. 25, 786 (1984). 
161. R. Svin'in, Teor. Mat. Fiz. 27, 270 (1976) [English translation: Theor. 

Math. Phys. 27, 478 (1976)]. 
171. Messer, Acta Phys. Austriaca 50,75 (1979). 
IXI. R. Brinati and S. S. Mizrahi, 1. Math. Phys. 21, 2154 (1980). 
19H. Dekker, Phys. Rep. 80,1 (1981). 
2('W. H. Brittin, Phys. Rev. 77, 396 (1950). Brittin's results have been par-

tially corrected by Lemos (Ref. 24). 
21p. Havas, Bull. Am. Phys. Soc. I, 337 (1956). 
221. Messer, Lett. Math. Phys. 2, 281 (1978). 
"I. K. Edwards, Am. 1. Phys. 47,153 (1979). 
24N. A. Lemos, Phys. Rev. D 24,2338 (1981). 
2'N. A. Lemos, Am. 1. Phys. 49,1181 (1981). 
20y' Wang, 1. Phys. A: Math. Gen. 20,4745 (1987). 
27 A. Markushevich, Teona de las Funciones Analiticas (Mir, Moscow, 

1970), Vol. I, pp. 18 and 187, 188. 
2XL. D. Faddeev, Teor. Mat. Fiz. 1,3 (1969) [English translation: Theor. 

Math. Phys. 1,1 (1970)]. 

Nivaldo A. Lemos 350 



                                                                                                                                    

Novel correspondence of the fixed-seniority and the fixed-isospin averages 
in their reduction formulas 
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It is shown that known reduction formulas for partial averages of two different kinds, the 
fixed-seniority and the fixed-isospin averages, are transcribed into each other by replacement of 
arguments. The average here is that of a general k-hody operator in a finite space of fermions 
(hosons). Description of the formulas in a common form in terms of eigenvalues of Casimir 
operators is also exploited. 

I. INTRODUCTION 

Reduction formulas have been deduced for kinds of par
tial averages ofa general k-body operator O(k) in the space 
of n fermions (or bosons) being distributed over a finite set 
of orbits. I

-
9 The partial average means the average under 

fixing of one or a few quantum numbers A that partition the 
model space. Whether the reduction formula exists or not 
depends on A. 4 

In the case where the partial average is characterized 
with simple propagations,4 the reduction relation has the 
form 1-9 

I (nAaIO(k) InAa) 
a dim (n,A.) 

= IZ(nA,kA.';n)I (kA.'a'IO(k)IkA.'a'). (1) 
A ' a' dim (k,A. ') 

Here we assume that the nobody space is spanned by the 
orthonormalized states {lnAa)}, where a denotes the set of 
additional quantum numbers. The symbol dim(n,A.) stands 
for the dimensionality of the states with the same n and A. 
We denote by n halfthedim(n = l,A.): n = (2j + 1 )/2 ina 
single-j model of identical particles. We call Z the propaga
tion coefficient (PC).1-9 It is a polynomial in n and A, and 
does not rely on orbital specifications such as the unitary 
group approach1o,11 and the prevalent shell model. Explicit 
forms of Z have been obtained for A equal to the seniority v of 
identical particles,2,3 and for A equal to the quantum number 
ofU(N), [A 1,A2, • ." AN ],9 which in the case of N = 2 means 
A = isospin T (or intrinsic spin S). 

We often reexpress (1) with A = T and Tz as l
•
2.7 

I (nTal IO(k,r) I InTa) 
a dim{n,n 

= IR(nT,kt;r)I (kta'IIO(k,r)llkta'). (2) 
r a' dim (k,t) 

Here O( k,r) is the irreducible isotensor of rank r comprised 
of O(k): O(k) = ~rO(k,r). The factor R is a kind of PC, 
which is readily transformed into the PC Z (nTTz, kttz;n). 7 

In the present paper we point out that the PC for the 
fixed-seniority average of identical fermions, Z(nv), is 
transcribed into R(nn by the simple but unusual replace
ment of arguments'n~ - r - 2, etc. Presence of this corre
spondence betwen PC's is not very obvious even if similarity 
exists between the quasispin formalism 12 for the seniority 
scheme and the isospin formalism. We show also that Z(nv) 
and R (n n are rewritten in a common form in terms of 
eigenvalues of Casimir operators. 

II. TRANSCRIPTION BETWEEN PROPAGATION 
COEFFICIENTS Z{nv) AND R(nn 

Here we transcribe the PC for the fixed-seniority aver
age of identical fermions into the PC for the fixed-isospin 
average. 

The PC Z(nv) is explicitly written as2 

Z(nv) = «n - v)/2)!(n - (k + v')/2)!(n - v' + 1) Z'(nk) 
(n - k)!«k - v')/2)!(n - (n + v)/2)! 

(3a) 

with 

Z' (nk) = I ( - 1)P( n - k + v' - 2p) !(n - (n + v - k + v') 12 + p)! 
p p! (v' - 2p)! (n - v' + 1 + p)!«n - k + v' - v)12 - p)! ' 

(3b) 

where the sum over p is taken such that none ofthe factorials could have a negative argument, The PC for the fixed-isospin 
average is also known as l ,2,7 

R(nn = (21+ l)(n/2- D!(n12+ T+ I)! (2t-r)! (2T+r+ 1)!)II2R '(nk 
(n-k)!(kI2-t)!(kI2+t+1)! (2T-r)!(2t+r+l)! ), 

(4a) 

in which 
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__________ ~(_-_I~)_P(~2~t_-~p~)_!(~n_+~2t~-___ r---k ___ -~2~p~)!~ ____ ~~ 
R ' (nk) = ~ p! (2t _ r _ 2p)! « n _ k) 12 + t - T - p)!« n - k) 12 + T + t + 1 - p)! 

(4b) 

Allowed values of the seniority with a definite n are 

v = n,n - 2,n - 4, ... ,0(or 1) . (5) 

Allowed values of the isospin are 

T _ ~ ~ _ 1 ~ _ 2 {r/2, if n - r = even 
- 2 ' 2 '2 , ... , (r + 1)/2, otherwise. 

(6) 

The quantities Z '(nk), (3b), and R '(nk), (4b), depend on 
n - k + v' and n - k + 2t, respectively, rather than n itself. 
Notice also R(nT) is free from fl. 

Deduction of (3), (4), and some other PC's specified by 
(1) owes to the following property. Let G(n,A) be the eigen
value of a p-body Casimir operator as to the symmetry .1.3 It 
holds, due to a property of coefficients of fractional parent
age (CFP's), 7 that 

L G(n - l,A ")Z(nA.,n - U ";fl) = (n - p)G(n,A). 
,t" 

(7) 

This determinesZ(n.1,n - U ';fl). Using the property that 
Z (n.1) obeys a Chapman-Kolmogorov equation,6 we obtain 
Z(n.1, U'; fl). The PC in (1) resembles Rota's incidence 
coefficient. 13 

We find thatZ' (nk), (3b), is transcribed intoR ' (n' k '), 
(4b), and vice versa with the following replacements ofvari
abIes: 

~2T - r, v'++2t - r, n++n' - r, 

k++k' - r, fl++ - r - 2. (8) 
I 

Factorials of negative integers have been interpreted as usu
al: 

(-p)!/( -p-q)!= (-I)Q[(p+q-l)!/(p-l)!J 
(9) 

where p and q are positive integers. The condition (5) is 
transcribed into (6) with (8). Applying (8) to Z(nv) we 
obtain 

Z(n - r,2T - r,k - r,2t - r; - r - 2) 

= (2T - r)! (2t + r + 1)!)1I2R (nT,kt;r) . (10) 
(2t-r)! (2T+r+ 1)! 

The eigenvalue of a Casimir operator in the seniority 
scheme is given by 

G(n,v) = (n - v) (2fl - n - v + 2)/4. (11) 

We apply the transcription (8) to (11), and get 

G(n,v)++ - 2(n'12 - T)(n'/2 + T+ 1) = G'(n',T). 
(12) 

The factor G' (n, T) is described in terms of T( T + 1) and 
free from r. Invariance of G(n,v) with replacement of n by 
2fl - n + 2 corresponds to invariance of G ' (n, T) with re
placement of n by - n - 2. 

The reduction relation (1) is valid for the fermion and 
the boson systems alike. The PC for the fermion system is 
transcribed into that for the boson system by the replace
ment of fl by - fl. 14--16 It is shown that replacing the argu
ment - r - 2 in (10) by r + 2 yields the corresponding re
lation for the boson system. 

As is seen from (3), Z (nv) with v = 0 is expressed as a 
single term. We combine this with (10) to obtain, forr = 2T, 

R(nT,kt,r = 2T) = (n12 - T)! (n/2 + T + 1)! (2T)! (2t + 1) , 
(k12 - t)! (k12 + t+ 1)!«n - k)12 + T+ t + 1)!«n - k)/2 + T - t)! 

x( (2T+2t+l)! )112 
(4T + 1)! (2t - 2T)! ' 

a simple form of R that we could hardly infer from (4). This 
expression, combined with Eqs. (55) and (63) of Ref. 7, 
yield~ an unusual relation for the Racah coefficient: 

L 2t' + 1 W(T,2T,t',t;Tt) 
" (p-t')!(p+t'+I)! 

(2T)! 

(p+ T+ t+ I)! (p+ T- t)! 

x( (2T+2t+1)! )112 
(4T+ I)! (2t-2T)! . 

(14) 

III. PROPAGATION COEFFICIENTSztnv) AND R(nn IN 
A COMMON FORM 

The objective of this section is to describe Z(nv) and 
R (n T) in a common form in terms of eigenvalues of Casimir 
operators. 
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( 13) 

A general PC Z (n.1) in (1) has the following proper
ties: 1-6 

(a) a polynomial of degree k in n; 
(b) a polynomial of degree [k 12J (the largest integer 

contained in k 12) in the eigenvalue of a bilinear Casimir 
operator attached to A.; 

(c) Z(n.1,U ';fl) = 0 in the case n < k; and 
(d) Z(U,k.1 ';fl) = c5(.1,A '). 

We easily check that Z(nv) actually satisfies (a)-(d), In the 
case of R (n T), (4), the statement (d) is modified to 

(d') R(kT,kt; )={c5(T,t), if 1'>:12, 
r 0, otherwIse. 

The statements (a)-(d) for Z(nv) still hold even if 
G(n,v) is replaced by anyone of G(n - 2,v), G(n - 4,v), 
etc., because of the property G(n - a,v) 
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= G(n,v) + a(n - a/2 - 0 - 1 )/2. Similarly, use of 
G'(n - 2,n, G'(n - 4,n, etc., in place ofG'(n,n does 
not modify anyone of (a)-(c) or (d'). Let us determine 
Z(nv) explicitly using (a)-(d) only. We use (b) to expand 
Z(nv) as 

Z(nv) = Ao + A1G(n,v) + A2G(n,v)G(n - 2,v) + ... , 
(15) 

where theAp's are coefficients independent ofv. From (a) it 
follows that Ap is a polynomial of degree n - 2p in n. Let us 
make use of (c) to determine the n dependence of the A's. 
Putting n = v = 0 in (15), we find that Ao is a multiple of n. 
Here we have used the property G(v,v) = O. Similarly, van
ishing of Z(nv) in the cases of n = v = 1 and of n = 2 and 
v = 1 means that Ao can be divided by n - 1 and n - 2, re
spectively. Form the vanishing of Z(v,v) with v = 2 it fol
lows that we can divide A I by n - 2. Repeating this yields 

Ap = Cp(~ =~), (16) 

where Cp is the coefficient independent of nand v. Let us use 
(d) to determine Cpo We put n = k = v in the set of equa
tions (15) and (16) to get Co = o(k,v'). Similarly, we get 
Co + C1G(k,k - 2) = o(k - 2,v') from (15) with 
n = k = v + 2. Repeating this we get a set of equations that 
determines all the Cp's. We then obtain 

_ [V'/2) (n + v' - k - 2P) 
Z(nv) - I Dp , 2 

p=o v - P 
(k-v')/2+p 

X II G(n - 2q + 2,v), (17a) 
q=1 

in which Dp means Cp+ (k- V')/2 and is expressed as 

D = ( _ 1)P (0 - (k + v')/2)! (0 + 1 - v') 
p p! «k - v')/2)! (0 + P + 1 - v')! 

(17b) 

The expression obtained with k = 6 and v' = 4, for example, 
reads 
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Z(nv,6,4;0) 

= (n - 2) G(n,v) _ (n - 4) G(n,v)G(n - 2,v) 
4 0-4 2 (0-2)(0-4) 

+ G(n,v)G(n - 2,v)G(n - 4,v) . (18) 
2(0 - 1)(0 - 2)(0 - 4) 

The same method is used to determine R (n n. The 
statements (a)-(c) are common to Z(nv) and R(nn. The 
resultant expression ofR(nn is just (17a) with Gin it being 
replaced by G', (12), and with Dp being replaced by D; as 
follows: 

D' = ( _ 1) k /2 - I (2t + 1)( 2t - p)! , 
p p! (k /2 - t)! (k 12 + t + I)! 

(19) 

a factor that is related to Dp by means of (8). We thus de
scribe Z (nv) and R (n n in a unified way in terms of eigen
values of Casimir operators. 
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In the context of the Wigner-Weyl phase space formulation of quantum mechanics, a version 
of the uncertainty relations invariant under affine canonical transformations is derived. For a 
fixed Wigner distribution function possessing a finite covariance, "directions" of minimal 
uncertainty are found. The geometry of the Wigner ellipsoid and its Legendre transform, the 
dual Wigner ellipsoid, both of which are associated with the same covariance, is discussed. The 
results obtained are generalizations of the well-known fact that, for one degree of freedom, the 
area of the Wigner ellipse must be of order Ii or larger. Instead of area, which is an invariant 
only when n = 1, these results involve Poincare invariants of certain curves and surfaces. 

I. INTRODUCTION 

In his review article on the semiclassical evolution of 
wave packets, Littlejohn I dispels the old myth that the 
spreading of a free wave packet is a quantum mechanical 
effect. Employing Gaussian wave packets, he gives an exam
ple illustrating that the spread one gets can be entirely ac
counted for classically. Using the covariance matrix for a 
Wigner distribution function (WOF), he then shows that 
this result is true for arbitrary states. In the course of his 
discussion, a number of questions arise. Is there a geometric 
way of viewing the uncertainty relations? Is there a formula
tion of the uncertainty relations that is invariant under affine 
canonical transformations? Is there a way of finding a direc
tion of minimal uncertainty for arbitrary states, whether 
they are Gaussian or non-Gaussian, pure or mixed? Answers 
to these questions would help in distinguishing classical ef
fects, such as spreading of wave packets, from truly quantum 
mechanical effects presently masked by classical ones. 

The purpose of this paper is to answer these questions, 
and thus to explore the geometry of uncertainty. The paper is 
organized as follows. In the remainder of Sec. I, we will in
troduce notation and conventions basic to the work. In Sec. 
II, we will recall the definition of the covariance matrix for a 
WOF, and then give necessary and sufficient conditions for a 
matrix to be the covariance of a WOF. We will follow this up 
in Sec. III with a discussion of how a covariance matrix for a 
WOF transforms under affine canonical transformations. In 
Sec. IV, we briefly discuss Williamson's normal form for a 
real, symmetric matrix when the matrix is positive definite. 
We use this to obtain results crucial in the succeeding parts 
of the paper. In V, we will apply the results we have gotten in 
earlier sections to obtain a version of the uncertainty rela
tions that is invariant under affine canonical transforma
tions. The section will conclude with a discussion of the "di
rections" of minimal uncertainty. In the final section of the 
paper, Sec. VI, we will discuss the geometry of two ellipsoids 
associated with the covariance of a WOF, the Wigner ellip
soid and its Legendre transformation, the dual Wigner ellip
soid. Our results are generalizations of the well-known fact 
that for one degree of freedom, the area of the Wigner ellipse 
must be of order Ii or larger. Instead of area, which is an 
invariant only when n = 1, these results involve Poincare 
invariants of certain curves and surfaces. 

We will use the Wigner-Weyl phase space formulation 
of quantum mechanics to obtain our results. We do so be
cause it is in this formulation that classical and quantum 
concepts are best compared. One may find brief reviews of it 
in Littlejohn (see Ref. 1, Appendix B), Narcowich,2 and 
Narcowich and O'Connell. 3 For a more extensive review, see 
Hillery et al.4 

Notation and conventions associated with the Wigner
Weyl formulation differ from author to author. In this pa
per, we will use the following notation. For a quantum sys
tem with n spinless degrees of freedom, the phase space is 
Rn XRn ::::;R2n

; we will denote this space by r. We will let 
z = (ql,q2, ... ,qn; PI,P2, ... ,Pn ) denote a point in r. The con
vention that we will use in dealing with components is the 
same as that used by Littlejohnl; latin subscripts will run 
from 1 to n, and greek subscripts will run from I to 2n. Also, 

we choose the units of both the p's and q's to be those of ~. 
For z, the components Za corresponding to a = 1, ... ,n are 
ql> ... ,qn, and those corresponding to a = n + 1, ... ,2n are 
PI, ... ,Pn. We will take 

n 

U(Z,z') = L q;Pj - qjP; 
j= I 

(1.1 ) 

to be the usual symplectic form on phase space. This can be 
written in the form 

I 'T ( On u(z,z ) = Z Jz, where J = 
-In 

(1.1') 

Here On and In are the n X n zero and identity matrices, re
spectively. When matrix notation is used, z is to be thought 
of as a column vector. Finally, the superscript "T" indicates 
the transpose of a matrix or vector. 

If/is in Y, Schwartz space, then the symplectic Fourier 
trans/arm of/is 

def ( 
I(a) = Jr /(z)eiu(a,z) dz, ( 1.2) 

where a = (u l , U2,""U n ; VI> v2, ... ,vn ) is a point in r', the dual 
of phase space, and 

n 

dz = II dqj dpj 
j= I 

is the standard Liouville measure on r. (With the obvious 
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differences accounted for, our conventions regarding the 
components of z apply to a. We will also denote the Liouville 
measure on r' by da. The units of the components of a are 
those of l/,rK.) The symplectic Fourier transform off is 
directly related to the ordinary Fourier transform off (see 
Ref. 3). One can invert (1.2) to get 

f(z) = (21T) - 2n r f(a)exp[iu(z,a) ]da. (1.3) 
Jr' 

In the Wigner-Weyl formulation, both pure and mixed 
quantum states are represented by Wigner distribution func
tions (WDF's). Using the KLM conditions,3,5-8 one can 
characterize WDF's in terms of their symplectic Fourier 
transforms. To state the KLM conditions, we begin by defin
ing functions of Ii-positive type. We say that a continuous 
function F(a) defined on r is of Ii-positive type if, for every 
finite set of points {al, ... ,am }cr', the Hermitian m Xm ma
trix with (j,k) entry 

F(aj -ak )exp[illu(ak,aj )/2] (1.4) 

is non-negative. What the KLM conditions state is that .0 (a) 
is the symplectic Fourier transform of a WDF p(z) if and 
only if (i) .0 is continuous and of Ii-positive type and (ii) 
p(O) = 1. (The second condition merely ensures the correct 
normalization for the WDF.) 

II. THE COVARIANCE MATRIX FOR A WDF 

The standard p-q uncertainty relations are actually con
straints on the second-order moments of a WDF3.9, 10; that is, 
they are constraints on the covariance matrix for a WDF. 
When the uncertainty relations are stated in the usual way, 
they are not invariant under symplectic changes of coordi
nates I and they do not behave in any "nice" way under such 
changes of coordinates. The situation is considerably differ
ent for the covariance matrix itself (see Ref. 1, § 7.2). In this 
section, we will discuss necessary and sufficient conditions 
for a 2n X 2n matrix to be the covariance matrix for a WDF. 
In the next section, we will review the behavior of the covari
ance under general affine transformations. In doing so, with
out using the metaplectic group, we will recover the result 
(see Ref. 1, § 6.3) that the set ofWDF's is invariant under 
the affine canonical transformation's covariance matrix. We 
will begin with the following result. 

Lemma 2.1: Let F (a) be a continuous function defined 
on r. Suppose that F is twice continuously differentiable 
near a = O. Denote the Hessian of F at a by F" (a). IfF is of 
Ii-positive type, then the matrix 

-F"(O) + (i1i/2)J (2.1) 

is Hermitian and non-negative. 
Proof: Because Fis of Ii-positive type, the matrix given in 

( 1.4) is non-negative. Consequently, if the points in rare 
chosen to be Ea 1, ... ,Eam , where E is an arbitrary real number, 
and if AI, ... ,Am are arbitrary complex numbers, then 

m 

Y(E) = L AjAkF{E(aj - ak» 
j= I,k= I 

X exp [icllu(ak,aj )/2];;;.0. (2.2) 

Choose the A 's in (2.2) so that 
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m 

LAj = 0, (2.3) 
j= I 

and then fix them. Also, fix the aj's. Because F is twice con
tinuously differentiable for all a sufficiently close to a = 0, 
we see that Y is also twice continuously differentiable near 
E = O. Using (2.2) and (2.3), we find that 

Y(O) =F(O) /k~IAk /2 =0. (2.4) 

SinceY(E) is non-negative, (2.4) implies that Y has a min
imum at E = O. By the second derivative test, 

Y"(O);;;'O. (2.5) 

A straightforward calculation gives us 

We can simplify the expression in (2.6) by using (2.3), for 
terms of the form 

j=~=II;AdafF"(O)aj] =C~I Ak)("') =0. 

(2.7) 

Using this fact and (1.1 '), we get 

m 

Y" (0) = L IjAk [ - afF" (O)aj - afF" (O)ak 
j= I,k= I 

We may rewrite this last expression as 

Y" (0) = st [ - F" (0) - F" (O)t + iii.! ]5';;;.0, 

m 

where 5' = L Akak· 
k=1 

(2.8) 

(2.9) 

(Here, "t" is the transpose conjugate of a vector or a ma
trix.) Now, let m = 3 and choose AI = 1, A2 = i, 
A3 = - 1 - i, and a3 = O. With these choices made, 
5' = a l + ia2 is an arbitrary vector in C2n

, and so from (2.9) 
we have that 

-F"(O) -F"(O)t + iii.! (2.10) 

is non-negative. 
The final step is to observe that Fbeing of Ii-positive type 

implies that F( a) = F( - a), which in turn forces F" (0) to 
be a real, Hermitian matrix. This observation, (2.10), and 
the fact that iJ is Hermitian immediately yield that the ma
trix in (2.1) is both Hermitian and non-negative. • 

Let Ilzli be the Euclidean norm on r, and suppose that 
p(z) isa WDF for which (liz11 2 + l)p(z) isinL I(r). This 
condition not only guarantees the finiteness ofall of the mo
ments up to and including those of order2

, but it also implies 
that p(a) is twice continuously differentiable on all of r. 
(Standard arguments from Fourier analysis may be used to 
prove this fact. We omit the details.) Suppose that Zo is the 
expectation value for z with respect to p; that is, 

Zo= L zp(z)dz. (2.11) 
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Translating the argument of P by Zo results in a new WDF: 

Po(z) =Po(z + zo)· (2.12) 

Obviously, the expectation value of Z with respect to Po is O. 
In addition, when taken with respect to Po, the expectation 
values of quantities such as qi and pi tum out to be .:lqi and 
.:lpi for the original state p. Put differently, the covariance 
matrix for P, which is defined to be the 2n X 2n matrix C with 
(a,{3) entry, 

(2.13 ) 

is also the covariance matrix for Po. To see this, note that 
since the expectation value of Z with respect to Po is 0, the 
covariance matrix for Po has 

L za zf3Po(z)dz, (2.14 ) 

for its (a,(J) entry. A change of variables Z -+ Z - Zo in (2.14 ) 
turns the expression there into the right side of (2.13). Thus, 
as claimed, the covariance matrices for the two WDF's are 
equal. 

There is an obvious but important connection between 
the covariance matrix C and the Hessian p;{. Because we 
have assumed that (11z1I2 + 1)p(z) isinL I (n, we have that 
the same is true for Po. This implies that zazf3PO(z) is also in 
L I (n, that Po (a) is a twice continuously differentiable 
function, and that the components of p" may be computed 
by differentiating under the integral sign used in Po. Doing 
this differentiation gives 

(P;{(O»a.f3 = - a' ~~, ~ I Ja,a' Jf3,f3' L Za' zf3PO (z)dz. 

(2.15 ) 

Using the components of the covariance matrix Cin (2.15), 
we get 

2n 

L Ja,a-If3,f3' Ca',f3" 
a'~I,f3'~1 

Using (2.16) and the definition of J, we see that 

p;{(O) = - JCJ T. 

(2.16 ) 

(2.17) 

Finally, because Po is a WDF, Po satisfies the KLM condi
tions and is of Ii-positive type. As we have already noted, Po 
is, by virtue of our assumptions on p, twice continuously 
differentiable on r'. Hence, Lemma 2.1 applies, and 
- p;{(O) + (i1i/2)J is a Hermitian, non-negative matrix. 
Replacing the Hessian in this matrix by the right side of 
(2.17), we find that the Hermitian matrix 

JCJ T + (i1i/2)J (2.18) 

is non-negative. Multiplying (2.18) on the right by J and on 
the left by Jt = JT = - J and noting that J 2 = - I, we ar
rive at this result. 

Theorem 2.2: Ifp is a WDF for which (11z1I2 + 1 )p(z) is 
in L I ( r ), then the covariance matrix C defined by (2.13) 
exists and the matrix 

C + (i1i/2)J (2.19) 

is Hermitian and non-negative. 
For Gaussian WDF's and coherent states in optics, the 
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condition (2.19) is known; Narcowich,1I Narcowich and 
O'Connell,12 and Yuen 13 state it explicitly, and Simon et 
al. 14 formulate it implicitly. It also appears in disguised form 
in a much earlier work by Lindblad, 15 who discusses it in the 
context of expectations of the Weyl operators resulting in 
Gaussians . 

The usual p-q uncertainty relations are an easy conse
quence of this theorem.3

,16 To see this, note that the non
negativity and Hermiticity of (2.19) imply that the subma
trix 

(2.20) 

is Hermitian and non-negative. The usual conditions for a 
Hermitian matrix to be non-negative then imply that 

.:lqJ.:lpJ - I CjJ + n 12 _1i2 /4>0, (2.21) 

from which the p-q uncertainty relations 

.:lqj.:lp j >1i/2 (2.22) 

follow at once. 
The difficulty with the uncertainty relations as stated in 

(2.22) is that the individual products .:lqj.:lPj are not invar
iant under linear canonical transformations, and so they do 
not provide a truly good way of distinguishing the effects of 
classical mechanics from those of quantum mechanics. A 
way around this difficulty is to first notice that (2.19) is 
invariant under such transformations, and then to give in
variant conditions equivalent to the matrix (2.19) being 
non-negative. This we will do later. For now, we will con
clude this section by showing that the conditions on C in 
Theorem 2.2. are actually both necessary and sufficient for C 
to be a covariance matrix for a WDF. We will first prove the 
technical lemma below. 

Lemma 2.3: If C is any real, symmetric 2n X 2n matrix 
for which the matrix C + i'YJJ is non-negative for some real 
'YJ=I=O, then C must be positive definite. 

Proof: We begin by showing that C is non-negative. If 
not, then C has an eigenvalue that is negative. Suppose that it 
has A < 0 as an eigenvalue. Because C is real and symmetric, 
we may choose an eigenvector X_corresponding to A so that 
X_is real. Then, we have that 

xt_ (C + i'YJJ)X_ =AIIX_1I2 + i'YJXt_ JX_. 

Since X_is real, we also have that 

xt_ JX_ =X~ JX_ = u(X_,x_) = O. 

Thus our last equation becomes 

xt_ (C + i'YJJ)X_ = AIIX_112. 

Since A < 0, this implies that X t_ (C + i'YJJ) X _ < 0, which 
contradicts the non-negativity of C + i'YJJ. Hence C has no 
negative eigenvalues and is therefore a non-negative matrix. 

Suppose that C has 0 as an eigenvalue. Because Cis real, 
we may again choose an eigenvector Xo corresponding to 0 
so that Xo is real. Define the vector X E = (l + iEJ)Xo' Ob
serve that, since Xo is real, X {;JXo = 0, and since Xo is an 
eigenvector of C corresponding to the eigenvalue 0, we have 
X {; C = 0 as well as CXo = O. This allow us to make the fol
lowing calculation: 
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X!(C + i7JJ)XE =x'l(/ + id)(C + i7JJ)(/ + id)Xo 

=XnC+ idC+ iECJ - ilJCJ]xo + i7JX'lJ[I + 2id + ilI]Xo 

= il(Jxo) TC(JXO) + E7JIIXoll2 = E7J IIXo II 2 [ 1 + O(E)]. (2.23) 

If we now choose E to be small and opposite in sign to 71, we 
get that 

x! (C + i7JJ)XE < 0, (2.24) 

which again contradicts the non-negativity of C + i7JJ. 
Hence C cannot have 0 as an eigenvalue and so must be 
positive definite. • 

The point of this lemma is that it shows that if a real, 
symmetric matrix C satisfies C + (ifz/2)J being non-nega
tive, then C is positive definite and the Gaussian function 

(2.25) 

is a WDF with covariance C. See Ref. 11, § III. This observa
tion shows that the result below is true. 

Theorem 2.4: A real, symmetric 2n X 2n matrix C is the 
covariance matrix for some WDF if and only if the matrix in 
(2.19) is non-negative. 

III.INVARIANCE 

We now want to review the behavior of the covariance of 
a WDF under affine canonical transformations. Before we 
do that, we should review what it means for a quantum me
chanical state to be subjected to what is, after all, a classical 
transformation. 

A 2n X 2n matrix S is symplectic if and only if S satisfies 

u(Sz,Sz') = u(z,z'), (3.1) 

for every pair of points z, z' in phase space r. [The symplec
tic form u was defined in (1.1).] Two equivalent matrix 
forms of this are 

STJS=J and SJS T =J. (3.1') 

An affine transformation Ac: r - r is said to be canonical if 
it has the form 

Acz = Sz +;, (3.2) 

where S is a symplectic matrix and ;Er. Letf(z) be a func
tion defined on r. We follow Littlejohn (see Ref. 1, § 6.3) in 
defining 

def 

McJ(z) = f(Ac-1z) =f(S-I(Z-;». (3.3) 

In Ref. 1, Littlejohn uses the action of the metaplectic group 
on wave functions to show that Mel takes WDF's into 
WDF's. One can also give a proof using the KLM condi
tions. Since this proof is short and self-contained, we will 
present it here. 

Theorem 3.1: The operator Mel defined in (3.3) trans
forms WDF's into WDF's. 

Proof' Let p be a WDF and set p'(z) =.Mc/p(z). A 
straightforward computation using ( 1.1 ), (1.2), (3.3), and 
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well-known properties of symplectic matrices gives us that 
the symplectic Fourier transform on p' is given by 

p'(a) =eiU(S~la.s~I~)p(S-la). (3.4) 

Since p is a WDF, p obeys the KLM conditions. Thus it is 
continuous, of fz-positive type, and satisfies p(O) = 1. It is 
obvious thatp' is also continuous and satisfiesp'(O) = 1. To 
show that p' is a state, we need only show that p' is of fz
positive type. This amounts to showing the non-negativity of 
the m X m matrix 

(3.5) 

where {al, ... ,am } is an arbitrary finite subset in the dual of 
phase space, r'. 

We see from (3.1), (3.4), and (3.5) that 

(3.6) 

wherebj =S-Iaj . If we set 

Kjk = p(bj - bk )e
i(fi/2)u(bk,bj), (3.7) 

then, because p is of fz-positive type, we see that Kjk is a non
negative Hermitian matrix. We may rewrite (3.6) as 

(3.8) 

From (3.8), it is obvious thatK lk is Hermitian. To see that it 
is non-negative, let A ; , ... ,A. :.. be arbitrary complex numbers. 
Note that the non-negativity of Kjk yields this: 

~ 1,1 'K' ....:... ~ 2'1, iu(bj-bk,S~I~)K 
~ /L j/L k jk - ~ /L j/L ke jk 

j,k = 1 j.k = 1 

m 

= L I;AkKjk~O' (3.9) 
j.k= 1 

where Ak =A Ie exp[ - iu(bk,S-I;)]. Thus we have that 
p' is of fz-positive type and so p' is a WDF. • 

The next question that we want to address is, "How does 
the covariance matrix for a WDF p transform when we re
placep by p' =.Mclp?" Using matrix notation, the covariance 
matrices for p and p' are, respectively, 

C = L (z - zo) (z - zo) Tp(z)dz 

and (3.10) 

C' = L (z-zo)(z-zo)Tp'(z)dz. 

Here, Zo and Zo are the expectation values of z relative to p 
and p'. Making the change of integration variables 
z -S -I (z - ;) in the integral defining Zo and using the fact 
that det S = 1 for a symplectic matrix, one can show that 
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Zo =Szo+~=Aczo. (3.11) 

Substituting this into the expression for C' in (3.10) and 
making the same change of integration variables, one gets 

C' = L [S(z - zo)] [S(z - zo)] Tp(z)dz, 

which can be rewritten as 

C' =SCS T. ( 3.12) 

This result agrees with that of Littlejohn (see Ref. 1, § 7.1 ). 
We also wish to point out that this is completely consis

tent with characterizing a covariance matrix in the way we 
did in Sec. II. There, we showed that a 2n X 2n matrix is a 
covariance for a WDF if and only if it is real, symmetric, and 
has the property that C + (i~/2)J is non-negative. If C satis
fies these conditions, then C' = SCS T is certainly real and 
symmetric. In addition, for every WEC2n the matrix C' also 
satisfies 

wt(C' + (i~/2)J)W = wt(SCS T + (i~/2)SJS1)W 
= (S TW)t(C + (i~/2)J)(S TW»O, 

and so C' + (i~/2) J is non-negative. 
A computation nearly identical to the one we just made 

gives us that if C' = SCS T, then 

C' + iTJJ = S(C + iTJJ)ST. (3.13) 

This is an equation that will prove to be useful in getting an 
invariant version of the uncertainty relations. 

IV. A MATRICIAL INTERLUDE 

We will now interrupt our discussion to give a brief dis
cussion of topics that are related to Williamson's normal 
form of a matrix under symplectic transformation of coordi
nates. 13.14,17,18 Most of the complications that arise in con
nection with this form can be avoided by working with a 
positive definite matrix. Since covariance matrices for 
WDF's are positive definite, we will obtain all the results we 
need by restricting our attention to such matrices. 

Let C be a real, symmetric 2n X 2n matrix and let 
def 

X(TJ) = det(C + iTJJ)· (4.1 ) 

Because C is both real and symmetric, we can use elementary 
properties of determinants to show that if TJ is a root of 
X( TJ) = 0, then ± TJ and ± 1i are also roots. If we also as
sume that C is a positive definite matrix, then we have that 

C + iTJJ = C 112(/ + iTJC -1/2JC -112)C 112, (4.2) 

which implies that 

X(TJ) = det(C)det(/ + iTJC-I12JC-1/2). (4.3) 

Thus the roots of X( TJ) = 0 are reciprocals of the eigenvalues 
of the invertible Hermitian matrix - iC - 112JC -1/2, and so 
they are real and nonzero. Putting all this together results in 
the following. 

Proposition 4.1: If C is a real, symmetric, positive defi
nite 2n X 2n matrix, then any root TJ of X( TJ) = 0 is real and 
nonzero; moreover, - TJ is also a root. Finally, if S is a sym
plectic matrix, then the roots of X( TJ) = 0 are invariant un
der the transformation C _ SCS T. 
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Proof Only the statement about symplectic invariance 
of the roots requires comment. From (3.1') and the fact that 
S being symplectic implies that det S = 1, we have 

det( C' + iTJJ) = det[S( C + iTJJ)S T] 

= det(S)det(S T)det( C + iTJJ) = X( TJ), 

from which the invariance of the roots follows immediate
~ . 

Let the positive roots of X( TJ) = 0 be TJI <TJ2<'" <TJn. 
We will call these roots the Williamson invariants. For the 
present, assume that these roots are all distinct. Because 
X( TJj) = det( C + iTJjJ) = 0, there will exist a vector WjEC2n 

such that 

(4.4) 

Taking the complex conjugate of both sides of (4.4) results 
in 

( C - iTJjJ) Jfj = O. (4.5) 

Now, let 

~ = (Wj + Jfj)/2 and lj = (Wj - Jfj)/2i. (4.6) 

These two equations may be combined to give the following 
set of equations: 

C~ = TJjJlj, CYJ = - TJjJXj . (4.7) 

Multiply both equations by X [ and then Y r. Using the re
sulting set together with (1.1) yields 

X[CXj=TJP(lj,xk) and X[Clj= -TJjCT(~,xk)' 

Y[CXj=TJP(lj,Yk ) and Y[Clj= -TJP(~'Yk)' 
(4.8) 

Comparing (4.8) with the set one gets by interchangingj, k 
in (4.8) and using the fact that C T = C, we arrive at 

and 

and 

TJP( lj,xk) = TJk CT( Yk,Xj ) 

TJP(lj,Yd = TJkCT(Yk,lj) 

TJP(Xj,xk = TJkCT(Xk,Xj ), 

(4.9) 

Using (4.9), the antisymmetry of CT, and the assumption that 
the TJ/s are distinct, we have, forj=j:.k, that 

CT(lj,Xd =CT(~,Xd =CT(lj,Yk ) =0. (4.10) 

Ifj = k, then (4.8) implies that 

(4.11 ) 

Thus, by normalizing~ so thatXJC~ = TJj' we obtain 

CT(lj,~) = 1. (4.12) 

Taken together, ( 4.10) and ( 4.12) imply that 
{XI, ... ,xn; YI, ... , Yn} is a symplectic basis for R2n

, and that 
the matrix 

S= (XI ... Xn YI Yn) (4.13) 

is symplectic [i.e., it satisfies (3.1)]. Moreover, a straight
forward manipulation using (4.8), (4.10), (4.12), and 
( 4.13) gives 
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S TCS = diag( 1]1,···,1]n 1]1, ... ,1]n)' (4.14) 

So far, we have assumed that the 1]/s were distinct. 
What happens if we drop that assumption? Not much, real
ly. Because both C 1/2 JJj and C 1/2 Jfj are eigenvectors of the 
Hermitian matrix - iC - 1/2 JC - 1/2 the W. 's and W. 's com-, 1 1 

pare a basis for C2n. The correpsonding real and imaginary 
parts, the Xj's and 1j's, form a basis for R2n. When 1]j 1= 1] k' 

the arguments above still imply that (4.10) holds. When 
degeneracy occurs, a simple, obvious modification of the 
usual Gram-Schmidt process can be used to get (4.10) to 
hold for X's and Y's coming from linearly independent JJj 
and Wk corresponding to 1]j = 1]k' We leave the details to 
the reader. In any case, we have shown the following to be 
true. 

Theorem 4.2: If C is a positive definite, real, symmetric 
2n X 2n matrix, then (4.14) holds with the symplectic ma
trix S constructed as above. 

It should be pointed out that Theorem 4.2 could also be 
proved by starting with an orthonormal basis of eigenvectors 
for the Hermitian matrix - iC - 1/2 JC -1/2, and then using 
the orthonormality of this set plus the fact that the eigenvec
tors of this matrix are all of the form C 1/2 W or C 1/2 W to 
deduce (4.10) and (4.12). We chose the method used here 
because it directly gets at the quantities of interest, the W's 
and W's. 

We also wish to point out that even when an 1]j has no 
degeneracy (that is, its eigenspace has one complex dimen
sion ), the phase of the corresponding JJj is arbitrary. A 
change JJj -+ ei8 JJj has the effect of the changes 
Xj -+ cos () Xj - sin () 1j and 1j -+ sin () Xj + cos () 1j. This 
freedom is due to rotations in H2 commuting with the 2 X 2 
version of J, which in that case is itself a rotation through an 
angle 1T12. 

We conclude our matricial interlude with a result that 
will prove fundamental in what is to follow. It will provide us 
with a tool with which we can link the analytic and geomet
ric characterizations of uncertainty. 

Corollary 4.3: Let C be a real, symmetric positive defi
nite 2n X 2n matrix and let 1] 1 <:;; 1]2' .. <:;; 1] n be the Williamson 
invariants for C. The matrix C + i1]J is non-negative if and 
only if 

( 4.15) 

Proof: From (3.11), (4.14), and the discussion at the 
end of Sec. III, we find that C + i1]J is non-negative if and 
only if the matrix 

(4.16) 

is non-negative. It is a straightforward matter to check that 
the eigenvalues of ( 4.16) are all of the form 

( 4.17) 

All of these eigenvalues will be non-negative, and hence 
(4.16) will be non-negative if and only if 11]1<:;;1]i' for 

j = 1, ... ,n. Since 1]1 is the smallest of the Williamson invar
iants, this condition is itself equivalent to (4.15). • 
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V.INVARIANCE AND UNCERTAINTY 

There are two things that we wish to do in this section. 
The first is to formulate the uncertainty principle in a way 
that is invariant under affine canonical transformations, and 
the second is to discuss the "directions" that give minimal 
uncertainty for a WOF. 

Using the Williamson invariants discussed in the pre
vious section, we can formulate an invariant uncertainty 
principle as follows. 

Theorem 5.1: Let C be a real, symmetric, positive defi
nite 2n X 2n matrix. Then C is the covariance matrix for a 
WDF if and only if 

1i12<:;;1]1 ==the smallest Williamson invariant of C. (5.1) 
Proof: Apply Corollary 4.3, Theorem 2.4, and Proposi-

tion 4.1. • 
To get an idea of what this is saying, we will look at an 

example given by Littlejohn (see Ref. 1, § 2.2). Consider the 
Gaussian function 

def T I 

Po(z) = (l/21TLK)e - (l/2)z C o- z, 

where 

(5.2) 

In this case, we have Co as our candidate for a covariance 
matrix. The constants Land K are both positive. The matrix 
Co is clearly positive definite. To find its Williamson invar
iants, we need to get the positive roots of 

11] 2 2 2 
( 

L 2 .) 

X(1]) =det -i1] K2 =L K -1] =0. (5.3) 

There is only one positive root of (5.3),1]1 = LK, and this is 
the only Williamson invariant. Thus Co will be the covari
ance for a WDF if and only if LK~1i12. Indeed, this condi
tion and Po's being a Gaussian are necessary and sufficient 
for Po to be a WOF. 11-14 

Since, as Littlejohn points out, L = !l.q and K = !l.p are 
the dispersions in the Gaussian Po' the inequality (5.1) is 
simply the usual uncertainty relation in this case. Assume 
that 1]1 = LK~1i12 holds, so that Po is a WOF. Let us now 
look at what happens when we let Po evolve freely via the 
Hamiltonian p2/2m. The WOF after time tis 

-1 (1 tim) PI (z) = Po(S I z), where SI == 0 1 . (5.4 ) 

Note that SI is symplectic. From (3.12), the covariance ma
trix for PI is 

_ T_(L2+K2t2Im2 K2tlm) 
CI - SICS I - K2t 1m K 2 ' (5.5) 

We can read off the dispersions in q and p for PI from (5.5): 

!l.ql = ~L 2 + K 2t 21m2 and !l.PI = K. (5.6) 

Obviously, we have that 

!l.ql!l.PI >1]1>1i12. (5.7) 

This inequality suggests that 1]1' which is the lowest Wil
liamson invariant for CI as well as for Co [because the two 
are related via (5.5) ], plays the role of a minimal uncertain
ty in this example. In fact, we have a more general result. 

Francis J. Narcowich 359 



                                                                                                                                    

Theorem 5.2: Let C be a symmetric, positive definite 
2n X 2n matrix with 71 I as its lowest Williamson invariant, 
and suppose that C is the covariance matrix for some WDF 
p. For every pair x,YET such that u(y,x) = 1, the dispersions 
in the coordinates 

Q=u(y,Z) and P=u(z,x) 

satisfy 

liQlib7J1' 

(5.8) 

(5.9) 

Finally, there exists a pair x andy for which equality holds in 
(5.9). 

Proof Let us first show that we can find a pair x, yEr for 
which equality holds in (5.9). Our covariance matrix C sat-

isfies the conditions placed on C in Sec. IV. Let XI and YI be 
defined by (4.6) withj = 1. From (4. 12)-again, withj = 1, 
we have that u( yl,xl) = 1. For x and y, we will take 

(5.10) 

It is clear that 

With the help of (4.7) and using the fact that the expectation 
value of Z with respect to p may be assumed to be 0, the 
square of the dispersion for Q can be calculated from the 
following sequence of steps: 

liQ2 = L u(y,z)2p (z)dz = - yTJ(L ZzTp(X)dZ)JY = - (Jyl )TJCJ 2 YI = YfCYI = -7J IYfJXI = 7J1U( yl,xl) = 711' 

(5.11 ) 

A similar calculation shows that 

lip 2 = 711' (5.11') 

Thus, for our choice of x, y, we see from (5.11) and (5.11') 
that the uncertainty relation (5.9) holds with equality. 

We will now show that (5.9) holds for arbitrary Q, P 
satisfying (5.8), as long as u(y,x) = 1. By means of matrix 
manipulations similar to the ones used above, we have that 
the matrix 

C '= (r(QQ2 QP) ( )d Jr \F p 2 P Z Z 
(5.12) 

can be written in the form 

C'=ATCA, where A=(Jy -Jx). (5.13) 

Note that A is a 2n X 2 real matrix. Observe that since 711 is 
the lowest Williamson invariant of C, the matrix C = i7J IJ is 
non-negative. From this it follows that the matrix 
A TCA + i7JIA TJA is non-negative. We can put this matrix 
in a more useful form with the following sequence of steps: 

= C' + i7J1( u(y,y) 
- u(y,x) 

C' . (0 1) = + Z7JI _ 1 O· 

-Jx) 

- U(X,y») 
u(x,x) 

(5.14 ) 

Using the non-negativity of this last matrix, together with 
(5.13), the usual formulas for dispersions (again, assuming 
the expectation for z with respect to pis 0), and the standard 
determinant condition for a 2 X 2 matrix to be non-negative, 
we obtain 
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liQ
2
lip 2>7Ji + (L QPP(Z)dZY, 

from which (5.9) follows immediately. • 
In the course of proving Theorem 5.2, we produced 

x,yEr, with u(y,x) = 1, such that the corresponding conju
gate coordinates Q, P defined by (5.8) have dispersions for 
which the uncertainty product is minimal. For future refer
ence, we wish to write out x, y separately. 

Corollary 5.3: With the notation and assumptions of 
Theorem 5.2, the x,yEr which give equality in (5.9) are 

x=JXI and y=JYI, (5.15) 

where XI and YI are normalized so that u( yl,xl) = 1 and 
satisfy 

(5.16) 

Here, 71 I is the smallest Williamson invariant of C. This 
choice of x and y is, in general, not unique. 

Proof The non uniqueness of x and y stems from the 
nonuniqueness of XI and YI • See the remarks following 
Theorem 4.2. • 

Let us return to Littlejohn's example. In particular, we 
want to look at the case in which LK>fz/2, so Po in (5.2) is a 
WDF. The WDF that evolves freely from Po is p,; this is 
given in (5.4). The covariance matrix C, for p, is found in 
(5.5); its only Williamson invariant is 711 = LK. The best 
way to find XI and YI for C, is first to solve 

(C, + i7J IJ) WI = O. (5.17) 

This is easy to do and results in 

( 
-zX ) 

WI =c L+iKt/m . (5.18 ) 

Here, c is a complex constant; its modulus will be determined 
by requiring u( yl,xl) = 1, but its phase will remain arbi
trary. We will therefore choose it so that c> O. With this 
choice of phase, we have 
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x = WI + WI = ( 0 ) 
I 2 cL 

and ( 5.19) 

Y _ WI-WI _( -CK) 
I - 2i - cKt 1m . 

Since u( yl,xl) = c2LK, we need to choose c = l!~LK . 
Our final result for x and y is therefore 

Of course, as we noted after Theorem 4.2, a different choice 
of phase will result in a rotation of the vectors XI and Y I , and 
therefore of x and y as well. 

Having gotten x and y, we can write down the coordi
nates Q and P from (5.8): 

Q = u(y,z) = ~K IL (q - pt 1m), 

P=u(z,x) =~LIKp. 
(5.21) 

When t = 0, the Q-P frame is just a scaled version of the q-p 
frame. As t increases, the new frame moves to compensate 
exactly for the time evolution involved. A similar phenome
non would occur for any evolution generated by a quadratic 
Hamiltonian. 

We close this section by pointing out that the directions 
of minimal uncertainty and the minimal uncertainty itself 
for a WDF are interesting quantities to look at. First of all, 
they enable one to separate what amounts to a classical ef
fect, "spreading of the wave packet," from a true quantum 
mechanical change in the covariance. When a WDF is sub
jected to evolution stemming from a nonquadratic Hamilto
nian, the lowest Williamson invariant 1/1' which must be no 
smaller than 11/2, may either increase or decrease. To see that 
this must be so, one need only reflect on what happens when 
the nonquadratic Hamiltonian is chosen to be time-reversal 
invariant. 

Second, knowing the directions of minimal uncertainty 
could be useful in that one could use a quadratic Hamilto
nian to generate a linear canonical transformation that 
would take a WDF into one for which the quantities one 
wants to measure would have minimal uncertainty. This is 
the sort of thing one does with "squeezed" states. 

Finally, one could take the idea outlined above a step 
further by working in the Williamson normal coordinates 
themselves. Something similar in spirit to doing that was 
done in Ref. 2 to get a convergent perturbation series for 
solutions to the quantum Liouville equation. 

VI. GEOMETRY AND UNCERTAINTY 

In Sec. V we dealt with an invariant version of the uncer
tainty principle and we discussed directions of minimal un
certainty. We will now turn to a geometric interpretation of 
the uncertainty relations. 

Let C be a positive definite, real, symmetric 2n X 2n ma
trix. Ifwe suppose that its lowest Williamson invariant, 1/1' 
satisfies 1/ I ;;.1112, then C will be the covariance of some WD F 
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p; we may assume that the expectation of z relative to p is O. 
Define the quadratic forms 

w(z) =! zTC -IZ and w· (a) =! aTCa. (6.1) 

The level surfaces of ware the Wigner ellipsoids corresond
ing to the covariance C. These ellipsoids are to be thought of 
as surrounding regions ofr in which the WDF p is apprecia
ble. The function w· has the significance described below. 

Proposition 6.1: The function w· is the Legendre trans
form ofw. 

Proof: The Legendre transform (cf. Refs. 18 and 19) of 
w is given by 

w·(a) = aTz - w(z), (6.2) 

where z is expressed in terms of a by solving the equation 

a=Vw(z)=C-Iz, (6.3) 

for z in terms of a. The result is, of course, that 

z = Ca. (6.4) 

Inserting (6.4) in (6.2) and simplifying, we get the expres
sion for w· given in (6.1). • 

Because of the relationship between wand w·, we will 
call the level surfaces of w·, which are themselves ellipsoids, 
dual Wigner ellipsoids. It is no accident that we have used the 
symbol a for the Legendre transform variable and for the 
symplectic Fourier transform variable. In both cases, a is to 
be thought of as belonging to r'. Dual Wigner ellipsoids may 
be regarded as surrounding regions of r' in which pea) is 
appreciable. (Recall that we have assumed that C is the co
variance corresponding to the WDF p.) 

When only one degree of freedom is present, there is a 
well-known, simple, geometric interpretation to the uncer
tainty relation: the area enclosed by the Wigner ellipse 
w(z) = 1 is greater than or equal to 1T'fz. Indeed, when n = 1, 

this area is easily seen to be 1T~det(2C) = 21T1/1' and so its 
being greater than or equal to 1T'fz is equivalent to the C's 
being a covariance for a WDF. For the area enclosed by the 
dual Wigner ellipse w· (a) = 1, one can easily obtain a corre
sponding result: this area is less than or equal to 41T /11 if and 
only if C is a covariance for a WDF. 

The geometric interpretation given above is important. 
Let Sbe a symplectic matrix. Recall that when we transform 
p(z) -+p(S -IZ) = p'(z), the covariance transforms this 
way: C -+ SCS T = C'. The Wigner ellipsoid for C' is obvious
ly the one for C subjected to the linear canonical transforma
tion z -+ Sz. Similarly, the dual Wigner ellipsoid for C' is the 
dual Wigner ellipsoid for C subjected to the linear canonical 
transformation a-+S Ta. For n = 1, areas are invariant un
der such transformations. Thus, for the case of one degree of 
freedom, the geometic form of the uncertainty relation is 
invariant under linear canonical transformations. 

We want to generalize this result to all n. Working with 
areas per se will not do. Areas remain invariant under sym
plectic transformations only when n = 1. To get the correct 
generalization, we point out that both of the areas mentioned 
above are directly related to the first Poincare invariant for 
the ellipses involved. 
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If r is a closed, piecewise smooth curve in r, and if r 
forms the boundary of a piecewise smooth, orientable two
dimensional surface l: in r, then 

(6.5) 

is the first Poincare invariant of r. 18
,20 We can easily com

pute this invariant for the ellipses resulting from the intersec
tion of a subspace and either the Wigner ellipsoid or the dual 
Wigner ellipsoid. 

Proposition 6.2: Consider the subspaces ncr and 
n*cr' with bases B = {x,y} and B* = {X,Y}. Ifrand r* 
are oriented ellipses with traces 

trace r= nn{zerlw(z) = l} 

and 

trace r*==nn{aer'lw*(a) = l}, 

then we have 

and 

/I(r) = 21TU(y,X) 
~det(A TC IA) 

21TU( y,x) 
/1 ( r*) = --;::;:=;:~;::;:;:::;:;:

~det(A *1 CA *) , 

(6.6) 

(6.7) 

where A and A * are the column matrices A = (x y) and 
A * = (X n. 

Proof: Both expressions are obtained in nearly identical 
fashion. We will derive only the one for /1 (r). Since B is a 
basis for n, every zen can be written as a linear combination 
of x and y. Thus there are constants r, s such that 

z = rx + sy. (6.8) 

If z also is in r, the intersection of n and the Wigner ellipse 
w(z) = 1, then the point (r,s)elR2 is on the ellipse 

(r s)A TC-1A C) = 2. (6.9) 

We will let r B be the ellipse (6.9) oriented counterclockwise 
relative to the r-s coordinates. Substituting (6.8) in (6.5) 
and using Green's theorem, we get 

/. (r) = u(y,x) r rds - s dr = u(y,x) [area in rB]' 
2 )rB 

On the other hand, from (6.9) we see that 

area in rB = 21T/~det(A TC IA). 

(6.10) 

(6.11 ) 

Putting all this together yields the formula for /1 (r) in 
(6.7). • 

Taking the subspace nj spanned by Bj = {xj,y), where 
Xj = J~ and Yj = J~, with ~ and lj being defined in ( 4.6), 
let rj be the oriented ellipse coming from the intersection of 
nj and the Wigner ellipsoid w(z) = 1. From (4.7), (4.10), 
and (4.11), we find that with 

Aj==(J~ Jlj), (6.12) 

we have that 
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T -I 1 (1 0) 
A j C Aj = 1]j 0 l' 

Finally, using (6.13) in (6.7) yields 

/I(rj) = 21T1]j. 

(6.13 ) 

(6.14 ) 

In this calculation, we never assumed that C was a covari
ance for a WDF. We only assumed that Cwas positive defi
nite. By combining (6.14) with Theorem 5.1, we therefore 
arrive at the following. 

Theorem 6.3: Suppose that C is a real, symmetric, posi
tive definite 2nX2n matrix, that {X1, ... ,xn,Y1,''''Yn} is the 
Williamson basis corresponding to C, and that nj ~ r is the 
subspace with basis {Xj =J~'Yj =J~}, wherej= 1, ... ,n. 
With some orientation, each ellipse rj = nj 
n{zerjw(z) = l} satisfies 

( 6.15) 

if and only if C is a covariance matrix for some WDF. 
This result generalizes that for the Wigner ellipse in the 

n = 1 case. It is, however, disappointing. One would like to 
have a result that holds for the intersection of an arbitrary 
subspace and a Wigner ellipsoid. It is not hard to show that, 
in r, there are many subspaces for which (6.15) simply fails. 
For example, if n is a null (isotropic) subspace, then, no 
matter what basis is chosen, one always has u(y,x) = 0, and 
so /1 (r) = 0 in that case. As the following theorem shows, 
the situation for the dual Wigner ellipsoid is much better. 

Theorem 6.4: Let C be a positive definite 2n X 2n sym
metric matrix and let w* (a) be as in (6.1). Then C is the 
covariance of a WDF if and only if for every two-dimension
al subspace 11* ~ r' the first Poincare invariant for the el
lipse 

r*==n*n{aer'lw*(a) = l} 

satisfies 

/I(r*) < 41T//i, 

provided the orientation of r* is chosen correctly. 

( 6.16) 

Proof: Let B * == {X, y} be a basis for n*. We assume that 
u( y,x) is non-negative. (This can be arranged by relabeling 
X and Y.) A vector a will be in n* if and only it has the form 

a = uX + v Y, u,veJR. 

Let A * be the 2n X 2 matrix 

A * = (X n. 
It is clear that aer* if and only if u and v satisfy 

(u v)A *T CA *(:) = 2, 

( 6.17) 

( 6.18) 

( 6.19) 

which is itself an ellipse in u-v space. We will denote this 
ellipse, when traversed in the positive direction relative to u
v coordinates, by r'Jj •. (Assigning an orientation to r'Jj. au
tomatically assigns one to r*.) 

If 1] 1 is the smallest Williamson invariant of C, then, by 
an argument similar to that used in proving Theorem 5.2, we 
have that 

(6.20) 
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is non-negative. By Corollary 4.3, we see that 

u( y,x)7]1 <the smallest Williamson invariant of A *TCA *. 
(6.21) 

Since A * T CA * is a 2 X 2 matrix, the right side of (6.21) is 

just ~det(A *1 CA • ), and so, after rearranging terms and 
multiplying by 21T, we obtain 

(6.22) 

By Proposition 6.2, the left side of (6.22) is ,/ I (y*). Thus 
we have 

(6.23) 

Consider the special case of the subspace II * = lIT with 
X = XI and Y = YI, where XI and YI are as in (4.6). With 
this choice ofII*, a computation nearly identical to that used 
in proving Theorem 6.3 yields 

'/I(Y*) = 21T17] I' when II* = lIT. (6.24) 

We can now complete our proof. First of all, if (6.16) is 
satisfied for all possible II*, then it is satisfied with II* = lIT. 
Putting (6.16), with II* = lIT, together with (6.24), we see 
that 7]1>fzI2. Theorem 5.1 then implies that C is the covari
ance for some WDF. 

Conversely, if C is a covariance for a WDF, then again 
by Theorem 5.1, we have 7]1>fzI2. Thus (6.23) implies the 
inequality in (6.16). • 

As we remarked earlier, Theorem 6.3 is not as nice a 
characterization of the Wigner ellipsoid as Theorem 6.4 is of 
the dual Wigner ellipsoid. At first, this may seem surprising, 
but in fact it is what one should expect. The covariance ma
trix contains nonlocal information about the WDF p that 
gives rise to it, whereas it contains local information aboutp. 
Cutting either ellipsoid with a plane through the origin in r 
and looking at the first Poincare invariant for the resulting 
ellipse is an operation that is local in character, and clearly 
works better when the information sought after is itselflocal. 

All that we have said above has focused on thefirst Poin
care invariant. Are there any results for the higher-order in
variants? For the Wigner ellipsoid itself, a few things are 
known. For example, the volume of the Wigner ellipsoid, 
,/ n' must be no smaller than (1Tfz) n • But apart from results 
similar in character to Theorem 6.3, not much can be said. 
As one might suspect from our earlier discussion, the situa
tion with respect to the dual Wigner ellipsoid is better. 

Consider a null subspace ffer'. We know that the 
dimension of ff, which we denote by k, cannot exceed n (see 
Ref. 18, p. 223). Suppose that {EI, ... ,Ek } is a basis for ff. It 
is easy to show that there exists a second null subspace vi( 

(which is not unique) with these properties: (i) 
vi( nff = 0; and (ii) vi( has a basis {FI, ... ,Fk } for which 
u(Fj,E]) =8jJ • Let II* =ff +vI(~r' be the subspace 
with basisB * = {EI, ... ,En;FI, ... ,Fnl We then have this, our 
final result. 

Theorem 6.5: Let y* be the ellipsoid 
II*n{aer'lw*(a) = 1} together with some orientation. In 
addition, suppose that C is a real, symmetric, positive defi
nite 2n X 2n matrix. If 7] I is C's lowest Williamson invariant 
then 
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(6.25) 

If, in addition, C is a covariance for a WDF, then 

'/k(y*)«41Tlli)k. (6.26) 
Proof: Let l: be the interior of y* in II. By Stokes' 

theorem, the k th Poincare invariant is 

,/ k ( y*) = r (JJ 1\ ... 1\ (JJ, 

J~~ 
ktimes 

(6.27) 

where (JJ = dB u(da,a)] is the invariant two-form on r'. 
Since aell *, we can write as a linear combination of the basis 
vectors; that is, 

k 

a = L rjEj + SjFj. 
j=1 

In these coordinates, 
k 

(JJ = L dSj 1\ drj , 
j= I 

and so, using the properties of the basis vectors, we get 

k 

(JJ 1\ ... 1\ (JJ = k! II dSj 1\ drj . 
~ '-1 

ktimes J-

Combining (6.27) and (6.28) results in 

,/k (y*) = k![volume ofl:Bo], 

where l:Bo is the interior of the ellipsoid 

(r, s,lA orCA {} 2, 

where 

(6.28) 

(6.29) 

(6.30) 

One may do a standard calculation to get the volume of l: B 0 • 

Performing this calculation and using (6.29) and (6.30), we 
arrive at 

(6.31 ) 

Using the properties of the basis B * and employing an argu
ment similar to that used in Theorem 5.2, we can easily show 
thatthematrixA *TCA * + i7] IJk is non-negative. [Here,Jk 

is the Jin ( 1.1') with n -+ k.] Corollary 4.3 then implies that 
7]1 is no larger than the smallest Williamson invariant of 
A *T CA 0 • From the theory constructed in Sec. IV, it is easy 
to show that 

~ det A *1 CA * = product Williamson invariants of 

A *TCA *>7]} (6.32) 

Combining (6.31) and (6.32) yields (6.25). If C is the co
variance for a WDF, then (6.25) and Theorem 5.1 imply 
(6.26). • 
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The problem of entropy production in near-equilibrium situations and their evolution towards 
a state of thermodynamic equilibrium is considered in the cosmological context. A physically 
realistic model (i.e., satisfying the energy conditions) describing such a situation is 
constructed. From a few hypotheses and considerations, it is seen that the metric tensors of the 
space-time at both equilibrium and nonequilibrium configurations are conformally related. The 
material content described by the energy-momentum tensor is interpreted as a viscous fluid 
smoothly evolving into a perfect one. 

I. INTRODUCTION 

Cosmological models are intended to provide suitable 
representations of the universe in terms of the geometry of 
the space-time and those measurable magnitudes that are of 
physical interest (energy density, pressure, etc.). 

A first approach to the problem (both historically and 
in terms of simplicity) is to consider the content ofthe uni
verse as an isentropic perfect fluid obeying an equation of 
state of the form p = p(p), p being the pressure and p the 
energy density. In general, this seems to be a good approxi
mation, at large scale, to the present state of the universe (for 
general reference see for instance Ref. 1); however, this ap
proach breaks down when it comes to describe the universe 
at earlier stages, when entropy production phenomena oc
curred and therefore thermodynamic equilibrium was not 
possible (unlike the situation described by an isentropic per
fect fluid). Furthermore, many well-known hydrodynamic 
processes such as turbulence, cavitation, and shockwaves 
cannot take place in a perfect-fluid-filled universe.2 An ob
vious next step in order to account for dissipative phenome
na is to replace the perfect fluid with a more general type of 
matter allowing production of entropy; in particular, non
perfect-fluid models have been used, the production of en
tropy being then caused by viscous heating and/or heat 
transport. (For the effect of viscosity on cosmological mod
els see for instance Refs. 3-6, and for the effect of the heat 
flux see Refs. 7-13.) These models provide good descrip
tions of situations not far from thermodynamic equilibrium 
(since only first-order deviations from the state of equilibri
um are considered 14) , but definitely out of it. 

The main purpose of this paper is to find a cosmological 
solution that evolves continuously from a nonequilibrium 
situation into an equilibrium, perfect-fluid situation, insist
ing that the transition between both states be smooth. 

The paper is organized as follows: In Sec. II the general 
formalism is presented and developed, showing that, after a 
few hypotheses and considerations about the Weyl and ener-

a) On leave from Departament de Fisica, Universitat Illes Baleares, 07071 
Palma de Mallorca, Spain. 

gy-momentum tensors describing the above situations, one 
can conclude that the metric tensors of the space-time in 
both situations are conformally related, and that the materi
al content of the space-time at the initial stage can be assimi
lated to a viscous fluid without heat conduction. The condi
tion about smoothness in the transition between both 
situations results then in a set of conditions on the conformal 
factor and its derivatives. It is shown that the viscosity plays 
a significative role in the evolution of the model both physi
cally and geometrically, since it turns out that the conformal 
factor can be expressed as a function of the viscosity alone. 
The relationship between the conformal factor and the en
tropy production density is also briefly discussed. 

In Sec. III a brief review is made of some concepts in 
elementary thermodynamics, and they are specified accord
ing to the particular situation outlined in Sec. II. The energy 
conditions '5. '6 are also dealt with in a similar way by using 
the results given in Ref. 17. This section contains virtually no 
new results (apart from the specifications corresponding to 
our particular case), but is included here for the sake of 
completeness. 

Section IV contains a brief discussion on the possible 
isometry groups admitted by such a model. Finally, Sec. V 
presents an example of spatially homogeneous Bianchi type 
III viscous-fluid cosmology that smoothly degenerates into 
one of the perfect-fluid cosmological models (also of Bianchi 
type III) given in Ref. 18, and it is shown that in this case the 
conformal factor can be expressed as a function of the en
tropy production density. 

II. GENERAL CONSIDERATIONS 

As it was already pointed out, the aim of this paper is to 
obtain a cosmological solution accounting for a rather gen
eral situation where irreversible processes (i.e., positive en
tropy production) can take place, and that evolves towards 
an isentropic (constant entropy) state whose material con
tent can be described, as usual, by an (isentropic) perfect 
fluid. The metric tensors describing both situations (the ini
tial one characterized by entropy production and the final 
one of constant entropy) will be, in principle, different, since 
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their energy-momentum tensors are different. 
On the other hand, we expect the matter content to be 

physically reasonable (i.e., to verify the energy condi
tions 15,16); this restricts the possible Segre types for the ener
gy-momentum tensor describing the material content of the 
space-time at the initial, nonisentropic stage, to either 
{1,11l} or {2,1l} (or any oftheir degeneracies 19) , whereas 
the energy-momentum tensor of the perfect fluid describing 
the final situation is of the Segre type { 1, ( 111 ) }. However, it 
is easy to see by analyzing the canonical forms for the above 
Segre types19 that a tensor of Segre type {2,1l} cannot 
change continuously into a tensor of Segre type {I, ( 111 )}; 
therefore the energy-momentum tensor of the space-time at 
the first stage must be of the Segre type {I, 1Il} (or some 
degeneracy). This can be interpreted as corresponding to a 
general (imperfect) fluid (with nonisotropic pressures and/ 
or heat conduction). 

If we succeed in smoothly matching the metric tensors 
corresponding to the two different stages, we can interpret 
the situation as that of a fluid, imperfect at some initial stage, 
which evolves into a perfect-fluid state. We shall assume the 
world lines of the particles of the fluid to be smooth, future
directed timelike curves; therefore an observer co-moving 
with the fluid would describe the material content of the 
space-time by means of the following energy-momentum 
tensors20: 

Tab = (p+p)UaU b +pgab +1Tab +qaub +Uaqb (1) 

for the inital, non perfect fluid stage; and 

for the fluid at its final, perfect stage. 
The quantities P, p, Po, and Po stand for the energy den

sity and isotropic pressure, respectively, in both nonperfect-

and perfect-fluid cases; Ua and Ua designate the velocity field 
o 

of the fluid in both cases; qa and 1Tab designate, respectively, 
the heat conduction vector and the anisotropic pressure ten-

sor (satisfying~b1Tab = 1TabUb = qauO = 0); and gab and gab 
o 

are the metric tensors in both cases. 
We shall assume the material content of the space-time 

known, in the sense of considering both energy-momentum 
tensors completely specified; therefore the metric tensors 
will be determined (up to a constant scaling factor) once 
their respective Weyl tensors are given. 21 We shall take both 
Weyl tensors to be equal (as functions of the coordinates). 
Roughly speaking, the Weyl tensor accounts for the part of 
the curvature not due to the material content, but to the 
vacuum. Choosing both Weyl tensors equal means, there
fore, that the part of the curvature of the space-time due to 
the vacuum does not change as the matter evolves, or, in 
other words, changes in the curvature of the space-time are 
the consequence of changes (evolution) in the material con
tent. 

The choice we made implies that unless the Weyl tensor 

is Petrov type N,22 the metric tensors gab and gab must be 
o 

conformally related. We can then write 
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gab = e2t/>gab = 02gab , 
o 0 

(3) 

where f/JEA o(M) is some function of the coordinates. 

The isentropic perfect-fluid stage with metric gab will be 
o 

achieved when tP = const = 0 (0 = 1), while the initial, 
nonisentropic stage will correspond to tP =1= const. Thus one 
can expect in principle some correspondence between the 
entropy and the conformal factor. 

The velocity fields of the fluid at both stages then satis
fy23 

(4) 

and therefore the kinematical magnitudes that characterize 
the fluid-shear, rotation, expansion and acceleration-are 
related by23 

(5a) 

(5b) 

(5c) 

(5d) 

We shall assume the fluid to move along geodesics, i.e., 

ua = ua = O. This restriction implies that the gradient tPa of 
o 

the conformal factor must be parallel to the velocity field of 
the fluid, and therefore the fluid is irrotational: 

Wab = Wab = O. We shall then write 
o 

(6) 

In particular, one may choose the time coordinate 
adapted to the four-velocity of the fluid, 

(7) 

Since ua is geodesic and hypersurface orthogonal, one has 
o 

ds2 = - dt 2 + h a/3 (t,xY)dxa dx/3, 
o 0 

and therefore, from (6) and (7), 

(8) 

(9) 

(10) 

We see immediately that in the above coordinate system 
the function tP depends only on time, and so does,u. (As a 
matter of fact, ,u can be expressed as a function of tP; 
,u =,u (tP), and tP itself can be used as time coordinate.) 

One can now easily derive the explicit expression of the 
energy-momentum tensor Tab given in (1) in terms of Tab 

o 
and of tP and its derivatives simply by taking into account the 
relationship between the Ricci tensors of the two related 
metrics gab and gab (see, for example, Refs. 16 and 23). One 

o 
has 
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(11 ) 

o 
where Ua/b = V bUa stands for the covariant derivative of Ua 
000 

with respect to the metric gab = gab , and h ab + UaUb is the 
o 0 0 0 0 

orthogonal projector to the velocity field. 
The energy density p, isotropic pressure p, heat conduc

tion qa, and anisotropic pressure tensor 1Tab appearing in (1) 
can now be easily evaluated from ( II) (see for instance Ref. 
24), and one has 

p = e - 2"'{pO + 3</1: + 2</1/Jo}, 

p = e- 2"'{po - 2</111 - </1: - ~</1tOo}, 

qa=o, 

(12) 

(13) 

(14) 

1Tab = - 2J-le - "'(Jab' (IS) 

From ( IS) it is immediate to see that 1T ab corresponds to 
the anisotropic pressure tensor of a viscous fluid and, there
fore, that J-le - '" may be identified with the coefficient of kine
matic viscosity 7]: 

7]=We-"'. (16) 

From (II) and (3) one can see that in addition to 
</1 (t I) = 0, the conditions </111 (t I) = </1 t (t I) = 0 are required 

in order to match gab and gab , and Tab and Tab continuously 
o 0 

at some hypersurface t = t I' 
Since J-l can be expressed as a function of </1, and </1 is a 

function of t alone, the inverse function theorem when ap
plied to (16) allows us to express the conformal factor as a 
function of the viscosity: 

n =/(7]) = {/(7]), 
1, 

(17) 

and consequently 

(18) 

We can thus regard (18) as the metric of a space-time 
filled with a viscous fluid that changes into a perfect fluid as 
the viscosity dies out. 

As a final remark to this section, it is worth noticing that 
the Raychaudhuri equation 16,23 is identically satisfied for the 
viscous fluid provided it is satisfied for the perfect fluid, and 
vice versa. 

III. ENTROPY AND ENERGY CONDITIONS 

In this section we shall briefly review some concepts in 
relativistic thermodynamics within the framework of the 
Eckart25 (or Landau and Lifshitz26

) theory for relativistic 
imperfect fluids. (For further details see for instance Ref. 27, 
and for limitations and improvements to this model see Refs. 
28-31.) In order to define the relevant thermodynamical 
magnitudes we shall limit ourselves to a portion of the fluid 
small enough to be considered as in thermodynamic equilib
rium (although interacting with the rest of the system, so 
that the whole system will not, in general, be in equilibrium). 
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We shall consider all the intensive thermodynamical magni
tudes defined in the local Minkowskian frame co-moving 
with the fluid element under consideration. 

In any thermodynamic system there are always some 
constituents conserved through any transformation the sys
tem undergoes; in this case those constituents are the bar
yons and their rest masses. This suggests study of the fluid 
element as a microcanonical ensemble, the associated ther
modynamical potential being then the entropy.32 The en
tropy S (per unit of baryon mass) will then be a function of 
the internal energy E (per unit of baryon mass) and the spe
cific volume v (v=n- I

, n being the baryon mass density): 

S=S(E,V}. (19) 

All the other thermodynamical magnitudes can be obtained 
from S (E,V) as32 

as/aE= liT, 

as/av = PIT, 

(20) 

(21) 

where Tis the temperature and P is the thermodynamic pres
sure. The latter is related to the isotropic pressure p occur
ring in (1) [and in our case given by (13)] through the 
equation27 

p=P-tO, (22) 

where t is the so-called bulk viscosity coefficient and 0 is the 
fluid expansion. On the other hand, the total energy density 
p appearing in (I) is32 

p=n(1+E). (23) 
The interaction of the fluid element with the rest of the 

system can be described by the following three differential 
laws: 

(i) Conservation of the baryon number (generalized 
mass conservation law), 

(nua);a = 0; (24) 

(ii) Conservation ofthe energy and momentum, 

Tab;b = 0, (25) 

which can be seen as the generalization of the first law of 
o 

thermodynamics (note that in our case Vb Tab = 0 if and 
o 

only if Vb Tab = 0 as an immediate consequence of gab and 
o 

gab being conformally related); and 
(iii) The entropy production law, which constitutes a 

generalization of the second law of thermodynamics-

s=~;a>O, (26) 

where the entropy current ~ is defined as27 

~=nsua + T-1/qa. (27) 

From (27) and (1), a detailed evaluation of S can be 
made, giving as a result 

s= T- 1{t0 2 - 1Tabifb - qa( T- 1 T.a + ua )}. (28) 

This equation shows up the dissipative character of the terms 
1Tab and uaqb + qaub in the energy-momentum tensor. 

In the present case and at the non perfect fluid stage 
(when entropy production occurs) we have 1Tab = - 27](Jab 
and qa = O. Furthermore, we shall assume t = O. Such an 
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assumption finds its justification in that this is so when the 
fluid we are dealing with is such that the trace Tof its energy
momentum tensor can be expressed as a function of E and/or 
n.27 As this happens to be true for the fluid at its perfect 
stage, we assume, without much ado, that the same holds 
true throughout the previous non perfect stage. Equation 
(28) then takes the form 

Ts=27!Uaba"b=1Jdl, (29) 

and therefore states that the entropy is produced by viscous 
heating alone, dropping to zero when the viscosity does or, 
equivalently, it takes the form ofEq. (17) when the confor
mal factor takes the value 1. 

Let us next analyze the energy conditions ls
•
16 that the 

fluid under consideration has to satisfy in order to be physi
cally realistic. We shall follow the results obtained by Kolas
sis et al. 17 for the energy conditions in the special case of a 
viscous fluid with or without heat conduction. In the case of 
qa = 0, a set of sufficient conditions for the weak and domi
nant energy conditions to be satisfied consists ofl7 

P + p>(2I.j3)1J lui, 
P - p> (2/.j3)1J lui, 

(30) 

(31) 

when r=~ oI:~U:; #0. For r = 0 the necessary and suffi
cient conditions are 

P + P>1J lui, (32) 

P - P>1J lui· (33) 

These conditions (30)-(33) read in our case 

{Po + Po - 2rPu + 2rP; + jrPtOo}>ArPt IUol , (34) 

{Po - Po + 2rPtt + 4rPt + .!jl rPtOo}>ArPt IUol , (35) 

where A = - 2I.j3, - 1 for r#O, respectively, and 

U o= 12uab uab 11/2. 
o 0 

The equivalent conditions to be satisfied at the perfect
fluid stage are simply 

Po + Po>O, (36) 

Po - Po>O , (37) 

and one can see by continuity that they are satisfied if (34) 
and (35) are; so one can take (36) and (37) as necessary 
conditions in order to impose (34) and (35). 

IV.ISOMETRIES 
So far we have made no assumptions about the possible 

isometry groups. In order to study the allowed possibilities 
let us recall the expressions (8) and (18) for the metric ten
sor. It is easy to see that they imply for the space-time, at 
least locally, a manifold product structure; i.e., M = R X ~3' 
where M designates the total space-time manifold and ~3 the 
three-dimensional hypersurfaces orthogonal to the velocity 
field of the fluid. Any occurring isometry group must then 
preserve this structure, that is, its orbits must be contained in 
~3 (we discard the case of a timelike Killing vector), and the 
group can then be regarded as acting on three-dimensional 
manifold. Let us briefly examine the different possibilities. 

As is well known, the maximal isometry group acting on 
a three-dimensional manifold is of order 6; such a group 
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always admits a subgroup of order 3 acting transitively on 
three-dimensional orbits (this is the case of Friedman-Rob
ertson-Walker models I). Five-dimensional isometry groups 
cannot occur on three-dimensional manifolds (Fubini's 
theorem23

). The case of a group of order 4 is interesting in 
that it always admits a three-dimensional subgroup, giving 
rise then to two different situations: either the three-dimen
sional subgroup G3 acts transitively on the three-dimension
al hypersurfaces, or it acts on two-dimensional orbits. This 
last case constitutes, in the cosmological context, the so
called Kantowski-Sachs model. 33.34 In the case of a three
dimensional group G3, there are again two possibilties, 
namely, G3 acting transisitively on the three-dimensional hy
persurfaces, and G3 acting on two-dimensional (spacelike in 
the present case) orbits. In this case (G3 on orbits S2)' the 
two-dimensional orbits must be of constant curvature, and 
the spatial part of the metric takes then one of the familiar 
forms listed in many reference books (see for instance, Ref. 
23). 

There are still three other possibile cases: a two-dimen
sional group G2, a one-parameter group of motions GI , and 
the case where no symmetries occur. 

The cases in which the orbits of the group ofisometries 
coincide with the three-dimensional hypersurfaces ~3 are 
called "spatially homogeneous models", I and they can be 
classified according to the Bianchi type of the three-dimen
sional group (or subgroup) occurring. These models exhibit 
many interesting characteristics from the physical and 
mathematical points of view, I and we shall take them as the 
framework for the example in the next section. 

Notice that in our particular case the existing isometries 
are preserved throughout the whole process from viscous 
fluid to perfect fluid. 

V. EXAMPLE: SPATIALLY HOMOGENEOUS BIANCHI 
TYPE III COSMOLOGIES 

The purpose of this section is to give an example of how 
all the former considerations can be applied in a particular 
case. We shall take one of the families of exact perfect-fluid 
solutions of Bianchi type III given recently by Ram. 18 By 
means of a suitable choice of the function rP in Eq. (3) we 
shall construct a viscous-fluid solution that degenerates into 
the chosen perfect-fluid solution. The models given in Ref. 
18 all correspond to geodesic, expanding (00 ) 0), perfect
fluid solutions that satisfy the energy conditions (36) and 
(37), their line element being of the form ls 

ds2 = -dt2+A2dx2+B2e2xdy2+C2dil. (38) 
o 

For A = at + b; a,hER; Einstein's field equations imply 

B = A = at + B , (39) 

C=c l (at+b)r+c2(at+b)-r,lal>1, (40) 

C = C3 cos [{31g(at + b)] 

+ C4 sin [{31g(at + b)], lal < 1, 

C= Cs + c61g(at+ b), lal = 1, 

(41) 

(42) 

where c;ER, i = 1, ... ,6, r= (1/a) (a2 - 1) 1/2, and {3= (1/ 
a)(1-a2 )1/2. 
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In order to choose the function <p appearing in (3), we 
shall assume for the viscous fluid a relationship between vis
cosity and expansion of the type 

1]= _A 20 +y(t), AER, (43) 

which for a suitable choice of the funciton y(t) implies 

<P, = f3 2 - a 20o, a,f3ER. (44) 

Equation ( 43), although completely general unless y( t) 
is specified, suggests that viscosity (i.e., some kind of friction 
between neighboring parts of the fluid) decreases as the fluid 
expands (i.e., as the parts of the fluid become more separat
ed), which appears to be what one would expect. 

From (44) one has 
2· 

<PII = -a 00. (45) 

Therefore the matching hypersurface between the two met-

rics gab and gab will be given by 
o 

(46) 

and from (44) and the requirements <P I (t I) = <P Ct I) = 0 one 
has 

f32/a2 = OoCt I ), (47) 

O(t) = exp{ f32 t - a 2 rOodt' + <Po}, (48) 

with <PoER: 

(49) 

Conditions (34) and (35) now read 

(1 - a 2)po + (1 - 3a2)po + 2f34 + 2a2(a2 - !)O~ 

+ 2f32(j - 2a2) 00 - a 2a2> - A(f32 + a 20o)0', (50) 
o 0 

(1 + a 2)po + (3a2 - 1)po + 4f34 + 4a2(a2 - j)O~ 

+ 2f32<j - 4a2 )Oo + a2~ > - }.(f32 + a 2( 0 ) 0' , (51) 
o 

where A = - 2/..[3, - 1 for y1=O and y = 0, respectively. 
Now, taking into account the expressions for Po' Po, and 

0' for the perfect fluid described by the metric (38),18 it is 
o 
easy to see-after some straightforward calculations-that 
for a suitable choice of the parameters appearing in those 
expressions, (50) and (51 ) are satisfied for - b 1 a < t<.t I [at 
t = - b la, all the models described by (38 )-( 42) are singu
lar]. 

One can now evaluate the entropy production density $ 
given by Eq. (29). After a few calculations one has 

A 20 f3 2 (3a 0 )2 s=!(a 0- ) ---- 0 
at+ b 

xexp{ -3[f32t-a2rOodt'+<Po]} , (52) 

for lal 1= 1, and 

Al 211 f32(4a 0)2 s=-(a uo- ) ---- 0 
12 at + b 

xexp{ - 3[f32 t - a2roo dt' + <Po]} , (53) 
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for lal = 1, the expansion 00 being in each case 

0
0 
=~+~{cl(at+ bV -c2(at+ b) -Y} 

at+b at+b cl(at+b)Y+ c2 (at+b)-Y , 

lal < 1 , (54a) 

Oo=~+~ 
at+ b at+ b 

X { - C3 sin [log (at + b)] + C4 cos [log (at + b)]} 
C3 cos[log(at + b)] + C4 sin [log(at + b)] , 

lal < 1, (54b) 

2a 2ac 
00 = --+ _-6-{C5 + c6 10g(at + b)}-I, lal = 1. 

at+ b at+ b 
(54c) 

Since the conformal factor (48) and the entropy pro
duction density (52)-(53) are continuous functions of the 
time coordinate, the implicit function theorem allows us to 
express one as a function of the other: 

o=o(S)={O(~)1=const, $>0, (55) 
O(s) = 1, $ = O. 

Therefore we can write 

(56) 

In other words, the metrics describing both stages of the 
fluid, nonperfect and perfect, are conformally related, and 
the conformal factor can be expressed as a function of the 
entropy production density $ such that for positive entropy 
production ($ > 0) the fluid describing the material content 
of the space-time is a viscous fluid, and as the entropy pro
duction decreases to zero so does the viscosity (and, conse
quently, the anisotropy in the pressures), and the fluid be
comes then a perfect one. 
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The effects of shear on the occurrence of inflation are studied on the basis of a simple model for 
a spatially closed universe which enters an inflationary era. It is assumed that the universe 
enters a vacuum-dominated phase in an abrupt transition that occurs everywhere at the same 
time. The space-time geometries, before and after the phase transition, are matched to each 
other via the Lichnerowicz junction conditions. The Einstein field equations are solved exactly 
for a viscous universe of the Kantowski-Sachs type. It is found that the inclusion of (positive) 
shear retards the occurrence of the vacuum phase transition. The magnitude of this effect 
depends on the mass of the universe at the time of the phase transition. For a universe with a 
mass of about 10 kg (which is a value usually associated with the mass of the region from 
which our universe originated), it is found that the inclusion of shear does not really have a 
large effect on the time at which the vacuum phase transition occurs. The generality of the 
results is also discussed. 

I. INTRODUCTION 

Since Guth's 1 discovery of the inflationary scenario for 
the early universe, a considerable amount of work has been 
devoted to the study of the problem of which subset of the 
initial data for the Einstein equations can undergo sufficient 
inflation to explain the present state oflarge scale homogene
ity and isotropy of our universe.2- 12 

It has recently been shown 13 that initially expanding 
universes always undergo inflation provided that (i) the 
(positive) cosmological constant contributes to the energy
momentum tensor of the universe for all times, (ii) the uni
verse has nonpositive spatial curvature, and (iii) the matter 
content of the universe satisfies the standard energy condi
tions. 

One point of principle should be noted here, namely, 
that the energy density of the false vacuum only behaves like 
a cosmological constant during the finite period of time that 
the Higgs field ¢ spends in the "flat" region of the potential 
V( ¢ ), evolving towards the true vacuum. In addition, the 
above result requires the discussion of two questions: first, 
the question of whether the matter in the dense stages of the 
very early universe satisfies the energy conditions; and, sec
ond, the question of the general conditions under which 
closed (positive spatial curvature) universes can undergo 
inflation. 

The first question (or some variation of it) has been 
discussed in different contexts, viz., the avoidance of singu
larities,I4-19 the phenomenon of gravitational repulsion,20 
and in inflationary universe models.9 Barrow21 has recently 
argued that the assumption that the matter fields not driving 
inflation obey the strong energy condition is unsatisfactory, 
because the violation of this condition by one of the matter 
fields is a necessary condition for the occurrence of inflation 
(the cosmological constant arises from a massive scalar field 
that violates the strong energy condition). 

Regarding the second question, the basic features of 
closed inflationary universes can be seen from the "initial
value constraint" equation 

(1) 

where e denotes the volume expansion and P is the spatial 
curvature [for details see Refs. 4 and 13]. It shows that if the 
positive curvature is dominant in the early universe, then it 
causes the universe to reverse its initial expansion, forcing it 
to recollapse before it can undergo inflation. If the effects of 
the positive curvature become dominant only asymptotical
ly (t --+ 00 ), then it is clear that initially expanding closed 
universes will not recollapse, but they will continually ex
pand. However, the fact that a closed universe is ever-ex
panding does not guarantee that it will enter an inflationary 
era. Indeed it has recently been shown, by the present au
thor,11-12 that there exist closed universes that are ever-ex
panding, but which have a non-de Sitter asymptotic behav
ior for large times. 

The above discussion indicates that the following ques
tions are of special interest when studying (closed) cosmolo
gical models. 

(a) Does the matter content of the very early universe 
satisfy the energy conditions? 

(b) How does the relaxation of the energy conditions 
affect the behavior of a cosmological model? Can it change 
the character of the singularities or of the general evolution 
of a cosmological model? 

(c) Can the universe enter an inflationary epoch of ex
ponential expansion? If it does, what is the time at which the 
phase transition occurs? 

( d) What are the effects of shear on inflation in the case 
of anisotropic cosmologies? In particular, does the inclusion 
of shear retard or advance the occurrence of inflation? 

In view of the complexity of the Einstein field equations 
the only way to investigate these questions is to examine the 
behavior of explicit cosmological models. The purpose of 
this paper is to present a simple model that allows one to 
investigate the above questions in the context of a closed 
inflationary universe. 

This paper is organized as follows. In the next section, 
the model is described. In Sec. III, a specific class of solu-
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tions of the field equations is presented, which is interpreted 
as a model for the universe before the phase transition. The 
physical properties of these solutions as well as the energy 
conditions are discussed in Sec. IV. In Sec. V, the question of 
whether the solutions of Sec. III can enter an inflationary era 
is discussed. In Sec. VI, some of the implications of our re
sults are discussed. 

II. DESCRIPTION OF THE MODEL 

The model is based on the fact that, according to the new 
inflationary scenario,22,23 the period of inflation occurs dur
ing the early stages of the "rollover" of the Higgs fields, 
while the energy density of the universe remains roughly 
constant. Therefore, I will assume that one can define a finite 
time tp (the time of the "phase transition") such that the 
energy density of the universe does not significantly vary (is 
roughly constant) after tp: any change in the energy density 
of the early universe is assumed to occur only before the time 
ofthe phase transition tp. 

It is to be noted that when one solves the field equations 
in the presence of a positive cosmological constant the phase 
transition to a vacuum-dominated phase (if it occurs) be
comes completed only asymptotically in time. In our model 
the universe enters a vacuum-dominated phase in an abrupt 
transition that occurs everywhere at the same time tp. This 
aspect of the model presents certain similarity with the su
percooled phase transitions proposed few years ago by 
Hawking and MOSS24 for the exit from the inflationary stage 
without introducing inhomogeneities. 

Since the matter content of the universe is assumed to be 
different before and after the phase transition at tp ' the 
space-time geometry (before and after tp ) is described by 
different solutions of the field equations. In order for our 
model to work, these solutions have to be matched across the 
separating spacelike hypersurface tp via the Lichnerowicz 
junction conditions. This is an analogous treatment to that 
recently used by Wesson25 to obtain a nonsingular cosmolo
gical model in which matter is produced from empty Min
kowski space. 

The change of the space-time metric will lead to the 
phenomenon of particle creation. I will disregard this effect 
by assuming that the energy density n of created particles is 
negligible compared to the energy density Pv of the false 
vacuum. This assumption is suggested by a recent work of 
Ford,26 who showed (in another context) that n is typically 
of the order ofp~/ppl' wherepPI is the Plank energy density. 
Forpv = (1014GeV)4andppl = (1019GeV)4,n_1O-20pv' 
Consequently, after the transition at tp the energy density of 
the universe will be taken equal to Pv' 

For a given space-time geometry, our method leads to a 
set of algebraic equations that relate the shear, the mass, and 
the size of the universe to the time tp of the phase transition. 
Thus the solution of these equations allows one to investigate 
the questions (a)-(d) noted in the Introduction. 

I have studied different spatially closed cosmologies 
starting from a line element of the Tolman-Bondi type. I 
found that generally (in view ofthe complexity ofthe solu
tions involved) the junction conditions lead to equations 
that cannot be analytically solved. 
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Therefore, in this work I confine my discussion to a spe
cific class of closed cosmologies, namely, the Kantowski
Sachs (KS) cosmologies, for which all the equations can be 
solved exactly. KS cosmologies can be considered as particu
lar (homogeneous) cases of the spatially closed Tolman
Bondi metrics in the case where the azimuthal metric coeffi
cient depends on time only. Therefore, one can expect KS 
universes to contain the essential physics of more complicat
ed (realistic) closed universes with shear and without vorti
city. In addition, it may be worth mentioning that it has 
recently been argued that KS universes can be relevant to the 
description of phase changes in the early universe.27-29 

III. A MODEL FOR THE UNIVERSE BEFORE THE PHASE 
TRANSITION 

A. Equation of state and geometry 

It is assumed that the early universe had positive spatial 
curvature and shear, and that before the time tp ofthe vacu
um phase transition it was filled with a uniform fluid with 
energy density P and pressure p, related to P by the equation 
of state 

p=np, 

with 

O<n<l. 

(2) 

(3) 

In addition, the effects of viscosity are also taken into 
account. Therefore, the stress-energy tensor is taken as 

Tl'v = (p + p - te) UI' Uv - (p - te)gl'v + 2rwl'v' (4) 

where UI' is the fluid four-velocity, e is the expansion, ul'v 
are the components of the shear tensor, and t and 'T] are the 
coefficients of bulk and shear viscosity, respectively. 

There are several motivations for the introduction of 
viscosity in our model. 

First, bulk viscosity may arise in different contexts dur
ing the evolution of the early universe, e.g., in the evolution 
of cosmic strings30 due to their interaction with each other 
and with the surrounding matter, in a classical description of 
the (quantum) particle-production phases,31 and in many 
other physical phenomena. 32 

Second, since it is assumed that the universe is shear 
anisotropic, dissipative processes due to shear viscosity are 
consistent with the model. Therefore, if some kind of dissipa
tion occurred in the early universe, then it is reasonable to 
expect that it could have been associated not only with the 
bulk viscosity, but also with the shear viscosity. Therefore, in 
general, it is assumed here that t and 'T] are different from 
zero. 

Third, it will be shown in Sec. IV that, unless both bulk 
and shear viscosity are introduced in the model, the physical 
requirement of positiveness of the thermodynamic pressure 
is, in general, incompatible with the specific solutions we will 
discuss below. 

Next, it is assumed that the space-time geometry can be 
described by a line element of the Kantowski-Sachs type, 
viz., 
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The Einstein field equations corresponding to this line ele
ment are as follows (c = G = 1)33: 

• • • 2 

81TTO = AR +~+_1_ 
o R R2 R 2 ' 

I 2R R2 1 
81TT I =-+-+-

R R2 R 2 ' 
• • .. • 2 .. 

T 2 T3 AR A A R 
81T 2 = 81T 3 =-+-+-+-

2R 2 4 R' 

(6) 

(7) 

(8) 

Tp.v = 0, for Il=/=v, (9) 

where (0,1,2,3) == (t,r,O,t/J) and the overdots denote a deriva
tive with respect to t. 

In the comoving coordinate system 

up. = (1,0,0,0) , (10) 

the expansion and the nonvanishing components of the shear 
are given by 

e=A/2+2R/R, (II) 

u: = -2ui = -2u~ = -!(2R/R-A). (12) 

Substituting Eqs. (2) and (10)-(12) into (4), one ob-
tains 

p = Tg, P = nTg , (13) 

7J=(T~-r:)(2R/R-A)-I, (14) 

~= [nTg+j(T: +2n)](A12+2R/R)-I. (15) 

Thus there are five unknowns and only three equations. 
Therefore, in order to obtain specific solutions one has to 
make some additional assumptions. 

B. A class of ever-expanding universes of positive 
curvature: Self-similar solutions to (13H15) 

As we noted in the Introduction, Eq. (1) implies that 
there is a set of closed (positive spatial curvature) universes 
that recollapse. However, for the discussion of the questions 
( c) and (d) one needs to obtain expanding closed models 
that can cool down to the temperature of the inflationary 
phase transition. The question is then: how can one complete 
the field equations in order to obtain the desired kind of 
solutions? 

Now I proceed to derive the solutions to the above equa
tions which follow from the assumption that the quantities 
occurring in Tp.v are self-similar. This assumption is moti
vated by the fact that it excludes at the outset the possibility 
of having solutions representing recollapsing universes. In 
fact, following the classical notion of similarity, self-similar 
solutions (of the first kind) may arise only in systems with
out temporal or spatial characteristic scales.3

4-42 On the oth
er hand, recollapsing universes have intrinsic scale restric
tions, namely, the age ofthe universe (i.e., the time needed 
for a full cycle), and the "radius" of the universe. Therefore, 
our assumption assures that our model universe solution is 
ever-expanding (or ever-contracting). 29 

From a mathematical viewpoint the assumption of self
similarity means that the space-time admits a homothetic 
Killing vector, viz., 

(16) 
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where the left-hand side is the Lie derivative of the metric 
tensor with respect to the vector field S p.. 

In the case under consideration, by virtue of the spheri
cal symmetry, one can set S 2 = S3 = 0, withoutlossofgener
ality. Therefore, Eq. (16) reduces to 

so,O = 1, 

Aso+2sl,1 =2, 

Rso=R 
SO,I - fl's 1,0 = 0, 

(17) 

(18) 

(19) 

(20) 

where the commas denote partial derivatives. Since R is a 
function of t only, it follows from Eqs. (17) and (19) that 

SO = (t - to) , (21) 

R = (t- to)/a, (22) 

where to and a are constants of integration. Note that by 
changing the origin of time one can set to = 0, without loss of 
generality. Therefore, hereafter to = 0. 

Since fI' and SO are functions of t only, it follows from 
Eqs. (20) and (18) that 

S I = {3r, (23) 

where {3 is a separation constant. Consequently, from (18), 

fI' = C 2t 2(1-Pl , (24) 

where C 2 is a constant of integration. 
Thus, in summary, we have found that the sole assump

tion of self-similarity defines entirely the metric functions in 
Eq. (5). Now the substitution of Eqs. (22) and (24) into 
(6)-(9) and (13)-(15) gives the final form ofthe solution, 
as follows: 

ds'l = dt 2 - C 2t2(1 -Pl dr'l - (t 2/a2 ) [d0 2 + sin2 0 dt/J2] , 

(25) 

p = (3 - 2{3 + a 2 )/81Tt 2 , 

P = np, O';;;;n.;;;;l, 

~ = [ (a2 + 3) (I + 3n) + 2{32 - 2{3( 2 + 3n) ] ..!.. , 
241T(3 - {3) t 

({32 - 2{3 - a 2 ) 1 
7J = 161T{3 t' 

(26) 

(27) 

(28) 

(29) 

The non vanishing components of the generator of the 
homothetic symmetry are given by Eqs. (21) and (23). The 
expansion and shear are 

e = (3 -{3)/t, U= -{3//3 t. (30) 

The above solution represents a self-similar viscous uni
verse of the Kantowski-Sachs type that is ever-expanding 
(ever-contracting) for {3 < 3 ({3 > 3) and t> 0. For {3 = 3, 
e = ° and consequently there are no effects of dissipation 
due to bulk viscosity. In this case the universe is "static" in 
the sense that its volume is constant in time. However, the 
matter distribution, the "thickness" ofthe universe, as well 
as its extension in the two other directions change with time. 
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It should be noted at this point that the metric (25) is 
the only line element that has the property of self-similarity, 
in the case of universes of the Kantowski-Sachs type. 

Furthermore, to the best of my knowledge, the simple 
viscous-fluid model given by Eqs. (25)-(29) has not ap
peared before in the literature. 

IV. PROPERTIES OF THE MATTER DISTRIBUTION 

In this section we will discuss the questions (a) and (b) 
noted in the Introduction. I will show that the viscous-fluid 
model given by Eqs. (25)-(29) is consistent with the phys
ical requirements. 

A. Energy conditions and singularities 

The metric (25) contains two free parameters, viz., a 
and {3, which can be used in such a way as to assure that it 
constitutes a physically acceptable solution to the field equa
tions. Recall that, according to Hawking and Ellis,43 a solu
tion of the Einstein field equations is physically acceptable if 
the components of the energy-momentum tensor satisfy at 
least one of the standard energy conditions. For the distribu
tion under consideration these conditions read as follows44: 
The "weak" energy condition requiresp>O and (p + Pi) >0, 
where the Pi represent the principal pressures; the "domi
nant" energy condition requires p>O and - P<'Pi <.p; and, 
finally, the "strong" energy condition requires (p + Pi) >0 
and (p + ~Pi»O. 

It is easy to verify that the weak and the dominant ener
gy conditions are satisfied for all values of a provided that 

- fi+(iI <.{3<. 1 . (31) 

The fulfillment of the strong energy condition provides a 
more stringent lower limit on {3 than occurs in (31), viz., 

0<.{3<.1 . (32) 

Note the relation between the above conditions and the 
singularities: If all the energy conditions are satisfied, then 
the singularity is either pointlike ({3 < 1) or barrel-like 
({3 = 1); if neither the dominant nor the strong energy con
ditions are satisfied (but the energy density is positive), then 
the singularity is cigarlike. 

B. Conditions on the physical quantities 

In general the metric (25) represents an anisotropic dis
tribution of matter, in the sense that for arbitrary values of {3 
the principal pressures Pi are unequal. In fact, 

PI= -Tl =p-te-2110": = -(1+a2)/81Tt2, 
(33) 

P2 = P3 = - n = - n = P - te - 211~ 

- (1-{3)2/81Tt2. (34) 

We see that (i) the Pi are negative for all values of a and {3, 
and (ii) PI = P2 = P3' for{3= 1 ± (1 + a)I/20nly. Foroth
er values of {3 the source is anisotropic. Note also that, ac
cording to (31) and (32), only the choice of the negative 
sign leads to "isotropic" distributions with acceptable phys
ical properties. 
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Equation (29) shows that 11 diverges for {3 = O. This is 
not surprising, because for this value the fluid is shear-free 
and consequently the introduction of shear viscosity is inap
propriate. Therefore, in what follows, it will be assumed that 
(3 =1=0. 

In order to ensure that the viscous fluid interpretation of 
the solution is acceptable, the physical quantities in (26)
(29) must behave in a satisfactory manner, viz., p>O, P>O, 
p>p, t>O, and 11>0. It is easy to verify that these conditions 
are satisfied in the range 

(35) 

In this range the strong energy condition is violated, but 
the weak and dominant energy conditions are satisfied. 
Thus, in summary, we have found that the KS viscous-fluid 
universe given by Eqs. (25)-(29) is physically acceptable, 
but it necessarily violates the strong energy condition. 

C. Effects of viscosity 

Equations (33) and (34) clearly show the effects pro
duced by the shear and bulk viscosity. 

In fact, it follows from these equations that the matter 
content of the universe, in our model, can satisfactorily be 
interpreted as a "normal" fluid (i.e., as a fluid whose ther
modynamic pressure P is equal in all directions) only due to 
the introduction of shear viscosity. If there were no shear 
stresses during the expansion of the fluid the pressure P 
would not obey Pascal's principle. 

The introduction of bulk viscosity assures that the ther
modynamic pressure P is positive. In other words, bulk vis
cosity allows the existence of solutions that violate the strong 
energy condition, but that satisfy a reasonable equation of 
state, viz.,p = np with O<.n<. 1. In the absence of bulk viscos
ity the existence of this kind of solutions is, of course, not 
possible. 

D. Self-similarity, physical meaning of a and P 
As we discussed at the beginning of Sec. III B the as

sumption of self-similarity excludes recollapsing solutions. 
Therefore, although the Kantowski-Sachs universes have 
positive spatial curvature, the model under consideration 
represents universes that expand (t> 0) or contract (t < 0) 
forever, without dimensional constraints. Indeed, setting 

r= [a(P-I)/C{3] r P (36a) 

renders the metric (25) in a manifest scale-free form, viz., 

ds2 = dt 2 - 52
(1-P) dr 2 - r 25 2 d02 , (36b) 

where the similarity variable 5 was defined as 

5=t/ar. (37) 

In the new coordinate r the generator of the homothetic 
symmetry is given by 

t JL = (t,r,O,O) . (38) 

From the fact that the physical requirements discussed 
in Secs. IV A and IV B do not impose any restriction upon a, 
one could ask whether one can simply set a = 1. However, 
Eq. (36) shows that a cannot be eliminated by means of 
coordinate transformations, which indicates that this pa-
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rameter represents some physically meaningful quantity. 
In order to discover the physical meaning of a, let us 

introduce the mass function M(r,t) of Misner and Sharp,45 
viz., 

(39) 

where eV stands goo, a prime denotes a partial derivative with 
respect to r, and M(r,t) is interpreted as the total mass or 
energy inside a sphere of circumference 21TR. For the line 
element (25), the above expression reduces to 

M = [(a2 + 1)/2a3] t. (40) 

Consequently, the parameter a measures the total mass of 
the universe at a given time t. Similarly, Eq. (30) indicates 
that f3 measures the expansion and shear of the universe at a 
given time. 

V. TRANSITION TO AN INFLATIONARY ERA 

In this section we will investigate the questions (c) and 
(d) noted in the Introduction, namely, whether our ever
expanding viscous-fluid universe can enter an inflationary 
era. We will see that the parameters a and f3 determine the 
time of the phase transition tp. 

For t>O (a>O) the viscous-fluid universe (25)-(29) 
will continually expand and cool. It would then cool down to 
the temperature of the GUT phase transition and, according 
to the inflationary universe models, the universe would un
dergo extreme supercooling, approaching not the true vacu
um, but the false-vacuum state with a constant positive ener
gy density PV. In such a state the energy-momentum tensor 
in Eqs. (6)-(9) takes the form 

T,.,v = Pvg,.,v . (41) 

The corresponding solution to the field equations is given 
byll 

r!' =A 2je, 

R 2 = AR 213 + D I R - I , 

(42) 

(43) 

where A and D are constants of integration, and A is the 
usual cosmological constant A = 81Tpv. 

In accordance with the discussion of Sec. II, it is now 
assumed that one can define a finite time tp after which the 
energy density of the universe will be given by Eq. (41). In 
order for this assumption to be consistent with the field equa
tions one has to match the geometry of the space-time before 
tp with the geometry of the space-time after tp. 

Recall that two regions of the space-time are said to 
match across a separating hypersurface (say S) if the metric 
tensor and all its first-order partial derivatives are contin
uous across S (Lichnerowicz junction conditions). 

A. The matching 

In the case under consideration the separating hyper
surface S is defined by 

t - tp = o. (44) 

Because of the simplicity of the metrics (25), (42), and 
(43), the junction conditions can be solved exactly. In fact, 
the continuity of R at tp gives 

At; - 3(a2 + I)tp + 3Da3 = o. (45) 
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The continuity of A at tp gives 

2At; -6(1-f3)tp -3Da3=0. 

Solving these two equations we obtain 

tp = (1/$) (3 + a 2 
- 2{3) 1/2, 

(46) 

(47) 

D = (2/3$) [(a2 + f3)la3](3 + a 2 - 2f3) 1/2 . (48) 

From the continuity ofthe metric functions at tp , one obtains 

Rp =R(tp) = (1/a$) (3 + a 2 - 2{3) 1/2, (49) 

(A IC)2 = a 2
[ (3 + a 2 - 2f3)/ A] {1-/Jl . (50) 

The above equations show that the assumed phase tran-
sition is consistent with the matching conditions. Indeed the 
viscous-fluid universe under consideration has acceptable 
physical properties in the range a > 0, 
(l-..JT+Ci!)<;f3<0 [Eq. (35)]. It is not difficult to see 
that, within this range, tp, D, Rp, and (A /C)2 are positive 
and real quantities. Therefore, for every a and f3 (belonging 
to the physically allowed range), one can find from Eqs. 
( 47) and (48) the corresponding values of t p and D for 
which the solution (25)-(29) enters a vacuum-dominated 
phase. Thus the only condition required for the correct 
matching of both solutions is that D> o. 

Consequently, the question of whether the viscous-fluid 
universe can undergo inflation reduces to the investigation 
of the conditions under which the false vacuum metric (42) 
and (43), with D> 0, has inflationary solutions. 

B. Range of parameters that allow inflation 

Obviously, the solution will not undergo inflation for all 
positive values of D. Some features of the solutions of Eq. 
( 43) may be exhibited by introducing the auxiliary function 
VCR) by 

VCR) = 1/R2 -D/R3, 

in terms of which Eq. (43) reads 

R2=R2[A/3- V(R)]. 

(51) 

(52) 

Thus the region of allowed values of R is given by the 
inequality 

V(R) <;A/3 . (53) 

Figure 1 shows that there are three different types of 
solutions, which are marked with the roman numerals I-III. 
The solutions marked with I are recollapsing solutions. Re
gions II and III represent the solutions that may undergo 
inflation, because for these solutions R may take arbitrary 
large values. 

It is easy to prove that our viscous-fluid solutions are 
matched to the false vacuum solutions marked with III, in 
the figure, and not to those of I or II. In fact, the solutions of 
III are those for which Vrnax < A/3, where Vrnax denotes the 
maximum value of VCR), which is Vrnax = (4/27D 2). Thus 
D> 2/3$ in III, while, for the solutions of I and II, 
0< D < 2/3$. Examination of Eq. (48) reveals that 

E= [(a2 + f3)/a3 ](3 + a 2 - 2{3)1/2> 1, (54) 

for all values of a and f3 in the range of allowed values given 
by Eq. (35). Consequently, in our model, D> 2/3$ and so 
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R(D) 

---.)s: ...... iA,rI.n Region 

FIG. 1. Shape of the auxiliary function V(R) defined by Eq. (51). The 
figure shows that Eq. (43) has three types of solutions. The solutions corre
sponding to I are recollapsing. while those of II and III may produce an 
inflationary scenario. The viscous fluid solution (25)-(29) is matched to 
the inflationary solutions of III (A/3 > Vmax = 4/27 D 2) for all allowed val
ues of a and /3. 

after the transition at t = tp the universe is described by the 
vacuum solutions of III. 

The conclusion is that our model undergoes inflation for 
all values ofa andpallowed by Eq. (35). 

C. Asymptotic behavior 

We now proceed to discuss question (c) quoted in the 
Introduction. 

Equation (43) can be analytically integrated only for 

one specific value of D, namely, D = 2/3$ ( V max = A/3), 
which corresponds to a recollapsing solution II (there is an
other analytic solution46 for D = 0, but according to the pre
ceding discussion it cannot be matched to our viscous-fluid 
universe model). For all other positive values of D the solu
tion is given in terms of elliptic integrals. However, the es
sential features of the solutions may be seen from the expres
sions for the expansion and shear, viz., 

9=$A 1--+- 1--+- , ( 
2 e )( 3 2e) -1/2 

x 2 x 3 x 2 x 3 
(55) 

$( e)( 32e)-1I2 U=- 1-- 1--+- , 
x2 X X

2
X

3 
(56) 

where e is the parameter defined in Eq. (54) and x=.,JAR. 
These equations (with e> 1) clearly show that the universe, 
after the transition to a vacuum-dominated phase, will rap
idly evolve to an isotropic state with an expansion rate 

9 = $A. As the universe expands the term (D I R - 1) in 
Eq. (43) becomes small compared with AR2/3. This will 
lead to an exponential expansion of R and the universe will 
rapidly approach a state locally indistinguishable from the 
de Sitter one, viz., 

(57) 

where we have set A 2 = 3/Aro, 0:: means asymptotically 
equal, and ro is a constant of integration. 

According to the inflationary universe models the false 
vacuum state is not stable, but at the end of inflation it would 
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decay into particles with a subsequent reheating of the uni
verse. This would end in a hot radiation-dominated homoge
neous and isotropic universe. Thus our closed viscous-fluid 
universe can give rise to an acceptable inflationary scenario. 

D. Effects of shear 

We now proceed to discuss question (d) quoted in the 
Introduction. The shear and mass of the universe at the time 
tp of the phase transition depend on the choice of a and p. 

As an illustrative example, let us consider the case a = 1 
and P = (1 - v'2), in which case the principal stresses of the 
energy-momentum tensor are equal to each other. From 
Eqs. (47), (40), and (30) we obtain tp -1.26X 10-35 sec, 
Mp -5.1 kg, and up -1.88X 1034 sec-I, where the valuepv 

-1.6X 1097 erg/cm3 (~31 A_IO-35 sec) has been used. 
Note that, although, by Eq. (40), M depends explicitly 

only on a, the value of Mp (the mass ofthe universe at the 
time ofthe phase transition) depends also onp through tp. 
The same thing occurs with the shear [Eq. (30)] evaluated 
at tp ' which implicitly depends on a. For a fixed Mp the' 
possible values of the parameters a and p are given by 

p = ~ + a 2/2 _ 6m2a 6
/[ 4.05(a2 + 1)]2, 

I-ff+(iT<J3<0, (58) 

where the dimensionless parameter m measures the mass Mp 
in kg, viz., M = m kg. The solutions of (58) have been used 
to draw the effects of the shear on the time of the phase 
transition for various values of Mp. Figure 2 records these 
effects. It shows that [in the range given by (58)] the de
pendence between t p and up is (to a high degree of accuracy) 
lineal and that tp increases with the increase of up. 

VI. SUMMARY AND CONCLUSION 

Based upon the fact that inflation occurs while the ener
gy density of the universe remains (roughly) constant, we 
have constructed here a model for an inflationary closed uni
verse in which the transition to a vacuum-dominated state 
occurs at some finite time tp after which the energy density of 
the universe is constant. The phase transition is described as 
a change in the space-time geometry. The universe makes a 
transition from the matter-dominated (preinflationary) 
state described by Eqs. (25 )-(29) to the vacuum-dominated 

1 

o 

...... M=SkS 
'- M=10kS 

o 1 2 :3 4 5 
6, [fo" ".c-'] 

FIG. 2. Effects of shear and mass on the time of the phase transition tp' The 
figure gives tp [Eq. (47) 1 versus the shear [Eq. (30)] for various fixed 
values of Mp' The parameters a and/3 are the solutions ofEq. (58). It shows 
that tp increases linearly (in the range under consideration) with the in

crease of up' 
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(inflationary) state described by Eqs. (42) and (43). The 
strongest assumption is that this transition occurs every
where at the same time, but it has been shown that this as
sumption is consistent with the usual continuity require
ments (matching conditions). The main motivation for 
introducing this model has been the study of the effects 
caused by the shear and mass of the universe on the occur
rence of the vacuum phase transition. 

We have seen that the inclusion of (positive) shear re
tards the occurrence of the vacuum phase transition. This 
effect is, however, very weak because the inclusion of large 
shear of the order of 1034 sec - I causes very little change in 
the time of occurrence of the phase transition. In addition, 
this effect depends on the mass Mp of the universe at the 
moment of the phase transition. In fact, Fig. 2 shows that for 
large masses, tp is relatively insensitive to the change of u. 
Only for "small" values of Mp does the "retardation effect" 
become manifest. 

It is also interesting to note that there is a close connec
tion between the mass of the universe and the upper limit of 
the shear at the time of the phase transition tp. Massive uni
verses inhibit the shear to take very large values and this 
causes these universes to enter a vacuum-dominated phase at 

the GUT time to -~3/ A (see Fig. 2). 
Thus in the context of the models discussed here, one 

can conclude that the inclusion of shear does not really have 
a large effect on the phase transition. A very large (positive) 
shear can only lead to a significant retardation of the time of 
the occurrence of the phase transition, if the mass of the 
universe at that time were sufficiently small. Whether or not 
these results are still valid in other (spherically symmetric) 
anisotropic, spatially closed cosmologies is an interesting 
subject for further investigations. This is especially true, be
cause our results are apparently in disagreement with other 
results in the literature, where it is argued that, if inflation 
occurs in some isotropic universe, then the addition of ani
sotropy can only make the inflation occur more easily and at 
earlier times.9 In view of this disagreement, further investi
gation is needed for a better understanding of the role of the 
shear in the early universe. 
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In the framework of higher-order calculus of variations, the generalized Legendre 
transformation for a wide class of Lagrangians is considered, which depend in a nonregular 
way on the derivatives of maximal order. A rigorous theory is discussed for Lagrangians 
depending on a constant rank set of affine combinations of these derivatives. This allows the 
reduction of the Poincarb-Cartan formalism and the Hamiltonian formalism to the 
appropriate constraint in the appropriate phase space of the problem. The case considered here 
covers many important physical examples, such as the Yang-Mills theories (at order one) and 
relativistic metric theories of gravitation (at order two). 

I. INTRODUCTION 

In recent years, it has been noticed by many authors that 
some higher-order nonlinear Lagrangians can be trans
formed by a suitable change of dynamical variables into 
simpler ones, possibly linear and oflower order. This phe
nomenon occurs in different contexts. To our knowledge, it 
has been used in the following situations. 

(a) By Einstein and Eddington!·2 and later by Schro
dinger,3 in view of possible applications to unified theories, 
to establish a link between "metric" and "affine" formula
tions of general relativity and other gravitational models. 
This idea (which is described in Sec. V A) was given re
newed attention some years ago, especially by Kijowski and 
one of US4

•
5 to prove the dynamical equivalence between a 

whole class of "purely affine" gravitational theories and gen
eral relativity (possibly coupled with external fields), and to 
derive a unified formulation of Einstein-Maxwell equations 
from an affine Lagrangian. 6. 

7 

(b) By Higgs in 1959,8 and more recently by Whitt,9 in a 
second-order context, to prove the dynamical equivalence 
with general relativity (plus suitable matter) for a class 
of gravitational theories in metric formulation (namely, 
those based on quadratic Lagrangians of the type 
L = -r=g [aR + bR 2] ). Higgs also considered the case of 
Lagrangians quadratic in the Ricci tensor R"v' Recently, we 
were able to show 10. 1 1 that this equivalence holds for a wider 
class of Lagrangians, containing at least all covariant 
Lagrangians depending arbitrarily on R"v' In particular, 
our results allow us to recover and extend earlier 
work by Stelle,12 who showed that, in the case 

L = -r=g (aR + bR 2 + cR"vR "V), the particle spectrum 
contains a spin-two massless graviton satisfying Einstein's 
equations, coupled with a spin-two ghost and possibly a sca
lar field. Nontrivial generalizations to supergravity of these 
earlier results can be found in recent literature. 13 

All these examples refer to gravitational field theories, 
for which the investigation of such equivalence problems has 
been carried out more deeply. This is easily explained if one 
considers that, in general, higher-order Lagrangians are 
commonly neglected for well-known reasons (for instance, 
the lack of positivity of the metric structure in the space of 
states, after quantization), while in purely metric gravita
tional theories the appearance of second-order derivatives is 
unavoidable for covariance reasons. However, in dealing 
with the gravitational field, the transformation methods pro
posed by the aforementioned authors are commonly be
lieved to rely only on the peculiar features of the dynamical 
variables (metric tensor and/or linear connection), so that 
the very nature and the general validity of these procedures 
are somehow hidden. For instance, it seems that the well
known equivalence between some quadratic metric theories 
and general relativity is apparently considered in the current 
literature as a purely accidental feature. 

On the other hand, as it was earlier suggested by Schro
dinger/ the method thereby proposed, rather than being an 
ad hoc prescription restricted to gravitational theories only, 
should be a particular application of a general transforma
tion rule suitable to deal with any (sufficiently regular) La
grangian field theory. The nature of the Legendre-type 
transformation of this method seemed to be intuitively evi
dent; however, the construction of a consistent mathemat
ical framework justifying this terminology also for higher
order nonhyperregular models, such as those for which the 
momenta are not all independent, was until now an open 
problem. For instance, we might mention a remarkable se
ries of papers by Kuchaf l4 where, among other things, an 
explicit prescription for the Legendre transformation of any 
field theory was envisaged. However, we stress that the argu
ments of Ref. 14, although interesting, constitute only a first 
preliminary step toward solving the problem; in fact, they 
refer to the first-order case only, depend on regularity as-
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sumptions that are not well specified, and are of essentially 
local character. 

We shall present here a rigorous and global description 
of the generalized Legendre transformation and the Hamil
tonian formulation for higher-order field theories, under re
gularity conditions that are weak enough to cover all of the 
well-known examples of physical interest. To avoid any pos
sible confusion about our terminology, let us briefly recall 
that the Hamiltonian picture of dynamics, which is essential
ly unique for mechanical systems, admits different general
izations to the field-theoretical domain. Starting from the 
Lagrangian formulation of field theory, which is governed 
by a variational principle, we can obtain an equivalent de
scription of dynamics in terms of energy and energy flows. 
This is in fact the description which in most of the physical 
literature is assumed to be the Hamiltonian one, and which 
generates the useful dynamical splittings commonly known 
as ADM's formalisms (see, e.g., Refs. 14-19 and references 
quoted therein). 

On the other hand, geometric approaches to the Le
gendre transformation,20 and a better understanding of the 
role in which the Poincar6-Cartan form plays in both me
chanics and field theories,21-24 have led in recent years to a 
different generalization of the Hamiltonian formalism. 
Roughly speaking, this different perspective is based on the 
identification of the canonical momenta with the compo
nents of the full differential of the Lagrangian density, rather 
than the components conjugated to the time derivatives only 
(whereby the time variable is either predefined or somehow 
selected on physical grounds). 

A general formulation of the global Legendre transfor
mation theory for higher-order variational principles was 
already described in the hyperregular case, in terms of mor
phisms between suitable jet bundles. 25.26 In this formalism a 
predominant role was assigned to the so-called Legendre 
bundle. Unfortunately, physically meaningful theories can
not be hyperregular in the standard sense, mainly as a conse
quence of covariance or symmetry requirements. A consid
erable step forward, aimed at extending the domain of 
applications of this formalism, therefore needs to investigate 
weaker regularity conditions (see also Ref. 27 for the notion 
of regularity). To fix the ideas, we recall that whenever the 
Lagrangian density is not regular, the image of the Legendre 
map cannot be the whole Legendre bundle; as a matter of 
fact, it is precisely in this image that a correct Hamiltonian 
formulation may be given. 

In this paper we shall consider Lagrangian theories of 
any order, assuming explicitly that the Lagrangian depends 
on the highest-order derivatives through a set oflinear com
binations of arbitrary, but not maximal, rank. This situation, 
although very particular from the mathematical viewpoint, 
is very common in physical models. To make the paper self
contained, Secs. II and III will be mainly devoted to a review 
of the notation and on the theory of the Legendre transfor
mation for regular cases. We shall then produce a suitable 
Hamiltonian description on the image of the Legendre map, 
whereby the full set of (generally redundant) highest-order 
momenta is from the beginning replaced by suitably defined 
momentumlike new variables, whose definition is directly 
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suggested by the explicit assumptions made on the Lagran
gian. Various examples will be considered at the end of this 
paper. In this way we hope to help a better mathematical 
understanding of all the gravitation-theoretic examples 
mentioned above, by showing the relation between those 
particular cases and the general framework presented here. 

A more direct Legendre transformation method for 
first-order theories will be discussed elsewhere by one of 
US,28 under much weaker regularity conditions, providing a 
Hamiltonian description that is based on expressing all high
est-order momenta in terms of an arbitrary set of coordinates 
in the image of the Legendre map. 

II. PRELIMINARIES AND NOTATION 

We assume that the reader is familiar with standard con
cepts and notation of differential geometry on fibered mani
folds and jet prolongation theory. 23,29 

We shall deal with variational principles, defined in 
terms of the following basic objects. 

(a) A differentiable manifold X, dim (X) = m, repre
senting the space of physical parameters (for instance, a 
four-dimensional space-time); a local coordinate system on 
WCX will be denoted by (W,XA). 

(b) A fibered manifold Y over X, which is interpreted as 
the configuration space of the model; its (local) sections 
OEr(Y) will represent the physical fields, or dynamical vari
ables. We shall use only fibered parametrizations of Y, de
noted by (U,x",/), 1 ,;;;,i<,h [h = dim(Y) - m is the dimen
sion of the fiber ofY, and U is an open subset ofY projecting 
over the domain W of a chart (W,XA) of X ]. The rth order jet 
prolongation of Y will be denoted by Jr Y. The "natural fi
bered chart" on Jry, induced by the chart (U,x"./) on Y, 
will be denoted by (J'U,x",y~), Ivl <,r. Multi-indices will be 
denoted by underlined Greek I~tters: :!::== (vl, ... ,vm )ENm

• 

We set 

Ivl ==VI + V 2 + .. , + Vm (length of the multi-index), 

:!::!== (VI!) (v2!) ... (vm !), 

w(:!::) == I:!::I!I:!::! (weight of the multi-index), 

!A == (0,0, ... ,0,1,0, ... ,0) (1 in the A. th position), 

:!:: +.1.== (VI +A.JoV2 +A.2,,,,,vm +A.m )· 

There are natural projections Jr Y ..... JS Y, for r>s; we recall 
that for any r> 1, J' Y admits a natural structure of affine 
bundle over Jr- I Y. 

(c) A Lagrangian of order r, that is a fibered morphism 
L:J'Y ..... A mr*x, which associates a volume m-form on X to 
any (local) section ofY, together with its derivatives up to 
order r. The critical sections are those (local) sections 
OEr(Y) which make stationary (in the sense of the calculus 
of variations) the action functionals, defined as the integrals 
S DLoj' u, for any compact domain DC X. The Lagrangian L 
is locally expressed by a scalar density L(x",y~), and can be 
equivalently represented by a global horizontal m-form 
ct>(L) = L(xAmy~ )ds over J'Y, whereds = dx l 

/\ ••• /\dxm. 
In the sequelwe shall also refer to the following objects, 

which, according to Ref. 26, are involved in the globalization 
of higher-order calculus of variations. 
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(d) The Poincare-cartan fonns 9 (L,n, i.e., the global 
m-fonns on J 2r - IV, locally defined by the following expres-
sions: 

,-1 

9(L,nIJ2'-'U = L j"f').(L,n(J)~ Ads). + ~(L), 
Ivl =0 
- (2.1) 

where r is a linear connection in the basis manifold X; 
ds). ==B). J ds; ~(L) is a shortcut for the local expression of 
the "pull-back" of the actual ~(L) over J 2,- IV; the one
fonns (J)~ = dy~ - y~ + I dxu belong to the natural basis for 
the cont~ct one-fo~s o~ J 2,- IU; the coefficientsir").(L,n, 
called "components of the contact part of the Poincare-car
tan form," satisfy global differential equations which locally 
read as follows: 

p:,).=~ for I~I =r-l, 
I ay~+!. ' 

f'/+dpff+!"p=a~L , for O..;;I~I<r-1. 
~~+ 1. 

(2.2) 

The existence and construction of global Poincare-cartan 
fonns were discussed by various authors. 30-33 Poincare-car
tan fonns allow us to single out the critical sections of L by 
means of the following condition, which is equivalent to 
Euler-Lagrange equations: a section OEr(V) is a critical 
section iff 

(2.3) 

for any vector field E which is vertical with respect to the 
projection J 2,- IV -+X. The reader can easily check that in 
the case m = 1, r = I, the definitions (2.1) and (2.2) lead to 
the well-known Poincare-Cartan form of analytical me
chanics: () = Pi (dqi - ii dt) + L dt, Pi = aL fail, and that 
Eq. (2.3) reduces to the classical Euler-Lagrange equations 
dp;idt - aL faqi = O. 

(e) The "rth order Legendre bundle" L'Y,26 which is 
the vector bundle over J' - I V defined by 

L'Y==J'-IVX [V*(V) ®So (X) ® A "'T*X] , (2.4) 
y 

where X means the fibered product over V; V*(V) is the 
y 

dual of the vertical tangent bundle of V; So (X) is the bundle 
ofsymmetric tensors oftype (r,O) over X. A natural fibered 
chart on L'Y will be denoted by (L'U,x).,y~,P¥), I~I = r, 
I ~I..;;r - 1. The Legendre bundle is related to J'Y ~ia the 
Legendre map ~L: J'Y -+L'Y, which is defined in the next 
section. According to Ref. 26, this bundle seems to be the 
most natural arena for the Hamiltonian description of dy
namics, at least in the hyperregular case. In this sense, it 
plays a role in field theory which is analogous to the role 
played by the cotangent bundle T*Q in analytical mechan
ics. Further natural generalizations of the phase space of 
mechanics exist in higher-order field theory, namely the 
phase bundle and the momentum bundle, which in our opin
ion play different roles. 26 In particular, the phase bundle 
P(V) is the vector bundle over V defined by 

P(V) ==V*(V) ® A mT*X. (2.5) 
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With this definition the differential d4l(L) of the Lagran
gian fonn ~(L) can be viewed as a section ofP(J'Y) over 
J'Y. 

III. REGULARITY CONDITIONS AND LEGENDRE 
TRANSFORMATION 

A. Survey about the hyperregular case 

Here we summarize some fundamental ideas about the 
Hamiltonian fonnalism described in the previous pa
pers,25.26 which the reader may refer to for more details. 

To any Lagrangian L of order r over V we associated a 
bundle morphism ~L: J'Y -+L 'Y, over J'- lV, which in any 
natural fibered chart is expressed as 

aL ""',- = -, 111._1 = r. 
Yi ay~ r-

(3.1 ) 

The bundle morphism ~ L is called the Legendre map. For 
reasons which shall be clear later, the image 1m (~L ) C L 'Y 
will be called the Hamiltonian constraint, which we denote 
by HC(L). Equations (3.1) can be suitably interpreted as 
the local equations defining HC(L). In general, to make a 
Hamiltonian description of dynamics possible, we should at 
least require that HC(L) be a fibered submanifold of L 'Y; 
this is probably the weakest requirement on L for this pur
pose. 

Following Ref. (25), the regularity condition on ~ L is 
locally expressed as 

det[ a
2

L.] #0, lEI = I~I = r, 
ay~ay~ 

(3.2) 

in any natural fibered chart. This is equivalent to the require
ment that the Legendre map ~ L be a local diffeomorphism. 
If ~ L turns out to be a global diffeomorphism, we shall say 
that the Lagrangian L is hyperregular. The Hamiltonian 
constraint HC(L) coincides with the whole Legendre bun
dle if and only if L is hyperregular. 

In the hyperregular case, the rth order jet prolongation 
of~L transfonns the (2rth order) Euler-Lagrange equation 
for L, which defines a fibered submanifold of J 2'Y, into an 
equivalent rth order equation over L 'Y, which defines a fi
bered submanifold of the bundle J'(L 'Y). Explicitly, we de
fine the (global) Lagrangian Equation LE(L) CJ2'Y by the 
following local relations (in any natural chart): 

f (- 1)1~1 d~( a~ ) = O. 
I'!I=O ayu 

(3.3 ) 

The fibered submanifold LE(L) is globally well defined, 
since it is the inverse image of the zero section of the phase 
bundle P(J2'Y). 

Now, we define a fibered submanifold 
HE(L) CJ'(L'Y) by setting 

HE(L) == (j'4IL 0L"')LE(L), (3.4) 

whereL"': J 2'Y -+J'(J'Y) denotes the canonical embedding. 
In any natural fibered chart (L'U,~ ,y~,P¥) of L'Y, the fi
bered submanifold HE(L) is described by the following 
equations: 
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Y:,u _du[aH(L,U)] =0 (lul<r,llll =r), 
c·_ - aPt --

(3.5) 

r~1 ( _ 1)1!!ld!![aH(~'U)] _ ( _ I)r ) PT..E! = 0, 
1!!1=0 ay!! 1E!l=r 

where a local m-form H(L,U) :=H(L,U)ds, called local 
Hamiltonian, has been defined over L'U by the following 
prescription: 

H(L,U):=(<I>L).{[ ) Y~ a~ ]dS-<I>(L)} 
IE!I= r aYE! 

:={[(2~/~ :~ )-L ]O(<I>d-l}dS. 
(3.6) 

Although the submanifold HE(L) is globally defined by 
(3.4), the local Hamiltonians defined in each chart by (3.6) 
cannot be patched together to define a global m-form. To 
overcome this difficulty, one can apply a globalization pro
cedure based on the choice of a section of the affine fibration 
J'Y __ Jr-Iv (see Refs. 26 and 34) and show that there ex
ists a (necessarily not unique) global form H which gener
ates HE(L). Roughly speaking, this amounts to singling out 
a zero section of the affine bundle (in a suitably covariant 
way). Physically, that procedure corresponds to fixing a rest 
frame in particle mechanics. 

For reasons of space and simplicity we cannot describe 
this method and we shall recall only how one can construct a 
global Hamiltonian H (we refer the reader to Refs. 26 and 
34, where the method is worked out in full detail). Let 
c: Jr- IV --J'Y be a global section of the affine fibration 
J'Y __ Jr-IV, and let l- IY--(l-Iy,c~ (l-Iy », with 
III I = r, be the local representation of the section c in a fi
bered chart. A global Hamiltonian He (L) can then be de
fined as follows: 

He (L)IL'U 

:=(<I>L).{[) (y~_c~(jr-Iy»a~ ]dS-<I>(L)} 
IE!I= r aYE! 

:=H(L,U) - (<I>L). {[ L c~ (jr-Iy ) a~ ]dS}. 
1E!I=r aYE! 

(3.7) 

The corresponding Hamiltonian equations may be found in 
Ref. 26, Eq. (5.8). 

When the global formalism is not strictly necessary, we 
shall restrict our further discussion to the local setting; ac
cordingly, in the sequel we shall write H for H(L,U) and H 
for H(L,U), omitting any explicit reference to the local 
character of this object. 

Let us now remark that the strong regularity condition 
(3.2) plays an essential role in the above formalism, since the 
local Hamiltonian (3.6) is explicitly defined by a "push
forward" morphism over the Legendre map, which is de
fined only if <I> L is a diffeomorphism. In order to extend this 
formalism to nonregular cases, one can hope to overcome 
the difficulty in two ways: either by proving, by an implicit 
function argument, that (local) m-forms H exist on the 
Hamiltonian constraint, such that the following holds, 
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(<I>L)*[H] = {[ ~ y~ a~ ]dS-<I>(L)}, 
IE!I= r ayE! 

(3.8) 

or, in an alternative but hopefully equivalent way, by re
stricting the Legendre map on suitably reduced spaces, in 
order to invert it explicitly. The former approach will be 
introduced in Ref. 28, where first-order problems are consid
ered in their full generality; in the present paper we shall 
adopt the latter viewpoint, dealing with a restricted but phy
sically interesting class of problems of arbitrary order. 

B. Polncare-cartan forms over the Legendre bundle 

Let us now re-express the relation between the Lagran
gian and Hamiltonian picture in an alternative way, i.e., in 
terms of the equivalent description of dynamics generated by 
the Poincare-cartan forms. This will tum out to be useful in 
the sequel. 

In this picture, as we said above, Euler-Lagrange equa
tions assume the form (2.3). The Hamiltonian picture is 
obtained by taking the image of the Poincare-cartan forms 
9(L,r) under the Legendre map <l>L' If the Lagrangian is 
hyperregular, one can set 9(H,r):= (<I>L ).9(L,r) and 
find the following explicit local expressions: 

9(H,r) IL'U = ( L /t). dy~ 
I~I = r-I 

+ ri2 

/'i').{J)~) /\ds). + H, (3.9) 
I:!:I =0 

where the coefficients/T·). for I~I = r - 1 are defined as fol
lows: 

(3.10) 

while the remaining coefficients n')., for I~I <r - 2, satisfy 
equations which are analogous to equations (2.2) above. 
The structural contact forms (J)~ are obtained via "push-for
ward" over <I> L' namely by expressing the highest-order 
components y~, I~ I = r, as functions of the coordinates in 
L 'Y, via the inverse Legendre map: 

I~I = r- 1, 
( 3.11) 

Under these assumptions, the Hamiltonian equations 
(3.5) tum out to be equivalent to the following condition for 
Hamiltonian extremals pEr(L 'Y): 

(jp)*[i::;d9(H,r)] =0, 

for any (vertical) vectorfield E over L 'Y. 

IV. LEGENDRE TRANSFORMATION IN 
NONHYPERREGULAR CASES 

A. A typical nonhyperregular case 

(3.12) 

Let L = L ( ly) be a Lagrangian of order r on V. If the 
Lagrangian is not hyperregular, but the Legendre map has 
constant rank K<n (n=h[(m+r-I)!/r!(m-I)!]), 
there exist K functionally independent functions 
kA(jr-Iy,y~), A = I, ... ,K, such that the functional depen
dence of L on the highest-order derivatives IE!' I~I = r, 
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passes entirely through the functions k A themselves. In oth
er words, we can write 

L( ·r) L-( 'r~1 k A ( 'r~1 i» A 1 lY = 1 y, 1 Y'Yl!' = , ... ,K<n. 
(4.1 ) 

In this paper we shall fix our attention to the class of 
(nonhyperregular) Lagrangian field theories which satisfy 
the hypothesis (4.1), under the additional assumption that 
the functions k A are affine combinations of the highest-order 
derivatives. In other words we assume that the following 
holds locally: 

kA(jr~ Iy,y~) = L A1l!(jr~ Iy)y~ + TA(jr~ Iy ), 
Il!l = r 

(4.2) 

where A is an n X K matrix of rank K. This situation, which 
could seem to be rather exceptional from a purely math
ematical viewpoint, is in fact very often encountered in the 
physical literature; for instance, both general relativity (as 
well as all "alternative" metric theories of gravitation) and 
Yang-Mills theory display this feature. 

Our aim is to show that under a suitable regularity con
dition (which is weaker than hyperregularity) one can ob
tain for the class of Lagrangians considered an equivalent 
Hamiltonian description of dynamics. This description, 
which is close to the ordinary one for the hyperregular case, 
is based on a method which allows to find a natural parame
trization of the Hamiltonian constraint HC(L) and, conse
quently, to define a Hamiltonian directly on the Hamilto
nian constraint itself. 

Let us first restate our hypotheses (4.1) and (4.2) in a 
more intrinsic way. Let K be a vector bundle, of rank K, over 
Jr~ lV, and let (x,\y~,k A), A = 1, ... ,K, Ivl <r - 1, be a (lo
cal) fibered parametrization for K. In the sequel, for the sake 
of brevity, we shall sometimes write (jr~ Iy,k) instead of 
(x'\y~,kA). Let also SK: J'Y -+K be a surjective morphism 
of affine bundles over J'~ IV, i.e., a morphism locally de
fined by relations of the form (4.2). Our hypothesis on the 
Lagrangian can be thence restated as follows: there exists a 
reduced Lagrangian l: K -+ A "'T*X such that the original 
Lagrangian L factors as 

L = LosK. (4.3) 

As usual, L can be represented by a horizontal m-form 
ct><L) = L(jr~ Iy,~ )ds. 

The differential dct>(L) of the reduced Lagrangian form 
ct> <L) can be viewed as a section of the phase bundle P (K) 
over K. Since K is a vector bundle over Jr~ IV, there is an 
isomorphism 

P(K)~p(J'~IV) X K X [K*®A"'T*X], (4.4) 
Jr-Iy Jr-I y 

where K* is the dual vector bundle ofK-+J'~ IV. 
Using a natural projection we can define a map 

al: K -+ K* ® A "'T*X, (4.5) 

which is a morphism of bundles over J'~ IV and which rep
resents the differential of ct> <L) with respect to the variables 
k A alone. (It is in fact the vertical differential of L with 
respect to the natural projection K -+ J' ~ IV.) The local rep
resentation of (4.5) is the following: 
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aL 
1T ---A - akA' (4.6) 

where (jr~ ly ,1TA) is a natural coordinate chart in K*. 
We say that the original Lagrangian L is K-hyperregular 

iff the reduced Lagrangian L is hyperregular, i.e., the mor
phism aL is a bundle isomorphism between K and 
K* ® A "'T*X. This implies that locally L satisfies the condi
tion: 

d t[ a
2

L ]#0 
e akAak B ' 

(4.7) 

which can be called the condition for (local) K-regularity 
for L. 

Let us remark now that it is not difficult to define a dual 
morphism: 

(SK )*: K* ® A"'T*X-+L'Y, (4.8) 

by using the fact that K-+J'~ IV is a vector bundle and 
SK: J'Y -K is an affine morphism over Jr~ Iy. The mor
phism (SK ) * is locally represented by 

rJL (akA) AAl!( 'r~ I ) 1', = 1T A --. = 1T A j 1 y, 
ay~ 

(4.9) 

where the last equality follows from (4.2). 
Consider now the following diagram: 

aI 
K --•• K*®AmT*X 

SK f l(SK)* 

J'Y ----•• L 'Y 

ct>L 

This diagram is commutative, i.e., we have 

ct>L = (SK )*oaLosK. (4.10) 

Relation (4.10) is in fact the global version of the chain rule 

aL aL akA ---- 1~I=r. (4.11) 
ay~ - akA ay~' 

Since the Hamiltonian constraint HC(L) =Im(ct>L) ~L'Y 
is represented by the local equations (3.1 ), we see from (4.9) 
and (4.11) that whenever aL is a surjective morphism the 
following holds: 

HC(L) = Im(ct>L ) = Im[ (SK )*] ~L'Y. (4.12) 

Since (SK ) * is an injection, the equality (4.12) assures that 
the bundles K* ® AmT*X and HC(L) are isomorphic. 
Therefore, (j' ~ ly ,1T) can be considered, without any confu
sion, as coordinates on the Hamiltonian constraint HC(L). 

From now on we shall assume that the Lagrangian L is 
K-hyperregular [for local purposes it would be enough to 
require that the local condition (4.7) holds]. Under this hy
pothesis the relation (4.12) holds a fortiori. We can thence 
define by range-restriction a reduced Legendre map 
ct>z:: K -+ H C( L) by setting 

ct>L == (SK )*oct>L' 

or equivalently: 

ct>L = ct>z:oSK' 

(4.13) 

(4.14) 

This is of course a bundle isomorphism, which is locally ex-
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pressed by a relation which is formally identical to (4.6), 
provided the coordinates 1T A are now considered as coordi
nates in HC(L). 

This allows a bijective Legendre transformation from 
the truly dynamical part K of the velocity space J'Y onto the 
Hamiltonian constraint HC(L) in the phase space L'Y. In 
fact, we can define the reduced Hamiltonian 
H: HC(L) -->A"'T*X by setting locally 

H = [ aL k A _ I ] 0 ($_ ) - I 
akA L 

= 1T A [ k Ao ($1 ) - I] - Lo ($1 ) - I 

= 1TAk A(j'-ly ,1T) - L(j'-ly ,1T), (4.15) 

where I and k A appear as functions on HC(L) via the in
verse Legendre map ($1) - I. We stress that the local ex
pressions (4.16) define in fact a global m-form on HC(L).1t 
is easily checked that in any fibered chart U the following 
holds: 

( 4.16) 

which in a suitable sense defines in HC(L) a local m-form H 
satisfying (3.8). 

Therefore, any Poincare-Cartan form 9(L,r) turns 
out to be the pull-back onto J2r - Iy of the global m-form 
9(H,r) defined over y-1HC(L) by the following local 
equations: 

9(H,r) = [ ')' W(I!:,>1TA At!!: dy~ 
1!!:l=r 

+ r~2 /'i';'{J)~] Ads;. - (H -1TA TA)ds. 
1!l=o 

(4.17) 

Here, the coefficients /'i';', Ivl";;r - 2, as in Eq. (3.9), are 
expressed in terms of the natu~al coordinates in Jr - I HC(L) 
by means of the Legendre map. 

Moreover, the appropriate Hamiltonian equations can 
be obtained by specifying that the Hamiltonian extremals 
are those local sections p: W -->HC(L) which satisfy the 
equations 

Up)* [i= d9(H,r)] = 0, (4.18 ) 

for any (vertical) vectorfield E: over Jr-I HC(L). A vari
ational principle can be associated to the Hamiltonian equa
tions by means of the Helmholtz Lagrangian LlI, defined by 

LlI(j'y,1T) ='1TAkA(j'y) - H. (4.19) 

We shall consider this expression again in the remarks be
low, in connection with the concept of dual Lagrangians. 

B. Remarks 

(a) The hypotheses (4.6) and (4.7) arebothessentialin 
our discussion, but it is worthwhile to consider separately to 
what extent each one ofthem restricts the domain of applica
tion of our method. If the dependence of the functions k A on 
the highest-order derivatives of the fields/ is nonlinear, one 
has no direct way to define a morphism (SK)* which closes 
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diagram (1). Let us stre~~bowever, that this occurrence 
does not imply the absence of a Hamiltonian description in a 
more general sense28

• The existence of the Hamilton func
tion is in fact assured under weaker conditions, as it can be 
easily seen from worked examples. On the other hand, the 
Hessian of I with respect to k A may be degenerate, but still 
of constant rank: in this case, HC (L) is still embedded as a 
subbundle into L'Y (its rank, i.e., fiber dimension, is obvi
ously the rank of the Hessian of I ), but the K functions 1T A 

are not independent and they do not provide a parametriza
tion of HC(L). Nevertheless, the correct parametrization 
for this case could possibly be obtained by a suitable choice 
of a maximal independent set among the functions 1T A' Ac
cordingly, the expressions (4.6) and (4.19) would still be 
valid, provided the remaining functions 1T A are assumed to 
be functionally dependent on the former ones and provided 
this is taken into account when varying L lI . 

(b) Allowing the rank K to be equal to n in the above 
framework one reobtains, in a different parametrization, the 
results already known for the hyperregular case. We also 
remark that in the particular case r = 1 the regularity condi
tion (3.15) turns out to be automatically satisfied, so that 
our results for r = 1 are in agreement with those presented in 
Ref. 18 for the general situation. 

(c) Let Land L ' be two Lagrangians of order rand s, 
respectively, defined on two different fibered manifolds Y 
and y' over X. We say that Land L ' are dynamically equiva
lent if a fibered morphism ¢: J'Y --> J"Y' exists such that the 
following holds: a section OEr (Y) is a Lagrangian extremal 
for L if and only if the image sectionp = ¢(j'U)Er(J"Y') is 
the sth order prolongation of a Lagrangian extremal for L '. 
It is intuitively clear, and it could be shown explicitly, that 
the Legendre transformation establishes a dynamical equiv
alence between the original rth order variational principle on 
Y and a variational principle of the same order r on the vec
tor bundle L'Y =. V* (Y) ® S~ (X) ® A "'T*X, which is para
metrized by the coordinates (~,/,P'T). This variational prin
ciple is described by the Helmholtz Lagrangian L lI , which 
depends linearly on the derivatives of order r in such a way to 
generate equations of order s=.inf{2(r - 1 ),l}. It happens 
sometimes (as we shall see in some of the examples below, 
namely the affine gravitational theories and the Weyl's con
formal gauge theory), that a further step makes possible to 
eliminate completely the dependence of LlI on the original 
dynamical variables yi. In this case, one finds a dual vari
ational principle which is formulated in terms of the mo
mentaPr and their jet prolongations only. In the known ex
amples this occurrences seems to be purely accidental, but in 
fact it is deeply connected, in general, with the geometric 
structure of the bundle L'Y and with its possible splittings. 
This subject is currently under investigation. Whenever this 
third equivalent representation of dynamics can be obtained, 
the connections between the corresponding three sets of 
equations turn out to provide a particular example of a Lie
Backlund transformation, which is a subject of considerable 
interest in the formal theory of PDEs (for a thorough pre
sentation of this subject, see Ref. 20). 

( d) It should be clear at this point that the physical 
motivation for the Hamiltonian formulation of field theo-
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ries, in the sense presented hereby, is completely different 
from the usual motivation for the other possible "Hamilto
nian pictures" already mentioned in the Introduction. In 
fact, these latter ones are considered in order to provide a 
time evolution description offield dynamics. Our approach, 
on the contrary, is aimed to a deeper understanding of the 
structure of physical theories. In particular, we hope that 
investigating alternative formulations of the same theory, 
through different sets of dynamical variables, can help to 
emphasize the distinction between the physical contents and 
the mathematical machinery in field-theoretical models. 

V.EXAMPLES 

A. Flrst-order affine gravitational theories and the 
"Einstein-Eddington prescription" 

The so-called affine theories of gravitation are a natural 
field of application of the methods presented above. In fact, 
it is well known that the requirement of general covariance 
implies that a Lagrangian can depend on the first derivatives 
of a linear connection only through the Riemann tensor and 
the covariant derivative of the torsion tensor. Thus, when a 
linear connection is assumed to be the dynamical variable, 
one is led directly to the situation described by (4.5) and 
(4.6). When dealing with a symmetric connection (or more 
generally with a Lagrangian independent of the torsion), the 
functions k A are thus to be identified either with the inde
pendent components of the Riemann tensor or with some 
suitable combinations of these ones. The correct identifica
tion of the functions k A is usually determined by the regular
ity condition (4.7): the choice could be not unique, but dif
ferent choices compatible with (4.7) lead to different 
parametrizations of the same bundle K. 

As a first example, let us recall the affine formulation of 
general relativity, due to Eddington and Einstein. I

-
3 Ac

cording to the definitions adopted in this paper, we describe 
this model by assuming X to be a four-manifold representing 
the physical space-time, Y to be the bundle oflinear symmet
ric connections over X, and the Lagrangian to be defined by 
setting 

(5.1 ) 

~re~~~-~~+~~-~~is~ 
symmetric part of the Ricci tensor associated with a section 
r ofY, and z:;60 is a real number. Setting for brevity 

J-:;V= _ (z/2)(G AI'c5; - GV/A~)~ldet(GaP)I, 
(5.2) 

whereG A.pis the inverse of GAl' ,i.e., G A.pGI'V = c5~, we obtain 
the Lagrange equations for L E in the following form: 

V aJ~,.a~aaJ~I'a + r!aJ~I'a 
+ r~,J ~ua - r~,J -::a = o. (5.3) 

To apply our procedure, we assume that K is the quotient 
bundle J1y /:::::, under the equivalence relationi r:::::i r' iff 
GAl' (i r) = GAl' (i r'). The fiber ofK is thence spanned by 
the ten independent components of GAl" It is easy to check 
that the following holds: 
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(5.4) 

We now set 

---.aB aLE Z aP r.-=-:--:-=---:-, 
1T~~--=-G "ldet(GAI')I. (5.5) 

aGaP 2 
It is convenient, in this case, to replace the contravariant 
symmetric density ~P with the associated metric tensor yaP 
defined by 

y"P ~P = J:.... GaP. 

" Idet( ~V) I Z 

(5.6) 

We thus find 

II = (4/z)~ Idet( YI'v) I, (5.7) 

Llf(y,ir) = [y"PGap(ir) -4/z]~ldet(Yl'v)l· 
(5.8) 

Llf is a metric-affine Lagrangian, which is very close to 
the standard Einstein-Hilbert Lagrangian for the purely 
metric version of general relativity with a cosmological con
stant. In fact, Llf differs from that one only because Gap is 
the Ricci tensor associated to the dynamical connection r!p 
rather than the Ricci tensor RaP associated to the Levi-Ci
vita connection {~} of the metric YaP' However, if one uses 
the definition (5.6) and replaces GaP with (z/2) YaP in the 
relation (5.2), the dynamical equations (5.3) become 

r A ap = {!p}. (5.9) 

We can thus substitute RaP (/Y) for Gap(/r) in (5.8),and 
show in this way a complete dynamical equivalence between 
general relativity and the affine theory based on the Lagran
gian (5.1). The definition (5.6), which introduces in a ca
nonical way a metric tensorfield in the framework of a purely 
affine theory, coincides with the well-known "Eddington
Einstein prescription" (shortly "E-E prescription"). We 
stress that the procedure to obtain the Lagrangian Llf fol
lows exactly the general method described in the previous 
section. The further step, which consists in replacing 
Gap (ir) with RaP (ly), is instead based on the particular 
geometric features of the objects involved. 

This procedure has been generalized to any affine La
grangian of the type 

L=L(Gap,rAaP)' (5.10) 

The application of the E-E prescription 

y"P~~ 1 
aGap ~detllaL/aGI'vll 

(5.11 ) 

and the consequent metric reformulation of the theory, have 
led to the general result that any such theory is dynamically 
equivalent to general relativity.s As a consequence, all these 
theories can be considered as affine formulations of general 
relativity. Moreover, starting from a generic connection 
with torsion, it has been shown in recent years by Kijowski 
and one of us (M. F.) that a whole family of unified Lagran
gians exists, such that the corresponding metric (i.e., Hamil
tonian) counterpart generates explicitly the coupled Ein
stein-Maxwell dynamical equations.6

•
7 

Let us remark once more that the identification of the 
E-E prescription with a Legendre transformation has been 
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suggested several times in the previous literature. The main 
motivation of this paper was in fact to provide a satisfactory 
geometric motivation for this identification. 

B. Yang-Mllls theory 

The Yang-Mills gauge model provides another example 
of a possible application of our formalism. When the gauge 
field is the only field present, the configuration bundle Y can 
be identified with the bundle C of all connections of a princi
pal bundle P over space-time X, with structure group G. The 
reduced Lagrangian LYM depends on the curvature form of a 
connection A, i.e., on the coefficients 

Fal'V = al'A av - avA av + cabcA bl'A cv' (5.12) 

where c:C are the structure constants of the Lie algebrag; it is 
defined by setting 

(5.13) 

whereby ~fJ is a metric on X, fixed a priori, and 1Jab is an 
invariant metric on g. One can immediately see that LYM 

depends in a regular way on the components F;v' and one 
easily finds 

aL 
1T/"v=2 ~ = FbpurgVu1Jab~ldet(gafJ) I, (5.14) 

aF;v 

iI = I 1T I'v1T PUg g 1Jab (5.15) a b J.IP VO' , 

~ldet(gafJ)1 

H = I 1T I'v1T PUg g 1Jab 
a b I'pvu 

4~ Idet(gafJ ) I 

1 I'V a A b A C 
- 21Ta C bc I' v' (5.16) 

(5.17) 

From the transformation laws of Fal'V and of 1Tal'V as given 
by (5.14) one easily realizes that the appropriate reduced 
bundle and its dual for a free Yang-Mills theory are 

KYM = g ® A2T*X, K~M = g* ® Am - 2T*X. 

The quadratic Lagrangian LYM is a field-theoretic ana
log, from our viewpoint, of the Lagrangian L = !mq2 0 fpar
ticle mechanics. The Legendre transformation is straightfor
ward and does not seem to provide any really new 
information for this case. 

On the other hand, let us shortly comment on a more 
general Lagrangian coupling the gauge field with a charged 
field, i.e., 

L=LyM(/A) +L'I'(A,/'I1), (5.18) 

where the field '11 is a section of a suitable vector bundle E 
associated to the principal bundle P. The configuration bun-

dle is now Y=CxE. Following the steps described above 
x 

for the Lagrangian L yM , we can perform a partial transfor-
mation 

JI(CXE) =J1CXJ1E-+VCXJ1E, 
x x x 

whereby H plays the role of a "Routh function" rather than 
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the role of a Hamiltonian. In this case the relevant reduced 
bundles will be the following: 

K = [KYM EaJ1E] XC, K* = [K~M EaJ1E] XC. 
x x 

If the interaction Lagrangian L'I' is sufficiently regular 
with respect to '11 one could also perform a total Legendre 

transformation J1(CXE) -+L1(CXE). In this case, a par-
x x 

tial transformation J1CXJ1E-+J1CxVE is also possible. 
x x 

We cannot exclude that a suitable combination of these 
transformations may reveal some relationship between dif
ferent theories of some physical interest. This problem is 
currently under investigation and will form the subject of 
further papers. 

c. Second-order metric gravitational theories 

We recall the results presented in our previous paper, 10 
to which we refer the reader for further details. 

A purely metric gravitational theory is a second-order 
theory on the bundle of all Lorentz metrics r a(3 over a four
manifold X; general covariance implies that the Lagrangian 
depends on the first and second derivatives of r afJ only 
through the Riemann tensor. For simplicity, we shall deal 
with Lagrangians depending only on the Ricci tensor 
KafJ (fr) of r afJ' defined as usual by 

KafJ ={!(3 },A - ea},fJ + {!(3 Hru} - {!uHpA }; 

accordingly, we set L to be 

L(fr) =£ [KafJ (fr),rafJ]· (5.19) 

The Euler-Lagrange equations are in general of the fourth 
order: 

rfJ + !(~v;l'vyal' + ~v;l'vyfll' 
- #v;jLV ya(3 - ~fJ;I'V yP-V) = 0, 

where we have set 

r(3 = aL , 
arafJ 

~fJ = aL . 
aKa (3 

The regularity condition then becomes the following: 

(5.20) 

(5.21) 

(5.22) 

detll a
2

L 11#0 (5.23) 
aKa(3 aKAI' . 

As in the case of affine theories, it turns out to be con
venient to express the Hamiltonian formulation through the 
metric tensor ~fJ associated to the momentum ~fJ, i.e., to 
follow the E-E prescription, which in this case reads as fol
lows: 

~fJ= aL 1 
- aKafJ ~ldet(aL/aKl'v)1 

(5.24) 

Following our general rules we obtain 

LlI =~fJKafJ(fr)~ldet(gl'v)1 -iI(~fJ,rl'v), (5.25) 

where iI(~(3,rl'v) is easy to calculate (its expression can be 
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found in Ref. to). We introduce now the tensor 
Q~p (ig,ir) by setting 

Q~ =!r.tU(Vprau + Varup - VuraP)' (5.26) 

where Va denotes the covariant derivative with respect to 
the Levi-Civita connection of the metric gaP' This allows us 
to re-express KaP (fr) through the Ricci tensor RaP (fg) 
of the new metric gaP , so that the following relation is easily 
inferred: 

Lii = [gaPRap(fg) +gaP(Q~pQ:.t 

.t - p 
- Q uP Q:.t) ] " I det(gl'v ) I - H(~ ,rl'v) 

(5.27) 

(up to a divergence term). In the expression (5.27) an Ein
stein-Hilbert term for the new metric gaP appears, while the 
original metric raP appears together with its first derivatives 
only, and it is coupled to gaP as if it were an external matter 
field in general relativity. 

If external matterfields are present in the original La
grangian, a partial Legendre transformation can be per
formed without any substantial difference, as it was shown in 
Ref. to. If the derivatives of the external fields appear only 
up to the first order, as it commonly happens, this "partial" 
transformation turns out to be the total one. Even if the Le
gendre transformation does not seem to affect the external 
fields, however, their coupling with the field raP in the Ham
iltonian picture is obviously different from the original one. 
The interaction of raP ,gaP and the external fields after the 
transformation depends in a nontrivial way on the structure 
of the original Lagrangian. This occurrence is physically rel
evant: in particular, in fact, the transformation does not pre
serve the condition of minimal coupling; conversely, it is 
possible to transform a theory with nonminimal interaction 
into a minimally coupled one. 

A different situation occurs when the Lagrangian de
pends only on the scalar curvature K(fy) =yaPKaP (fr): 

L(fr) =J[K(fr)]~ldet(rl'v)l, (5.28) 

where/satisfies the regularity condition 

d 2
/ -=0. 

dK 2 
(5.29) 

In this case K is a bundle of rank one, fiberwise spanned by 
the variable 

'IT= d/ ~ldet(rl'v)l. 
dK 

We thus find (see Ref. to): 

Lii = 'lTK(fr) - H('lT,rl'v):' 

(5.30) 

(5.31) 

A further step allows us to show the equivalence of Lii with 
an Einstein-Hilbert Lagrangian describing the interaction 
of the new metric gaP defined by setting 

(5.32) 

with the scalar field 'I' = log I 'lTv' I det ( r"V) II. Remarkably 
enough, the definition (5.31) is exactly equivalent to the B
E prescription, even if the Legendre transform is essentially 
different in this case, since a Lagrangian depending only on 
K (fr) cannot satisfy the condition (5.23). The reader can 
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find in Ref. to the detailed calculation for the cases 
/= [K( fr)]p (p;fO,l) and for the well-known theory of 
Wey1.36 It is worthwhile to remark that the Legendre trans
formation for Weyt's theory assumes exactly the form of a 
"gauge-fixing" prescription, and the scalar field 'II is reab
sorbed by the gauge transformation, so that no new field 
appears after the whole procedure (on this subject, see also 
Ref. 11). 
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The structure of the equations describing a soli tonic wonnhole in the Einstein-Yang-Mills
Higgs system for an arbitrary compact and connected gauge group !f' and representation of an 
arbitrary Higgs field Q is studied. The general structure of these equations and its use in 
deriving the first-order equations, which result by applying the operator ON = limN_o a IaN 
to the original equations, where N is the lapse function, is discussed. It is also possible to write 
down the nth-order equations, which are obtained by applying n times the operator ON' for a 
certain class of solutions. These nth-order equations are then specialized to the model with 
.9 = SU (2) and Q in the adjoint representation. These nth-order equations on the background 
of a non-Abelian zero-order solution, which can be gauge transfonned to satisfy the 't Hooft 
ansatz at the internal infinity of the hole, are solved. The technique used to solve the system is 
that ofhannonic expansion, yielding an algebraic system of equations which can be interpreted 
as an eigenvalue problem. The eigenvalues are functions of the parameters of the model and 
zero-order quantities. Thus, depending on the values of these parameters, nontrivial nth-order 
solutions may exist or not. Those cases in which there exist nontrivial solutions are stated. 
Only for those cases can it be expected that global non-Abelian solitonic wormholes are found. 

I. INTRODUCTION 

Several authors 1-3 proposed long ago to consider black 
holes as solitons. A careful analysis revealed that by making 
certain mild conjectures, the only classical solution of the 
Einstein-Maxwell system satisfying all of the conditions 
that should be required from a soliton candidate in a theory 
containing gravity is the non rotating, magnetically charged, 
extreme Reissner-Nordstr6m wormhole. 1 Extreme worm
holes are characterized by the fact that their Hawking tem
perature is zero and therefore they are semiclassically stable. 

Unlike usual solitons, however, a wormhole is a hard 
object: Its interaction with high-energy gravitons does not 
tend to zero as the energy of the gravitons grows beyond all 
bounds. This suggests that soliton creation and annihilation 
processes will play an important role in graviton scattering 
for energies larger than the soliton mass. They might there
fore change the high-energy behavior of the theory (see, e.g., 
Refs. 4 and 5). 

It is known that pure Yang-Mills (YM) theories do not 
possess solitons; one has to couple them to Higgs fields 
(leading to solutions of the 't Hooft-Polyakov type) or grav
ity. In Ref. 6 Nieuwenhuizen et al. found a regular solution 
of a 't Hooft-Polyakov magnetic monopole in curved space 
whose metric is asymptotically Reissner-Nordstr6m with a 
magnetic charge. However, this solution is not of the fonn of 
which we are interested: It is not a hole, but a gravitating 
monopole. Asymptotically, though, it has the desired behav
ior. In the Einstein-Maxwell case the solitonic solution is the 
embedded Reissner-Nordstr6m solution mentioned above. 
The quantum theory of this soliton was studied in several 
papers by Hajicek.4

,7 Of course, this solution can always be 
embedded in a theory with a larger gauge group. The main 
idea is to work only with the domain of outer communica
tion D with respect to all wonnholes present. The space-time 
is assumed to be asymptotically Minkowskian: D covers the 

whole of the asymptotic region including both timelike infin
ities; it is bounded by the future and past horizons, which 
intersect each other at H, the boundary of the holes; and it is 
totally hyperbolic. Every Cauchy hypersurface for D con
tains H. The fields at H must therefore be fixed. 

The question arises as to whether more extreme soli
tonic solutions exist if one couples gravity to non-Abelian 
YM and scalar fields. This question was studied in a series of 
papers. 8,9 First it was pointed out that the boundary values at 
internal infinity H of every solitonic solution of the Einstein
Yang-Mills-Higgs (EYMH) system must satisfy a set of 
equations, called the zeroth-order equations. This zeroth
order set of equations is obtained from the full EYMH equa
tions at the limit as one approaches the internal infinity (for 
more details see Ref. 9 or Sec. II of the present paper). It 
turns out that much can be said about the full (global) solu
tions by considering the zeroth-order system, e.g., about the 
rigidity of the geometry of the internal infinity of an extreme 
hole. Especially, the boundary values at H of fields belonging 
to global solutions must be elements of the set of solutions of 
the zeroth-order equations. 

However, the zeroth-order solutions are not sufficient if 
one wants to know more details about the global solutions. It 
might be that different global solutions have the same 
boundary values at the internal infinity H and thus the same 
zeroth-order behavior, i.e., they will be indistinguishable in 
the zeroth-order system. One is therefore led to study the so
called "nth-order equations," which are nothing but the lim
it of the nth-order derivative of the field equations with re
spect to the lapse function N as one approaches the internal 
infinity H (N measures the radial distance in a Cauchy sur
face from the compact, two-dimensional surface H defined 
by N=O). 

The set of solutions of the nth-order equations contains 
the allowed boundary values of the nth-order derivatives of 
the fields at N = 0, building up a soliton. The first-order 
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system was studied for a specific model and it was found that 
nontrivial (i.e., nonzero) solutions of this system existed 
(the nth-order system is a linear system; hence the zero solu
tion is always a trivial solution). Some of the solutions exist
ed only if the parameters of the model satisfied certain rela
tions. The existence of these nontrivial first-order solutions 
might indicate the existence of different solitonic solutons 
having the same zeroth order, i.e., the same boundary values 
at the internal infinity H. 

It is clear that some of the first-order solutions corre
spond to the radial change of a given global solution having 
the zeroth-order value used as "background," but some oth
er first-order solutions might indicate that different families 
of solutions are branching off from a common zeroth-order 
value. Here we are faced with a problem analogous to that of 
linearization stability in the case of perturbations around 
some global solution: The existence of nontrivial first-order 
solutions (apart from those describing the "radial" behav
ior) does not guarantee that there is in fact a new family of 
solutions branching off. As the equations split into evolution 
equations along Nand evolutive constraints on N = const 
surfaces, which are propagated by the evolution equations, 10 

an analysis analogous to that given in Ref. 11 might be per
formed, giving clues as to which first-order solutions are 
tangent to a curve of global solutions. A recent article by 
Bartnick and McKinnon 12 reports numerical calculations 
which indicate the existence of a smooth nonsingular solu
tion in an EYM model, which could be tangent to the first
order solution described in Ref. 8: Their particlelike solution 
is regular everywhere and asymptotically Schwarzschild. 
Only near internal infinity could it be approximated by one 
of our solutions. 

In this paper we will derive the general first- and nth
order equations for special cases. This is easily done if one 
studies what we shall call the "N structure" of the full field 
equations, i.e., the way in which the lapse function N enters 
the field equations and thus determines which terms will not 
vanish in the limit N -+ O. This allows us to prove, among 
other things, e.g., that the N = 0 surface corresponds to a 
Killing horizon. 13 . 

Specializing the first-order equations to a definite ze
roth-order solution, i.e., inserting for the zeroth-order quan
tities (such as the boundary values of the electric field E, the 
magnetic field B, the metric gAB' etc.) appearing in the first
order equations one of the solutions found in Refs. 9 and 14, 
one obtains a definite set of equations which can be solved by 
expanding the fields in appropriate harmonics. In Ref. 8 this 
was done for a SU (2) model using as the zeroth-order solu
tion the one realized by the embedded Reissner-Nordstrom 
solution. 

One can do the same for the zeroth-order solution hav
ing a non-Abelian monopole structure. If one uses the nth
order equations, the conditions for the existence of nontri
vial nth-order solutions will lead to equations relating the 
order-counting parameter n and the parameters of the mod
el. 

It is clear that the nth-order equations can also be ob
tained in another way: Expand all fields in terms of the pa
rameter N, insert the expansions into the field equations, and 
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consider separately every order of N. 
In Ref. 8 it was proposed to construct extreme solutions 

of the EYMH system in a series in the parameter N. The 
different coefficients are nothing but the solutions of our 
nth-order equations. We are, of course, particularly interest
ed in source-free global solutions, i.e., without any charge or 
matter distributions between static internal infinity and P. 
The problem consists in finding which contribution belongs 
to which class of solutions. 

This article is organized as follows. In Sec. II we fix the 
notation and restate the characteristics that we require from 
a soliton candidate. In Sec. III we write explicitly the EYMH 
system in such a way that the relevant N structure is evident. 
This helps us in Sec. IV to derive the first-order equations 
and a special case of the nth-order equations. In Sec. V we 
specialize our equations to the case with the gauge group 
~ = SU(2) and insert the non-Abelian zeroth order solu
tion found in Ref. 14, which together with the Abelian solu
tions derived in Ref. 9 and analyzed in Ref. 8 seem to be all 
the zeroth-order solutions. This is in all respects analogous 
to a perturbative calculation on a given background. In Secs. 
VI and VII we expand the fields in the appropriate way and 
insert this expansion into the equations. This leads to a linear 
system of equations with the characteristics of an eigenvalue 
problem. The eigenvalue is given in terms of zeroth-order 
quantities and the parameters of the model. We then discuss 
in Sec. VIII the existence of nontrivial solutions to this sys
tem for each of the three possible cases discussed in Ref. 14. 

II. THE MODEL 

In this section we want to fix our notation and give a 
brief summary of the model. More details can be found in 
Ref. 9. Our Lagrangian is 

L=LG+LM, 

where LG and LM are given by 

and 

LG = 16:r J d3X~ -g(R - 2A) 

LM =_I-Jd3x~ -g 
41T 

X [!(GIl,.,GIl'')g + ~(D/,Q,DIlQ)q + V(Q)]. 

For later convenience we denote four-dimensional quanti
ties with a caret. Elsewhere we use the same notation as in 
Ref. 9: gil" is the metric of space-time, g=det(g/ll')' r is 
Newton's constant, and A is the cosmological constant. The 
gauge field strengths Gil'. are given by 

Gil" =allw,. -a"wll - [WIl,W,.], 

where the Lie-algebra-valued potential WIl transforms un
der the gauge transformations U(X)E~, with ~ being the 
gauge group, as 

W;, =ad(U)J¥" - u-1all U. 

The gauge-covariant derivative of a Lie-algebra-valued field 
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A (x) that transforms homogeneously under gauge transfor
mations Uis 

DpA = ap A - ad( Wp )A. 

The gauge transformation U(x) changes the scalar field 
Q, which is assumed to be an element of a linear space Rq in 
which a representation ~ of the group ;j is realized, as 
follows: 

Q'(x) = ~(U(x»Q(x). 
The corresponding gauge-covariant derivative is 

DpQ=ap Q- ~(Wp)Q. 

We use the following conventions: The signature of the met
ric gpv is + 2, the curvature tensor R ~Pt7 is defined by 

A A. A A A A A 

R ~Pt7 = apr~t7 - at7r~p + r~pr~t7 - r~t7r~p' 

the Ricci tensor Rpv is defined by 
A A 

R1-'1' =R~P1" 
and the Ricci scalar R is defined by 

R = gI-'1.R'H" 
The gauge group is assumed to be a compact and con

nected Lie group whose Lie algebrag admits a real, bilinear, 
symmetric form (')g which is positive definite, constant on 
space-time, and invariant under the action of the group. 

We also assume that a real, symmetric, bilinear form 
exists on R q , which we denote by (,) q: It is positive definite, 
constant on space-time, and invariant under the action of the 
group. 

The representation ~ and the two forms <. ) q and <. ) g 

determine uniquely a g-valued bilinear, skew-symmetric 
form w <. ) according to 

(QI,~(A)Q2)q = (W(QI,Q2),A)g' 

The function V( Q) is a real function on Rq satisfying the 
following conditions: 

al-' V = (av ,ai' Q) 
aQ q 

and 

( av ,~ (A)Q) = 0, VAEg, QERq, 
aQ q 

which guarantee constancy on space-time and invariance 
under the action of the group. Using the properties of the 
linear forms, the variation of the Lagrangian L leads to the 
following field equations: 

(1!~ -g)Dv(~ _gGI"') -w(DPQ,Q) =0, 

_l_D (~ _gD"Q) _ av =0. 
~ _g I-' aQ 

(2.1) 

(2.2) 

(2.3) 

Equations (2.1 )-(2.3) are covariant with respect to general 
coordinate and gauge transformations. The effective energy
momentum tensor Tpl' is given by 

1'1-'1' = TI-'v - (A/Snr)gI-'1' 

and 
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p.r.v = _ (2!~ - g )(6LM /6gp ,,) 

= (l/41T) [(GJlP,G"p)g 

- W'''(Gp'',GP'')g + (DI-'Q,D"'Q)q 

-~"(DpQ,DPQ)q -~"V(Q)]. (2.4) 

Our aim is to find out whether the EYMH system of 
equations (2.1)-(2.3) has more than one glObal solitonic 
solution, i.e., the embedded Reissner-Nordstrom solution. 
These solutions must satisfy a set of conditions if they are to 
be considered as solitons. These conditions are listed in full 
detail in Ref. 9 and here we give a brief summary: 

(i) The solution (...ff ,gl-'V,WI-',Q) is static. In fact, this 
condition can be weakened since we only require that the 
solution is asymptotically static as one approaches the inter
nal boundary. 

(ii) Here (...ff,gI-'1"W",Q) is maximal. 
(iii) If Sis a hypersurfacein (...ff ,g",v) that is orthogonal 

to the timelike Killing vector and inextendable, then S is a 
Cauchy surface for (...ff ,gl-'v ) and further, it is complete with 
respect to the distance function associated with the positive 
definite metric induced by g",v on S. 

(iv) The space-time (...ff ,gl-'v) is asymptotically flat and 
the ADM energy is finite. 

(v) From conditions (i) and (iii), together with a 
further technical assumption regarding the function goo, it 
follows that the space-time metric can be written in the form 

d~ = - N 2 dt 2 
+p2 dN 2 + gAB dxA dxB

, (2.5) 

where A,B = 2,3,N> 0 in JY' and where JY' is the nonempty 
set of regions in S in which goo has no critical points and the 
surfaces g(KI = const are compact. Further, 
P =p(N,X2,X3

) >0, gAB = gAB (N,X2,x3
), and resulting 

from condition (iii), 

limp-I =0. 
N-O 

We will denote the covariant derivative with respect to the 
four-dimensional metric g1-'1' with V and the covariant deriv
ative with respect to the two-dimensional metric gAB with V. 

(vi) The quantities p, gAB' Wo, WA , Q are smooth (COO ) 
functions of the coordinates N, X2, x3 in JY'. The derivatives 
of gAB' WA , Q of order O,I, ... ,n + 2 and of (Np)-I a1wo of 
orderO,I, ... ,n + 1 with respecttoNare continuous functions 
of Nand smooth functions of x2

, x3 at N = O. For the pure 
Einstein or Einstein-Maxwell system, the smoothness fol
lows from much weaker conditions, e.g., some curvature 
scalars must be bounded. 

We have restricted the gauge of Wp and Q as follows: 

aowl-' = 0 = aoQ (2.6) 

and 

WI =0. (2.7) 

The completeness of S guarantees that the hole is of the ex
treme type. In Ref. 1 it was shown that in the Einstein
Maxwell system the only possible soliton candidate satisfy
ing both classical and semiclassical conditions were the ex
treme holes. We point out that we do not assume the exis
tence of a regular horizon. However, it was shown that 
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solutions satisfying conditions (i)-(vi) always have a Kill
ing horizon. 13 

In order for WI' to have finite components in an ortho
normal tetrad, the following must be true: 

lim Wo=O. (2.8) 
N-O 

The radial (equipotential surface orthogonal) electric field 
is 

E = (lINp)G IO (2.9) 

and the radial magnetic field is 

(2.10) 

where~B =.~B Iii, ~B is the two-dimensional Levi-Civita 
symbol (c3 = 1), andg=.det(gAB)' 

III. THE GLOBAL EQUATIONS 

In this section we write explicitly the EYMH system 
(2.1 )-( 2.3) in such a way that all quantities appearing in it 
have a finite limit for N ..... 0. This will allow us to recognize 

the N structure ofthe system, i.e., the way in which the sys
tem depends on the lapse function N. We write the equations 
in a form that is covariant in the coordinates x 2

, x 3
• The 

projection method needed for this has been worked out by 
Israel. 10 We define a new quantity w: 

w=. WoIN, WEg, (3.1) 

which has a regular limit for N ..... 0. The radial electric field E 
is related to W through 

E= (NINp)a l W+ (lINp)w. (3.2) 

We also use the following relation: 

(3.3) 

With relations (3.2) and (3.3), together with the metric 
(2.5), the gauge conditions (2.6) and (2.7), and Eq. (2.8) 
we can write the equations in a form that will clearly reveal 
their N structure, i.e., the special way in which the lapse 
function enters into the equations. 

We begin with the Einstein equations (2.1) in the pro
jected form.11l.9 The first equation is obtained by basically 
taking the traceless part of the A, B components: 

N
2 

nACa 2 N
2 

nAK CL a a 2N nACa 
(Np)2 IS , gCB - (Np)2 IS g ( ,gKL)( ,gCB) + (Np)2 IS ,gCB 

1 N
2 

KL(a nAC a 2N2 a AT nACa i:A 2 A 
+2 (Np)2 g ,gKL)1S ( ,gCB) - (Np)3 (,l'ip)1S ,gCB -Ru B + Np (Np); B 

= 8'17"'f(1'I'Jt{)AB - irAB) 

= 4f[gAK{)LB - ~{)ABgAB] [(DKW,DLW)g -~ (a, wK,a, WL)g + (DKQ,DLQ)q] 
2 (Np)-

-2f c5AB[ __ 1_2 (Na,w,Na,w)g +--2-2 (Na,w,w)g 
(Np) (Np) 

+_1_2 (w,W)g + (B,B)g -gAB(DAQ,DBQ)q + 2V(Q) + ~]. 
(Np) r 

(3.4 ) 

The following equation is a combination of the (0,0) component and the trace: 

2 N nAB a 2N (a M ) 
(Np)2 + (Np)2 IS ,gAB - (Np)3 I P 

= 8'17"'f(1'1'1' - 21'°0) 

=4f[(~(w)Q'~(W)Q)q +~~gAB(aIWA,aIWB)g +~gAB(DAW,DBW)g +~_1_2 (Nalw,Na,w)g 
2 (Np) 2 2 (Np) 

1 1 1 1 1 ( A)] + --2 (N a,w,W)g + ---2 (w,W)g + - (B,B)g - - 2V(Q) + .:1 . 
(Np) 2 (Np) 2 2 r 

(3.5) 

As noted by Israel,1O Eqs. (3.4) and (3.5) form a complete system for determining the evolution of gAB and Np as 
functions of N. The following equations are constraints which, once they are satisfied on one N = const hypersurface, are 
satisfied identically. The tangential stresses ~B can be assigned arbitrarily over the three-space; the conservation identities 
VI' T Jtv = 0 are satisfied automatically if the normal stresses T II and ~' are determined by the following two equations: 
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4(~;)2 [gAKgBL(algAB)(algKL) -gAB(algAB)gKL(algKL)] - (N:)2 gABaigAB +R 

= -161frT: = -4r [ -~gAB(DAQ,DBQ)q -~-1-2 (Na1w,Na1w)g --1-2 (Na1w,w)g 
2 2 (Np) (Np) 

1 1 1 1 1 N 2 

----2 (W,W)g -- (B,B)g +-(iZJ(W)Q,iZJ(W)Q)q +---2 (a.Q,a.Q)q 
2 (Np) 2 2 2 (Np) 

+~gAB(DAW,DBW)g +~~gAB(a.WAJa.WB)g -~(2V(Q) + ~)], 
2 2 (Np) 2 r 

(3.6) 

aA(NgKLa.gKL ) -VB(NgBLa.gAL ) - (NINp)gKL(a.gKL)(aANp) + (NINp)gBL(a.gAL)(aBNp) - (2/Np)aA Np 

= -16~NT.A = -4r[ - (Na.w,DAw)g - (w,DAw)g + NgKL(a.WL,eAKB)g +N(a.Q,DAQ)g]' (3.7) 

The electric equation [Eq. (2.2) with,u = 0] has the following form: 

(3.8) 

For the magnetic equation [Eq. (2.2) with,u = 2,3] we obtain, after carrying out the derivative of the first two terms, 

The scalar equation (2.3) 

Equation (2.2) with,u = 1 is a dependent equation: It takes 
the form 

(3.11 ) 

The magnetic field B is given by the gauge potentials WA 

through Eq. (2.10). Hence, after inspection ofEqs. (3.4)
( 3.10) we can write the equations schematically as 

Y:(IJI)N 2 ailJlc + Y:g(IJI)(N a)IJIC)(N a)lJIg) 

+ .2": (IJI)(N a)IJIC) + .."RA(IJI) = 0, (3.12) 
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(3.10) 

where IJIc is a shorthand notation for the fields (Np,gAB ,W, 
WA ,Q) and we sum over repeated indices. 

Here Y:, Y:g • .2":,.."RA represent differential opera
tors depending on IJI, but not containing any factors of N nor 
derivatives with respect to N. 

IV. THE nth-ORDER EQUATIONS 

In this section we study the behavior ofEq. (3.12) and 
its derivatives with respect to N in the limit N -+0. As noted 
before, all quantities appearing in Eq. (3.12) have regular 
limit for N -+0; all the explicit dependence on N, as well as 
the derivatives with respect to N, are explicitly shown. Of 
course, the operators Y:, Y~, .2":,.."RA implicitly depend 
on N through IJI, which is a shorthand notation for all the 
fields. 

Therefore, it is not difficult to derive the limit of Eq. 
(3.12) and its derivatives with respect toNin the limitN -+0. 
Thus, e.g., 
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(0) 

lim vU'A(",) = vU'A(",) = 0, 
N_O 

where we have defined 
(0) 

'" == lim "', N-O 

(4.1 ) 

(4.2) 

which are the zeroth-order equations, i.e., the limit of Eq. 
(3.12) for N - 0: Their solutions are the possible boundary 
values of the global extreme solutions of the EYMH system 
(2.1)-(2.3). This zeroth-order system was studied in Ref. 9. 

Similarly, one can derive the first-order equations, i.e., 
the limit of the first derivative with respect to N of Eq. 
(3.12). These equations must be satisfied by the normal de
rivatives of extreme hole solutions of the EYMH system and 
are given by 

(I) [(0) (0) ] (I) 

~~ [2':("') + vU'~] ",e = 2':("') + vU'~ ("') ",e = 0, 

where we have defined 

and 

(I) 

'" == lim J 1 '" N-O 
(4.3) 

(4.4) 

One can even write the nth-order equations for the spe
cial case in which the first-, second-, ... ,(n - 1)-order solu
tions vanish (but the zeroth-order solution does not). For 
the case n = 1 these equations clearly reduce to the general 
first-order equations. Using the Leibniz rule and the N struc
ture we obtain 

(n) 

lim [n (n - 1 )Y:("') + n2': ("') + vU'~ ("') ] ",e 
N-O 

[ 

(0) (0) (0) ] (n) 

= n (n - 1 )Y:("') + 2':("') + vU'~ ("') ",e = 0, 

(n) 

where we define ",e as follows: 

and 

(n) 

",e == lim J ~ ",e 
N_O 

(i) 

",e = 0, i = 1,2, ... ,n - 1, 

(4.5) 

(4.6) 

i.e., we only consider nth-order solutions which have vanish
ing lower-order (1,2, ... ,n - 1) support. 

We are now in a position to write the nth-order equa
tions for the case of a nonvanishing zeroth-order solution, 
but vanishing first-, second-, ... ,(n - 1)-order solutions. As 
mentioned above, for n = 1 these are the general first-order 
equations. We begin with Einstein's equations. From now on 
we will replace the superscript (n) by an overtilde. The order 
that is meant should always be clear from the context. In 
addition, we will use the following abbrevations: 

lim Np==G, (4.7) 
N-O 

lim J,nNp==G, (4.8) 
N_O 
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1· .,.AB J n -1m 15 1 gAB ==K. 
N-O 

Equation (3.4) leads to 

[n(n + 1)/G 2
] gtCgCB - R8A

B + (2/G)G;AB 

= 8'1T"'y2(TI'1'8A
B - 2TA

B ). 

Here R is related to k via 

R = lik + gtKgBLV B V AgKL - ! kR. 

For Eq. (3.5) we obtain the nth order, 

(4.9) 

(4.10) 

(4.11 ) 

( 4.12) 

- [2(n + 2)/G 3 ]G + (n/G 2 )k = 81Ty(TI'I' - 21'0
0)' 

(4.13) 

for Eq. (3.6) we obtain 

- (n/G 2 )k + R = - 16'1T"'y2T\, 

and for Eq. (3.7) we obtain 

n(gKL8B
A - gBL8K

A)V BgKL - (2/G)V A G 

= - 16'1T"'y2 lim NT,A • 
N_O 

(4.14 ) 

(4.15) 

Equation (4.12) can easily be derived from the well-known 
relation 

{jR = V L{jrL AB - V B{jrL AL' 

which is, as the rest of these equations, valid as an nth-order 
equation only for vanishing first, second, ... ,(n - 1) order, 
respectively, for n = 1. We have used the zeroth-order re
sult: 

(4.16 ) 

It is easy to show from the explicit form of T~ that the fol
lowing is true: 

=0 = 1 
T 0= T I' ( 4.17) 

We now define the new variable 

- (£A £B ,.,.AB ) - (4 18) rKL == U KU L - ~J5 gKL gAB' . 

We also note that as a result of the definition of B [( 2.10) ] 
the following relation holds: 

lJ = - ~kB + eABDA WB. (4.19) 

After some algebra the symmetric traceless part of Eq. 
( 4.11 ), together with Eqs. (4.13), (4.14), and zeroth-order 
relations such as 

lim ~ (w)Q = 0, 
N_O 

lim DAw=O, 
N-O 

yields, after some algebra, 

[n(n + 1)/G 2 ]YAB + (2/G)(V A V BG 

- ~gABliG) - 2ygKLYAB(DKQ,DLQ) 

= _4y({jKA{jLB + {jKB{jLA _gKLgAB) 

. [(DKQ,DLQ)q - (~(WK)Q,DLQ)q]. 

( 4.20) 

(4.21) 

(4.22) 

Inserting Eq. (4.14) into (4.11), using (4.17), and taking 
the trace yields 
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(4.23) 

where I:l. denotes the covariant Laplacian for gAB' Equation 
(4.24) follows directly from Eq. (4.13), using zeroth-order 
properties such as (4.16), (4.20), and (4.21): 
_ 2(n+2) G+~K 

G3 G2 

+4f[~3 G(w,w)g +fK(B,B)g] 

.;1.[n + 1 - -AB-= 4r ---c;z (w,w)g + e (DA WB,B)g 

(4.24) 

From Eqs. (4.14) and (4.12) and the zeroth-order relations 
given in Ref. 9 we obtain 

-~I:l.K+ VBVA~B- n - 1 K- 2f (w w) (K-~G) 
2 G 2 G 2 ' g G 

= 4f[ (DAQ,DAQ)q + ~B( WB,DAB)g 

n + 1 _ -AB - (av -) ] + ---c;z (w,w)g + e (DA WB,B)g + aQ ,Q q , 

(4.25) 

where 
;:,4B --'- ,..AC,.BL-r -IS IS YCL' (4.26) 

Equation (4.27) is the nth-order equation of (4.15): 

(n/2)K;A - nVBj!lA - (2/G)VAG 

= 4f[ (w,DAw)g - neA
K( WK,B)g - n(Q,DAQ)q]' 

(4.27) 

We now come to the YMH equations. The electric equa
tion (3.8) has the following nth-order [remember that we 
assume that the first, second, ... ,(n - 1)th order vanish]: 

n(n + 1) - + n - n G-
--'---'::c--'- w -- WK - - W 

G 2 2G 2 G 3 

+ fPAfP AW_gAB Ad(fP A WB)w 

+w(Q,fP(w)Q) +w(Q,fP(w)Q) =0, (4.28) 

where fP A stands for the gauge and coordinate covariant 
derivative (i.e., it is obtained from the gauge covariant deriv
ative by using V A instead of a A ). The nth-order magnetic 
equation is 

[n(n+ 1)/G 2 ]gABWB - (1/G)eABBVBG+~eABBVBK-eABeKLfPBfPKWL 

+ ~B Ad( WB)B - gAB Ad(w)fP BW + gAB Ad(w) Ad( WB)w + (~B - ~BK)W(Q,fP BQ) 

- gABw( Q,fP B Q) - gABw( Q,fP B Q) + gABw( Q,fP (WB) Q) = O. (4.29) 

The nth-order scalar equation is 
,-

n(n+ 1) Q+~gABVBGfPBQ- av -fP(w)fP(w)Q-fP(w)fP(w)Q 
G 2 G aQ 

_~Kav _ 2gABfP(WA)fP BQ- fP A~BfPBQ+ fPAfP AQ_gABfP(fP A WB)Q=O. 
2 aQ 

(4.30) 

The dependent equation (3.11) gives us 

fPAWA + Ad(w)w + w(Q,Q) = o. (4.31) 

After tedious algebra one can check that the following holds. 
(i) Equation (4.31) is a consequence of (4.28 )-( 4.30). 
(ii) By multiplying (4.27) with n and adding the diver

genceof (4.27) together with (4.23) one obtains minus theg 
product of ( 4.28) with w: This is clearly an nth-order Bian
chi identity. 

(iii) Taking the divergence of (4.22) and the covariant 
gradients of (4.23) and (4.24) and combining the result 
with the g product of (4.29) with B and the q product of 
(4.30) with aAQ, one obtains Eq. (4.27): These equations 
are consequences of the two remaining, four-dimensional 
Bianchi identities. 

Consequently, we can discard Eqs. (4.25), (4.27), and 
(4.31) and work with the system consisting of Eqs. (4.22)
(4.24) and (4.28)-(4.30). 

V. THE CASE ~ =SU(2) 

In this section we want to specialize the nth-order equa
tions to the gauge group SU(2) and the non-Abelian zeroth-
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I 
order solution described in Ref. 14. Of course, this non-Abe
lian solution will also be present for larger gauge groups as 
long as they contain an SU (2) subgroup. On the other hand, 
larger gauge groups may allow for a larger set of non-Albe
lian solutions. 

Specializing the g and q inner products as shown in Ref. 
14 we arrive at the desired set of equations. We split the 
YMH equations up into a longitudinal component, parallel 
in gauge space to the unit internal vector n, and the transver
sal components orthogonal to it. The internal vector n is 
chosen such that 

Q='=Q"TQ = qn=,=q(n"TQ). 

In order to distinguish between Lie-algebra-valued quanti
ties and their components relative to a given basis of the Lie 
algebra, from now on we will use boldface letters for the 
former and lightface letters for the latter. Lower case roman 
letters a, b, c, ... will be used as internal indices, running from 
1-m, where m is the dimension of the gauge group; in our 
case m = 3. Our background solution is a nontrivial princi
pal bundle over S 2. We choose to cover the minimal surface 
(t = const, N = 0) with two patches and choose different 
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gauges, i.e., different n, on each of the patches. 15 In the over
lapping region a gauge transformation will relate both of the 
patches. We define the two patches Rn and Rs as follows: 

Rn: o<JJ < 1T/2 +8, Dn =(1,O,O), 

Rs: 1T/2 - 8<JJ<'1T, D" = ( - 1,0,0). 

The longitudinal part W:A of the zeroth-order gauge poten
tial W~ on each patch is given by 

Rn: W:PA = (-cosB+ l)n:, 

Rs: W~PA = (cos B + 1)n:. 

We now introduce spherical coordinates in internal space: 

'f'l=,=TI, T±=,=(1/~)(T2±T3), 

so that the commutation relations read as 

['f'l,T ± ] = + tT ±, [T+ ,T-] = - t'f'l. 

(5.1 ) 

The components of internal vectors in this new basis are 
related to the old ones via 

<1>1 ='= <1>0, <I> ± ='= ( 1/ ~) (<1>2 + t<l>3). 

We now proceed to specialize the nth-order equations to the 
non-Abelian zeroth-order solution. We begin with the Ein
stein equations (4.22)-(4.24): 

[n(~~ 1) -4(yg)2(~r]rAB + ~(VBVA6-~gAB~6) 

= - sr(8fA8i) - ~ gAB.rL) [ - tq(iP~Q + U L 

- iP~Q-U t) +q2(U t Wi + U L W: )], 
(5.2) 

(2/G)~6 = - [n(n - 1 )/G 2]k, 

- [2(n + 2)/G 3 ]6 + (n/G 2)k + 2(yq)2e2q2k 

= 4(yq)2[ ~SVA W~ - t~B(U A+ Wi 

- U A- W: )] + 8rq(A /ro)2QO. 

We have introduced the following notation: 

(5.3 ) 

(5.4) 

A=,=(rol2)~k(F2_q2), (5.5) 

iP~=,=VA-Ad(WpK)' (5.6) 

and we adhere to the following convention: 

¢(A.B) ='=~(¢AB + ¢BA)' (5.7) 

Following the notation in Ref. 14 the full gauge potential is 
given by 

W~ = W:K + U~ = WKn
Q + U~. (5.8) 

The transversal components on the northern hemisphere are 
given in the new basis (5.1) 

U n1 = (A /~)e"", U n~ = teA /~)sin Be"", 

U n2 = (A/~)e-'4>, Un) = -t(A/~)sinBe-'4>. 
In the new basis we obtain 

(5.9) 

(iP~¢) ± = (VK +tWK)¢±. (5.10) 

From the symmetry condition (see, e.g., Ref. 16) for the 
gauge potential, one can easily show that 

iP~ U B = 0. (5.11) 

Further, we have 

UA+Ui + UA-U: =~AB(U)2, 

with 
(U)2 = gAB( U A+ U i + U A- U it). 

(5.12) 

(5.13 ) 

The longitudinal component of the nth-order electric equa
tion (4.28) is 

~(jjo + [n(n + 1 )/G 2 - 2(A /ro)2](jjO 

(5.14) 

The transversal components, after some algebra, read as 

gABiP~iP~(jj± + [n(n + 1)/G 2 - e2q2 - (A /ro)2](jj± 

± 2tU A+ gAB aB(jj° = 0, 

where we have used 

gABU it (U A+ (jj- + U A- (jj+) = (A /ro)2(jj ±. 

(5.15 ) 

The longitudinal component of the Higgs equation 
(4.30) is 

~QO + [n(n + 1)/G 2 - kq2]QO + q(A /ro)2k 

- 2qgAB( U i W A+ + U it W A- ) 

- 2tgAB( U A+ iP~Q - - U A- iP~Q +) = ° 
and the transversal components are 

(5.16 ) 

gABiP~iP~Q ± + [n(n + 1)/G 2 + (A /rO) 2 
_ e2q2]Q ± 

± 2tU f gAB aBQO ± t(q/G)gABU f aA 6 

+ 2qgABU ff W~ +tqU fvAr B = 0. (5.17) 

Here we have used the following zeroth-order result: 

(iPAiPBQ)Q= -U~U~qnQ= -~AB(U)2qnQ 

and the definition of rB. Finally, for the magnetic equations 
we obtain 

~BeKLV B V K W~ - [n(n + 1)/G 2 - (A /ro)2]gABW~ 

- 2teABeKL ( U (1iP~) W L - U iKiP~) W t) 

+ eAB(e2q2/G)aB6 - ~eABe2q2 aBk 

-e2qgAB(UitQ- + UiQ+) =0 (5.1S) 

and 

~BeKLiP~iP~ W f - [n(n + 1 )/G 2 - (A /ro)2 - e2q2]gABW fB ± t~BeKL( U f aB W~ + U f aK W~) 

+ ~BeKLU f (U it W L + U i Wt) ±te2q2~BWf _e2q2U f (r B- ~Bk) 

+ 2gABe2qQ OU f + te2qgABiP~Q ± = 0. (5.19) 
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VI. HARMONIC EXPANSION 

In order to solve Eqs. (5.2)-(5.4) and (5.14)-(5.19) 
we have to expand the nth-order fields according to their 
transformation properties under spin and isospin rotations. 
We write the correct expansions on Rn and refer to Refs. 17 
and 13 for more details. The expansions on R, are analogous. 
We will not use them in our calculations. 

K = IKI,m YI,m 
I,m 

-±-~-±Y± W - £."UI,m I,m' 
I.m 

-0 ~-O Y 
W = £."WI,m I,m' 

I.m 

Q ± = IQI~YI~' 
I,m 

QO = IQ~m YI,m , 
I,m 

(6.1 ) 

(6.3) 

(6.4) 

(6.5) 

(6.6) 

W- ± - ~ [W- ± + D II Y ± + W- ± - KD II Y ± ] A-£." I.m A I.m I,m eA K I.m , 
I,m 

(6.7) 

where the second superscript on the expansion coefficients 
of W J and W~ denotes even ( + ) or odd ( - ) parity 
character. The YI,m are the usual spherical harmonics, 
which are a special case of the monopole harmonics Yq,/,m for 
q = 0. 18 Monopole harmonics are defined separately on each 
patch: 

Rn: Yn;q,/,m(fJ,l/J) = (1/41T)e,(m + ql,pPq,/,m (cos 0) , (6.9) 

R,: Y,;q,l,m (O,l/J) = (11.J"41T)e,(m- ql,pPq.l,m (cos 0) , (6.10) 

with 

P ()_[(I-m)! (21 1)' 1 ]112 
q'/.m j.l - (I + m)! +. (1- b)!(1 + b)! 

X~ (1 +j.l)(m-W2(1_j.l)(m+W2 
21 

x( - d~r+ m (1 + j.l) I +b(1 - j.l)I- b (6.11) 

on both patches. On each patch the monopole harmonics 
satisfy the relation (see, e.g. Refs. 19 and 20) 

Yq,l,m Yq',I',m' 

= I( _1)'+"+'''+m'+q" 
I" 

,.AB(U+li)lly- -U-li)lIy+) 
15 A B I,m A B I,m 

x [ (21" + 1)( 21 :: 2)( 21" + 3) r2 

(I /' I") (I I' I") 
X m m' m" q q' q" Y_q",/",-m"' 

( 6.12) 

where 

G ~ I;') 
are the Wigner 3j symbols. 

The functions Y I~n are closely related to the monopole 
harmonics 13: 

YI~ = Y ±q,/,m . 

For our background solution, q = 1. 
In order for the fields to be real, respectively, anti-Her

mitian, the expansion coefficients have to satisfy the follow
ing conditions: 

(6.13 ) 

(<I> tl,m ) * = <I> tl,m' <I> tl,m = ( - 1) I + m<l> il. _ m , (6.14) 

<I>~m = <l>L m ( - 1)m, (<I>7,n)* = <I>~m , (6.15) 

where the asterisk means complex conjugation. This follows 
directly from the formula 

VII. ALGEBRAIZATION OF THE nth-ORDER 
EQUATIONS 

(6.16 ) 

Let us start with the longitudinal electric equation 
(5.14) and concentrate on the third term, The third term is 
the only one that is not straightforward to compute. It is 
helpful to start with the following expression: 

~B(UA+ li)~YDn - U A- li)~YI~n) 

=~[e,,pli)1I Y - +_L_e,,pli)11 Y-
{iJi 2 I,m sin 0 3 I,m 

+ e - HI> li)11 Y + + _L _ e - t,p li)1I Y + ] 
2 I,m sin 0 3 I.m , (7.1) 

where we have used (5.9). Now we insert the following rela
tions, which follow directly from the definition of the Y I~n 13: 

li)~YI~n =He-,,pUm+IY'~+1 -e',pumY I;"_.], (7.2) 

li) ~ Y I;" = - L sin 0 [!e - ,,p cos OUm + I Y I;" + I 

+ !e',p cosOum Y I;" _ I - m sin 0 Y I~n ] , (7.3) 

with 

U m ='=-~ (l + m) (I - m + 1) 

and we obtain 

= (A lJi{i) Uu m + I (1 + cos 0) Y I~n + I - !ume2Hb (1 - cos O)YDn _ I - !um + Ie - 2t<6(1 - cos 0) Yi~n + I 

+ !um (1 + cos 0) Y I~n _ I - e'<6m sin OY I~n - eHl>m sin OY I~n] . (7.4 ) 
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Because 

Y I~ ± = _1_ IT e±2.",( 1 - cos 0), 
[.f.i \.j 4 

Y t+= = -- -( 1 + cos 0), IJ+ [.f.i 4 

Y ± _ IT.", . Ll 
1,0 - += \.j S; e sm 17 , 

this means that 

,.AB( U + 2t) II Y - - U - 2t) II Y + ) 
5 A B I,m A B I,m 

= (A 1 ~~ ) ~ 41T 13 [ Urn _ 1 Y .-; _ 1 Y I:;-n + 1 

(7.5) 

We now go back to Eq. (5.14) and insert the expansions 
(6.4) and (6.3). Using result (7.6), the addition formula 
(6.13), and the orthogonality of the spherical harmonics, we 
obtain 

(
n(n + 1) _ /(1 + 1) _ 2(~)2)i1l Y 

G 2 .2 I,m I,m 
'0 ro 

-2t~~/(I+ I)(Wi;" +Wi-;;') =0. (7.7) 
~~ ., 

Because of (6.13) and (6.14) the rhs of Eq. (7.7) is equalto 

tm(Wil,m( -1)I+m- wil,m)' 

Without loss of generality we can set m = 0 because the 
background is spherically symmetric up to isospin transfor
mations: This simplifies the calculations. Hence, for the lon
gitudimil electric equation, we finally obtain 

(
n(n ~ 1) _ /(/ + 1) _ 2(~)2) 

G ~ ro 

X w?,o ± 2 ~CW/;I.O = 0 . 
o 

(7.8) 

For the transversal equation the calculations are very simi
lar. In addition, one needs the following formulas: 

g'B2t)~2t)~Yl~, = (1/~)[ -/(/+ 1) + I]Y I;", 
(7.9) 

which follows directly from the definition of the Yq,l.m as 
eigenfunctions of the generalized angular momentum opera
tors, and 

(7.10) 

which is a property of our background. With these results we 
obtain 

(n(n + 1)/G 2 -/(1 + 1)/~ )W/;I,O ± (A I~ )~Cw?,o = 0, 
(7.11) 

index. The following relations can be derived from the defin
ing Eqs. (6.9), (6.11), and (5.9): 

U 1 YIO = (A I~C) [ += 2t)~ Y I~ + teKL2t)~ Y I~] , 

Y/~ UK + Y IO U: = teA ~/C)eKLVL YIO • 

Performing similar calculations as above we obtain, for the 
scalar equations, 

(
n(n + 1) _ /(/ + 1) 2(~)2)Q- ± 

G 2 ..2 + R;I 
'0 ro 

±C[2qw?- +!LOI-~!L 
G 2 ro 

X[ -/(1+ I) +2]1'1 +2QI]~=0, 
~~ 

(7.12) 

(2qW?+ +! (q/~)[ -/(1+ 1) +2]k/)C(A/~~) =0, 
(7.13 ) 

and 

(_n(-=-n--.:+:-I-=...) /(1 + 1) k 2)Q- 0 (A)2_ 
2 - - q 1+ - qKI 

G ~ ~ 

.[2A - -+ 2-- C( - q W:' I - + Q :'1) = 0 . 
ro ' , 

(7.14 ) 

Equations (7.12) and ( 7.13) result from the transversal 
Higgs equation (5.17) and Eq. (7.14) results from the longi
tudinal part (5.16). For n = 1 the term proportional to 01 

does not appear in Eq. (7.12) because it arises from a term 
containing a derivative of 0 and for n = I Eq. (4.23) tells us 
that 0 is constant. The transversal magnetic equation (5.19) 
leads, after inserting the expansions and extensively using 
the abovementioned formulas to the following system: 

(n(n + 1)/G 2 
- e2q2)W tl + - ~(A I~~ )Ce2q2kl = 0, 

(7.15) 

( (
A)2)_ A - 0- 1 2,.2 A t-e2q2_ - Wtl- +--CWR;I -"2 e 'l {;;;.2 rl 
ro ~~ ,,2'0 

1 2,.2 A - 2 A Q- 0 2 Q- + 0 --e '1--KI-2e q-- I +e q R;I = , 
2 ~C ~C 

and the longitudinal component (5.18), 

(n(n+ 1)/G 2- (A1ro)2)W?+ 

-2(A/~~C)Wtl+ =0 

(7.16) 

(7.17) 

(7.19) 

where C =~ /(/ + 1). From now on we will omit the m = 0 and 
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(7.20) 

Again, the term porportional to 0, does not appear in (7.20) 
if n = 1. 

The symmetric traceless part (5.2) of Einstein's equa
tions yields 

(n(:,~ 1) -4(rq)2(~r)r, + ~o, 
f"2A - -

-SfqC(qWit,- +Qit,) (7.21) 

and 

(n(n + 1)IG 2 - 4(rq)2(A Iro)2)k., 

= S(rq)2(A ..fiIC) W it[ + . (7.22) 

The trace part (5.3) immediately leads to 

[1(1 + 1 )/1i] 0, = Hn(n - 1 )IG ]k., . (7.23) 

Finally, (5.4) yields 

2(n + 2) 0, n - 2 222- SA:l(A)2 Q-O 
- 2 - + -2 K[ + (rq) e q K[ - r - q [ 

G G G ~ 

= 4(rq)2[ 1(1: 1) W?- + A ,fcw t[- ]. (7.24) 

The zeroth-order quantities G and ro are given by'4 

(rIG)2 = e2(rq)4 - (k 14)[ (rF)2 - (rq)2]2 - fA 
(7.25) 

and 

1/r6 = 1/G 2 + (k 12)(rF)2(F 2 
- q2) + 2A. (7.26) 

VIII. DISCUSSION 

To begin, let us write the range of the parameters al
lowed by the non-Abelian zeroth-order solution in a unified 
way for the three cases discussed in Ref. 14, namely case (i) 
k = 4e2, case (ii) k < 4e2

, and case (iii) k> 4e2. The cosmo
logical constant can be written in each case as 

4fAIk = e21k - s[ (rF)2 -!] 2, (S.1) 

where the parameter s has the following range: 

case (i) k = 4e2
, S = 4e2/k = 1 , 

case (ii) k <4e2, l<;s < 4e2/k , 

case (iii) k<4e2, l;>s>4e2Ik. 

In case (i) (rq) 2 is a free parameter within the limits 
!<;(rq)2 < (rF)2. The lower limit corresponds to 1/G 2 = 0 
and the upper limit corresponds to the Abelian case Q = F. 
The scalar energy density at the horizon decreases from 
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(e2/2y4)[ (rF)2 _!)2 to zero and the YM energy density 
increases from e2/Sy4 to (e2/2y4)(rF)4. The radius of the 
hole ro does not depend on (rq) 2; the geometry changes 
through G. In cases (ii) and (iii) (rq) 2 is fixed by 

(rq)2=!+ [(rF)2-!]~k(1-s)/(k-4e2). (S.2) 

In case (ii) the lower limit corresponds to Q = F and the 
upperlimit corresponds to 1/ G 2 = O. The opposite is true for 
the case (iii). 

We now want to find out when the system of equations 
(7.S) and (7.11)-(7.24) possesses nonzero solutions for 
this allowed range of zeroth-order values. One remarks first 
that the system is simplified by the fact that the electric fields 
W ± , WO do not couple to the rest of the fields. The condition 
for a nonzero solution is 

_ 4 n(n + 1) (i.) 2 
= 0 

G2 ' ro 
(S.3) 

where one should remember that it is valid for n> 1 only if 
all lower-order solutions vanish. If, e.g., Eq. (S.3) can be 
satisfied for n = 1 by choosing appropriate parameters, then 
the second-order electric equations will in general differ 
from Eqs. (7. S) and (7.11) with n = 2 by terms linear and 
quadratic in first-order quantities. 

Therefore, the correct way to proceed is to start by ana
lyzing the system for n = 1. Once this is solved, one knows 
the conditions for the second-order system to be valid etc. 
However, we remark that since the general nth-order equa
tions (including lower-order contributions) are also sym
metric under general rotations, there will be no mixing of 
different I terms for the nth-order quantities and the lower
order contributions will combine into terms with given l. 
Hence, the general nth-order equations will split for every I 
into the special nth-order equations we have derived plus 
nonhomogeneous terms containing the lower-order contri
butions. Now, if one considers only nonvanishing lower
order contributions with I = 0, the resulting term in the gen
eral nth-order equations will be a pure I = 0 term, thus 
leaving the I> 0 components untouched. In other words, the 
existence of a nonzero I = 0 first-order solution will still lead 
to second-order equations given by (7.S) and (7.11 )-(7.24) 
with n = 2 for I> 0, and so on for higher orders. For I> 0 
lower-order contributions the picture gets more complicat
ed. 

Before proceeding, let us remark that the odd-parity 
fields decouple from the even-parity fields. This must be so 
because parity commutes (in a more subtle sense than usual, 
i.e., one must be careful to choose the correct gauge in the 
corresponding patch) with generalized rotations. 

A. Odd parity 

For 1 = 0, 1 the equations describing the odd-parity 
fields only have the trivial solution. For I> 2 we have to solve 
an overdeterminate system oflinear equations. We first con
sider the system consisting of Eqs. (7.15), (7.19), and 
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(7.22). Setting the determinant to zero yields the character
istic equation 

n(n + I) [(n(n + 1»)2 _ n(n + I) (J.. + 4( )2(~)2) 
G 2 G 2 G 2 ~ yq ro 

where we have used e2i = (1 - A 2)/~. The remarkable 
fact is that the determinant is independent of I. The above 
equation has three solutions: 

(i) 1/G 2 = 0, 

(ii) n(n + 1 )IG 2 = (A IrO)2, 

(iii) n(n + 1 )IG 2 = J.. + 4( yq)2(~)2 _ (~)2 . 
~ ro ro 

It is easy to check that for case (i) Eq. (7.18) is also satisfied, 
but (7.13) requires l(l + 1) = 4 for q#O, i.e., there is no 
nonzero solution. 

Case (ii) leads to a solution where W? + is arbitrary and 
W,+ + = 0 = kl • However, only W?+ = 0 satisfies Eq. 
(7.13) with q # O. Hence, there is only the trivial solution in 
this case. 

Case (iii) leads to a family of solutions with W,+ + 
arbitrary: 

kl = [8(yq)\j2:4 ICe2q2] W,+ +, 

wO+ _ A ../2 1 W + + 
1 -C 1-2A2(1-2(yq)2) 1 , 

However, Eq. (7.18) restricts the solutions to either 
(yq)2 =~, which means 1/G 2 = 0, or 

4(yq)4 - (4e21k - l)(yq)4 - (yq)2 (4(yF)2 + 1) 

- (yF)4 + (yF)2 - 4fAIk = O. (8.4) 

Using Eq. (53) of Ref. 4 condition (8.4) is equivalent to 

(yq)2 = (yF)2 + e2lk. 
Hence, (8.4) cannot be satisfied for any q in the range 
O<q<F. 

Hence, we conclude that there are no odd-parity solu
tions for q#O for any n> 1. This implies that for q#O any 
global solution to the EYMH system satisfying our assump
tions will have no odd-parity components near the horizon. 

B. Even parity; n=1, 1=0 

For 1 = 0, n = 1 the system reduces to 

(2/G 2 - ki)Qg + (A Iro)2qico = 0, 

(2/G 2 - 2(A IrO)2)wg = 0, 

- !(A /../2e2q2ico - 2e2q(A 1../2)Qg = 0, 

- (6IG 3 )6 + (1/G 2)ico + 2fe2q4ico 
• .2 2 - 0 - 8, (A Iro) qQ 0 = 0 . 

(8.5) 

(8.6) 

(8.7) 

(8.8) 

From Eq. (8.6) it follows that wg will vanish unless (8.3) 
with n = 1, 1 = 0 is satisfied. For the rest ofthe system the 
condition for the existence of a nontrivial solution assuming 
q#O, Fand 1/G 2#0 is 
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2/G 2 - 4(A Iro)2 - kq2 = O. (8.9) 

Ifq = 0 (Abelian solution), then (20 andK = 6(00lG). The 
cases q = 0, F lead to Abelian zeroth-order solutions and 
have been treated elsewhereK

• Using (7.25), (8.9) results in 
a quadratic equation for (yq)2: 

(yq)4(4e2 _ k) + 2k(yq)2(yF)2 - k(yF)4 

- 4Af - 2k(yF)2 = O. 

Again using Eq. (53) of Ref. 14 we obtain 

(4e2 - k)(yq)2 - 2k(yF)4 

+ 2k(yF)2[ (yq)2 -!] - 8Af = O. 

For K = 4e2 Eq. (8.10) only has one solution: 

(yq)2=~. 

(8.10) 

As (yq)2«yF)2, this implies that we must choose 
(yF)2>~ and 4fA< - 3e2 (see Ref. 14). For K<~ Eq. 
(8.10), together with the inequality (40) in Ref. 14 [notice 
that the inequalities (38) and (40) in Ref. 14 should be in
terchanged] tells us that (yq) 2 is constrained to the values 

!«yq)2<~. 

For k> 4e2 the analogous analysis tells us that 

(yq)2>~. 

For q = 0 = F condition (8.9) is clearly equivalent to condi
tion (8.3) for n == 1,1 = O. 

C. Even parlty;n=1,I>O 

Because 61 = 0 for I> 0, as a result of Eq. (7.23), the 
first-order system of equations for even solutions, (7.12), 
(7.14), (7.17), (7.20), (7.21), and (7.24), looks like an 
eigenvalue problem with theeigenvaluen(n + 1 )/G 2

• In or
der to know for which values of G this is true, we have to 
solve the characteristic equation. We have performed this 
calculation for the case k = 4e2

• For this case we have 

A = ~1 - (q/F) 2 , 

2/G 2 = (4/~ )«yq)2 _~), 

4f A = e2 - 4e2 
[ ( yq) 2 _ !] 2 , 

where !«yq)2 < (yF)2. For the uninteresting limiting case 
q = F (Abelian background), we obtain a vanishing deter
minant in the following cases: 

(yq)2=!, (8.11) 

(yq)2 = [n(n + 1) + C 2]1[2n(n + 1) + 4], (8.12) 

(yq)2 = [n(n + 1) + C 2]12n(n + 1) , 

(yq)2 = [n(n + 1) + C 2 + 4]12n(n + 1), 

(8.13) 

(8.14 ) 

The first solution corresponds to the special case 1/G 2 = 0 
with 4fA = e2 and 1/~ = 2A. Restricting A to zero, we 
only found the following possibility if Q #F: 

1=1, (yF)2=1, (yq)2=0.571. 

The other cases are under investigation . 

IX. SUMMARY AND CONCLUSIONS 

We have derived the general first-order and special nth
order system of equations for extreme wormhole solutions in 
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the EYMH system. We then specialized the system for the 
non-Abelian zeroth-order solution given in Ref. 14 and 
found that for q¥=O there are no odd-parity contributions. 
Solutions with 1 = 0 exist in the case k = ~ only for 
( yq) 2 = l' exist in the case k < 4e2 only for (yq) 2 <~, and 
exist in the case k > 4e2 only if ( yq) 2 > ~. If we restrict in case 
(i) the cosmological constant A to zero, then there is only 
one i> 0 solution q¥=F, namely, 

1=1, (yF)2=1 (yq)2=0.571 

and four with q = F. 
This result strongly suggest that at least for k = 4e2

, 

A = 0, asymptotically flat non-Abelian solutions will only 
be possible for (yF)2 = 1, (yq)2 = 0.571. Because the ze
roth-order solutions for k> 4e2 and k < 4e2 have no free pa
rameters (once one has chosen A), as opposed to the case 
k = 4e2 with one free parameter (yq) 2, it seems less likely to 
find nontrivial nth-order solutions in those cases. Our results 
seem to indicate that at least in the extreme case,non-Abe
lian static wormhole solutions of the EYMH system are only 
possible, if at all, by fine tuning the free parameters of the 
model. 
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The Einstein-Maxwell field equations for a source-free, non-null electromagnetic field are 
studied under the assumption of admitting a nontrivial homothetic conformal motion, 
generating a homothetic bivector which is also non-null. It is shown that a space-time, whether 
vacuum or not, cannot admit a non-null homothetic vector field as a geodesic tangent. It is also 
shown that if a common principle null direction of the electromagnetic and the homothetic 
bivectors is geodesic and shear free, then the space-time must be algebraically special. 
Furthermore, it is found that if the electromagnetic and the homothetic bivectors have 
common principal null directions, then the vector field generating the homothetic bivector 
cannot be hypersurface orthogonal, unless it is a Killing vector field. Moreover, if these 
common principle null directions are also geodesics, then there exists no solution to the 
combined Einstein-Maxwell equations, unless, the non-null homothetic vector field is a Killing 
vector field. Finally, an example of a space-time admitting a non-null, nontrivial homothetic 
vector field generating a homothetic bivector which is also non-null is given. 

I. INTRODUCTION 

The importance of groups of motions, generated by the 
Killing vector fields of a space-time and their relation to the 
conservation laws of energy, momentum, and angular mo
mentum is well known. 1-3 The properties of certain classes of 
vacuum space-times admitting a Killing vector field that 
gives rise to either a null or a non-null Killing bivector field 
have also been investigated.4

•
5 

Collineations other than groups of motion have been 
studied to some extent, and in particular, it has been shown 
that for space-times with zero Ricci tensor, the more familiar 
symmetries such as motions, and conformal motions are 
subcases of a more general symmetry requirement known as 
curvature collineations. 6.

7 

The significance of a homothetic conformal motion in 
general relativity is not yet fully understood; although much 
has been said about its group theoretic properties by various 
authors. For example, a topological description of confor
mal Killing vector fields on time-like two-surfaces is given 
by Plessis,8 and self-similar spherically symmetric space
times are analyzed by Cahill and Taub.9 Taub, 10 has empha
sized the physical significance of self-similarity in general 
relativity in connection with plane-symmetric space-times, 
while Godfrey" has constructed all homothetic Weyl space
times. The role of conformal groups of transformations in 
relation to the relativistic wave equations and in Einstein
Maxwell theory are also discussed in Refs. 12-14. 

In this paper we are concerned with source-free Ein
stein-Maxwell field equations 

f"";" = 0, 

*f"";" = 0, 

(1.1 ) 

( 1.2) 

(1.3 ) 

with a non-null electromagnetic field, admitting a homo
thetic conformal motion 

(1.4) 

where L denotes Lie differentiation, g"v is the metric tensor 
of the space-time, and tP = At";" is a scalar constant. We 
designate a vector field corresponding to tP = 0, a trivial ho
mothetic vector field (a Killing vector field). In analogy to 
the cases involving a Killing vector field, we define a ho
mothetic bivector (H' B· V) according to the relation 

( 1.5) 

which we assume to be non-null and is generated by a ho
mothetic vector field which is also assumed to be non-null. 

The problem that we wish to investigate is to seek under 
various assumptions, some general properties of source-free 
Einstein-Maxwell equations, with a non-null electromag
netic field, admitting a non-null homothetic vector field, Eq. 
(1.4) generating a homothetic bivector, Eq. (1.5), which is 
also non-null. The analysis made here is to some extent simi
lar to the cases involving a vacuum space-time, admitting a 
Killing vector field generating a non-null Killing bivector.4

•
s 

II. BASIC FORMALISM 

In this section we briefly summarize some of the rel
evant well-known tetrad formalism often used in expressing 
arbitrary geometric objects. IS-I7 As a basis for our four-di
mensional space-time we choose a tetrad of null vectors {ea , 

a = 1,2,3,4} in which e l and e2 are real and e3 and e4 are 
complex. The set of complex null tetrad induces a metric 
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[

0 
b 1 

gab =~ = ~ 
o 
o 
o 

o 
o 
o 
-1 

~ .] 
-1 ' 

o 

(2.1) 

which is obtained from the inner product of basis vectors 
ea'eb = gab' From the basis vectors ea' and its dual set (r, 
one can form a six-dimensional vector space appropriate for 
expressing bivectors Bab . Thus if Bab , is an arbitrary bivec
tor, it may be expressed in terms of the basis (J A, as follows: 

B = BA(JA, A = I,II, ... ,VI, (2.2) 

where (J A are defined as the exterior product of the dual basis 
(Ja. We have 

(J I = 2(J 4 /\ (J 2, (J IV = 2(J 3 /\ (J 2 = (J I, 

(JII = 2«(J3/\(J4 + (J2/\(J I), 

(JV = 2«(J4/\(J3 + (J2/\(J I) = (JII, 

(J III = 2(J I /\ (J 3, (J VI = 2(J I /\ (J 4 = (J III. (2.3 ) 

The complex conjugate of a real geometrical object is 
obtained by performing the permutation 1234 -> 1243, on the 
tetrad indices. The choice of (J A is subject to the duality con
straint (JA(aeB ) = 8;,A,B, = I,II, ... ,VI, where the dual ba
sis eA are defined by the relationships: 

el = e4 /\ e2' elv = e3 /\ e2 = el , 

ell = ! ( e3 /\ e4 + e2/\ e I ) , 

ev = ! ( e4 /\ e3 + e2 /\ e I) = en , 

em = e l /\ e3, eVI = e l /\ e4 = em' (2.4) 

Accordingly, a bivector BA, may be considered a six
vector with respect to the basis defined by Eqs. (2.3) and 
(2.4). One can similarly construct a metric gAB = eA-eB, 

which can be used to raise or lower indices on an arbitrary 
bivector. We have in fact 

gAB = eA'eB = [~ 1], 
where 

A=[~ 
o 
-2 
o 

(2.5) 

~]. (2.6) 

Thus if B is an arbitrary real bivector, it may be written 
in the form 

(2.7) 

where the quantities BI ,Bn , ... ,Bvl , are defined as follows: 

BI =B42, BIv = BI = B32, 

Bu = !(B21 - B43 ), Bv = Bu = !(B21 - B34 ), (2.8) 

Bm = B 13' BVI = Bm = B 14' 

From the bivector B, and its dual * B, one may form the 
bivectors B ± = B =+= i* B, which are self-dual and anti-self
dual, respectively. Thus the expression for the anti-self-dual 
B -, has the form 

B - = B A- (JA = 2BI (J 1+ 2Bu (J II + 2Bm(J m. (2.9) 

It is not difficult to show that the expression 
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(2.10) 

obtained from evaluatinggABB A BB' is invariant under the 
group of the tetrad transformations 

e; =e- A I1-aPI-I(et +fJ{3e2-{Je3-fJe4), 

ei = eA 11 - afJ I-I(aaet + e2 - ae3 - £le4) , 

ej = e- iB I1_ afJ I-ie - £let -pe2 + e3 + £lPe4 ), 

, IB -I --e4 =e 11-afJ I (-ael -pe2 +ape3 +e4), 
(2.11 ) 

where A, B, a, and p are parameters with afJ =1= l'A, and B, 
are real, while a, and fJ are complex. 

According to Eq. (2.10), the two independent invar
iants are (a): I = 0, and (b): I =1=0. The case I = 0, which is 
known as a null bivector may be characterized by BI 
= Bm = O. Hence, a null bivector may be represented by its 

anti-self-dual bivector as 

(2.12) 

Similarly, if B is a non-null bivector, it may be represented in 
canonical form by its corresponding anti-self-dual bivector 

B - = 2Bn (J n = 4Bu «(J 3/\ (J4 + (J 2/\ (J I), (2.13) 

where Bu , is given by Eq. (2.8). As it has been pointed out 
earlier, we will be working exclusively with the bivectors 
that are non-null by assumption. 

For a later development, we also need the covariant de
rivative of a vector, denoted by a semicolon, with respect to a 
basis vector eb , as is defined by the relation 

(2.14 ) 

where r abc are the Ricci rotation coefficients with the prop
erties r(ab)c = 0, and rabe = gadrdbe' Similarly, 

Va;b = V a.b + r a be V c. (2.15) 

The Ricci tensor and the Ricci scalar R are, respectively, 

(2.16) 

while the Weyl conformal curvature tensor, excluding the 
cosmological term, may be expressed as 

Cabed = Rabed + ga[cRd Jb + gb Id RCJa 

(2.17) 

Finally, if f is a scalar function, the commutation relations 

[ea,eb]f=/ab -/ba =/c(r
C
ab -reba)' 

must hold as an integrability condition on f 

III. HOMOTHETIC VECTOR FIELD 

(2.18 ) 

A space-time is said to admit a homothetic vector field, 
if there exists an infinitesimal generator' a, such that 

'a;b + 'b;a = 1.4Jgab' (3.1) 

where (J = i' a;a is a scalar constant. If (J = 0, then ,a, is 
called a trivial homothetic or a Killing vector field. Equation 
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(3.1), when combined with the defining equation (1.5), for 
a homothetic bivector, may be written in the form 

ta;b = t/Jgab + (J)ab' (3.2) 

It may be shown that the compatibility conditions for 
Eq. (3.1) assumes the same form as those satisfied by a Kill
ing vector field, namely, 

ta;b;c = tdRdcab' (3.3) 

It follows from the symmetries of the Riemann tensor that 

ta. bb = Rabt b, where Rab = R cabc ' 

Equations (3.2 )-( 3.4) give the results 

{J)ab;b = R abtb = j, 

with the property 

(3.4) 

(3.5) 

/';a = O. (3.6) 

The vector j may be interpreted as a current vector genera
ted by the (H·B·V). We also note from Eq. (3.5), that in 
vacuum or any space-time with Rabt b = 0, the homothetic 
vector satisfies Maxwell-like equations. 

The components of the Ricci tensor may be expressed in 
terms of the components of the electromagnetic energy-mo
mentum tensor Tab' With a suitable choice of units, Tab' may 
be written in the form 

[ -Fm~u - F"F" F"Fm F,,~m 1 - FuFII -F.F. F.FII F.Fn 
Tb =2 -

F.Fn -F.FIII - F"FII ' a FnFm 

FnFIII F.Fn - FuFn -F.FIII 
(3.7) 

where 

F. = F42, F. = F32, 

Fn = ~(F21 - F43 ), Fn = !(FZ1 - F34 ) , (3.8) 

Fill = F 13, Fill = F(4" 

Lemma 3.1: Suppose a non-null homothetic vector field 
t a, admitted by the combined Einstein-Maxwell system, 
generates a (H' B· V), which is also non-null, then t a

, is not 
a geodesic tangent. 

Proof: Let t a, be a geodesic tangent, then along the tra
jectory we must have 

ta;bt b = ata' (3.9) 

for some scalar a. From Eqs. (3.2) and (3.9) we obtain 

{J)abt b = (a - t/J)ta' (3.10) 

Multiplying Eq. (3.10) by t a
, and remembering that t a

, is 
non-null by assumption, we obtain the conditions for t a, to 
be a geodesic tangent as 

(3.11 ) 

(3.12) 

At this point we may use the transformation freedom, 
Eq. (2.11), to reduce the homothetic bivector {J)ab' to its 
canonical form, where (J). = {J)III = 0, and {J)n = !({J)21 
- (J)43) #0. This can be achieved by choosing the two real 
null directions e l and e2 as the principle null directions of the 
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bivector {J)ab' The two bivectors (J) ab' and Fab do not necessar
ily have principle null directions in common. 

From Eq. (3.12), we have as a necessary and sufficient 
condition for a nontrivial solution t a, to exist, the relation
ship 

det {J)ab = O. (3.13) 

Evaluating the above expression we obtain 

lw~I{J)~3=0. (3.14) 

Since {J)ab' is by assumption non-null, the quantities {J)21 and 
{J)43 are not simultaneously zero. We therefore have the fol
lowing two separate cases to consider. We have either 

{J)43=O, {J)21#0 (3.15) 

or 

( 3.16) 

The consideration of these cases are quite similar, and 
therefore, it will suffice to investigate either one of them. 
Considering Eq. (3.15), along with Eq. (3.12) we obtain 

tl = t2 = O. (3.17) 

In addition, Eqs. (1.5), (2.14), (3.1), (3.2), and (3.17) 
yield: 

{J)12 = - t/J + r 41zt3 + r 312t4' (3.18 ) 

{J)12 = t/J - r 421 t3 - r 321t4' (3.19) 

t3.1 = r 341t3' (3.20) 

t4.1 = r 431t4' (3.21 ) 

t3.4 = - t/J + r 344t3' (3.22) 

t4.3 = - t/J + r 433t4' (3.23 ) 

t3.3 = r 343t3' (3.24) 

t4.4 = r 434t4' (3.25 ) 

We now evaluate the expressions (t3t4)' a,a = 1,2,3,4 
by means ofEqs. (3.18)-(3.25) to obtain 

(t3t4).1 =0, (t3t4).2 =0, (t3t4).3 = -t/Jt3' 

(t3t4).4 = - t/Jt4' (3.26) 

The product t3t4 is a constant multiple of the squared length 
of the vector field t a, which by assumption is non-null. Ap
plying the commutation relation Eq. (2.18) to Eq. (3.26) 
yields 

(3.27) 

This result when combined with Eqs. (3.18) and (3.19) 
gives 

lwl2 = 0, (3.28) 

which is contrary to the assumption that the homothetic 
bivector is non-null. Therefore, the geodesic condition Eq. 
(3.9) cannot be fulfilled by a non-null homothetic vector 
field generating a non-null homothetic bivector. We also 
note that the results obtained thus far do not depend on any 
particular form of energy-momentum tensor, electromag
netic or otherwise. Analogous situations in a vacuum space
time involving either a trivial homothetic vector field (a 
Killing vector field), or a nontrivial homothetic vector field 
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have been discussed by Debney4 and McIntosh,S respective
ly. In particular, they have shown that in a vacuum space
time, admitting a Killing or a homothetic vector field and 
generating a non-null bivector cannot be a geodesic tangent. 
Our result is, therefore, a generalization of these results and 
may be stated as follows. 

Theorem 3.1: In an arbitrary space-time vacuum or not, 
admitting a non-null homothetic vector field, generating a 
non-null homothetic bivector, the nontrivial homothetic 
vector field is not a geodesic tangent. 

Lemma 3.2: Let Fab be a source-free non-null electro
magnetic field satisfying Einstein-Maxwell equations. Let 
t a, be a non-null homothetic vector field admitted by the 
system for which e l is a principle null direction for both 
bivectors Fab and Wab' If the space-time is algebraically spe
cial with e l as the degenerate principle null direction for the 
Weyl tensor, then e l must be geodesic and sheer free. 

Proof' With e l as a principle null direction for both bi
vectors, a tetrad transformation Eq. (2.1), may be carried 
out to set FIll = F13 = 0, and WIll = W13 = O. The vanishing 
of FIll' gives by virtue ofEq. (3.7) the vanishing of the fol
lowing components of the Ricci tensor, 
Rll = R13 = R44 = O. With these results Eqs. (B2i) and 
(B2k) yield 

(3.29) 

( 3.30) 

where 

(3.31) 

and "'0' "'1""''''4' are the Weyl's complex scalars. 
From Eqs. (3.29) and (3.30), it immediately follows 

that if "'0 = "'I = 0, we must have K = a = 0, whenever 
.0.2 =1= O. In other words if the space-time is algebraically spe
cial, then the common principle null directions of the two 
non-null bivectors is geodesic and shear free. 

The converse of Lemma 3.2 also holds true; namely if 
the common principle null direction of the two non-null bi
vectors Fab and Wab' is geodesic and shear free, then the 
space-time must be algebraically special. The proof is a 
straightforward consequence of the generalization of the 
Goldberg-Sacks theorem 18 by Robinson and Schild. 19 The 
essence of this theorem may be stated as follows: 

If with the tetrad ea' a = 1,2,3,4,el, is geodesic and 
shear-free, and the Ricci tensor has the vanishing compo
nents Rll = R13 = RI4 = R33 = R44 = 0, then "'0 = "'I = 0; 
that is the space-time is algebraically special. In our case, the 
vanishing of these components of the Ricci tensor are satis
fied by the assumption e l, being a principle null direction. 
Equations (3.29) and (3.30) withK = a = 0, give the result 
"'It 2 = 0, where t2, is the square length ofthe non-null ho
mothetic vector field. Therefore, with el being geodesic, 
shear-free and a common principle direction of Fab and W ab ' 

the space-time must be algebraically special with 

"'0="'1 =0. 
The results of Lemma 3.2 and its converse may be com-

bined to give: 
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Theorem 3.2: Let Fab , be a source-free non-null electro
magnetic field satisfying Einstein-Maxwell field equations. 
Let t a, be a homothetic vector field admitted by this system 
for which e l is a geodesic and shear-free principle null direc
tion for both of the non-null bivectorsFab and Wab' then e l is 
a degenerate principle null direction of the Weyl tensor. 

Theorem 3.3: Let Fab be a source-free non-null electro
magnetic field satisfying Einstein-Maxwell field equations. 
Let t a, be a homothetic vector field admitted by the system. 
If e I and e2 are common principle null directions for both Fab 

and Wab' then t a is hypersurface orthogonal if and only if it is 
a trivial homothetic vector field. 

Proof: The condition that the vector field t a, to be hy
persurface orthogonal, may be written in the form 

(3.32) 

Equations (3.32) with W = dt in its canonical form becomes 

W12t3 = 0, 

W34tl = 0, 

W34t2 = o. 

(3.33 ) 

(3.34 ) 

(3.35 ) 

Accordingly, we have the following two cases to consider. 
We have either 

(3.36a) 

or 

(3.36b) 

Let us consider Eqs. (3.36a) in which the homothetic 
bivectoris real. In this case, we have from Eqs. (B2c), (B2l), 
and (3.36a) 

2p.o.2 = - "'2t 2' 

2p.o.2 = - "'2tl' 

pt 1 - pt 2 = <p, .0.2 = Wn = ~W21' 

Combining Eqs. (3.37) and (3.38), we obtain 

2.o.2(ptl - pt2) = o. 

( 3.37) 

(3.38 ) 

(3.39) 

(3.40) 

Since the homothetic bivector is non-null, we must have 
ptl - pt2 = O. The complex conjugate of this result when 
combined with Eq. (3.39) gives 

(3.41 ) 

as a condition for the vector field t a to be hypersurface or
thogonal. But this, of course, is the condition for t a to be a 
trivial homothetic, i.e., a Killing vector field. 

The relevant equations for the case in which W 12 = 0 
may be obtained from Eqs. (B2a), (B2g), and (3.36b). We 
have 

21T.o.2 = - "'2t4' 

21".0.2 = - "'2t3' 

1Tt3 + 1i"t4 = - <p. 

( 3.42) 

(3.43 ) 

(3.44) 

It is easy to show that in this case, where.o.2 = - ~W43 is 
pure imaginary, leads to the same result as dictated by Eq. 
(3.41). 

Remarks: As an immediate consequence of Theorem 
3.3, if the two non-null bivectors Fab and Wab do not have 
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principle null directions in common, then it may be possible 
for a hypersurface orthogonal vector field, which is a non
Killing vector field, to exist. The existence of such vector 
fields may shed additional light into the structure of space
times admitted by the combined Einstein-Maxwell theory. 
This situation is analogous for example, to the case in which 
a time-like hypersurface orthogonal Killing vector field is 
used to characterize the stationary or the static nature of a 
given space-time. It is therefore, of interest to seek space
times of the Einstein-Maxwell system admitting a non-null 
homothetic vector field, generating a non-null homothetic 
bivector, in which the two bivectors Fab and Wab do not have 
principle null directions in common. 

In Sec. IV we provide a particular solution to Einstein
Maxwell equations, admitting a non-null homothetic vector 
field ~ a, generating a bivector Wab which is also non-null. 
But before proceeding to this particular solution, it is helpful 
to prove a theorem which excludes the possibility of con
structing any solution to Einstein-Maxwell field equations 
under the assumptions of the theorem to follow. 

Theorem 3.4: Let Fab be a source-free non-null electro
magnetic field satisfying Einstein-Maxwell field equations. 
Let ~ a, be a non-null homothetic vector field generating a 
bivector Wab' which is also non-null. Furthermore, we as
sume the two bivectors Fab and Wab have the geodesic e I and 
e2 as their common principle null directions. Then the sys
tem of Eqs. (1.1 )-( 1.5) do not admit any solution, unless 
~ a, is a trivial homothetic vector field. 

Proof Using the geodesic conditions, and with the bi
vectors in their canonical forms, we have by means of Eqs. 
(B2a)-(B21) 

21T0.2 = tP3~1 - tP2~4' (3.45a) 

o = tP4~3 - tP3~2' (3.45b) 

2J.l0.2 = tP3~3 - tP2~2' (3.45c) 

U0.2 = tP4~1 - tP3~4' (3.45d) 

o = tPO~4 - tPI~I' (3.46a) 

21'0.2 = tPI~2 - tP~3' (3.46b) 

20'0.2 = tPO~2 - tPI~3' (3.46c) 

2p0.2 = tPI~4 - tP2~1' (3.46d) 

D0.2 = tPI~4 - tP2~1 - !RI2~1' (3.47a) 

a0.2 = tP2~2 - tP3~3 + !RI2~2' (3.47b) 

80.2 = tPI~2 - tP2~3 + ~RI2~3' (3.47c) 

80.2 = tP2~4 - tP3~1 - !RI2~4' (3.47d) 

where 0.2 = !(W21 - ( 43 ), RI2 = 2¢1¢1' and ¢I is the non
zero tetrad component of a Maxwell field. Additional rela
tionships may be obtained by combining Eqs. (3.46b)
(3.46d) to give 

1'~1 - 0'~4 - P~3 = 0, 

1T~2 - J.l~4 - A~3 = O. 

(3.48) 

(3.49) 

Applying the commutation relations Eqs. (Alla)
(A11d) to 0.2, we find after some algebra the first three are 
satisfied by virtue ofEqs. (3.47a)-(3.48), and Eqs. (A6a) 
and (A6b). The commutator (88 - 88)0.2 gives us the re
sult 
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J.l~1 - P~2 - 1T~3 + 1'~4 = ¢. (3.50) 

Evaluating (3.50) by means ofEqs. (3.45a)-(3.46d), yields 

(3.51) 

Since the homothetic bivector is non-null, 0.2#0, we must 
liave ¢ = 0, which is the condition for the vector field ~a to 
be a Killing vector field. 

It maybe noted that the introduction of a homothetic 
symmetry to Einstein-Maxwell field equations severely lim
its the possibility of having large classes of admissible solu
tions. This situation is indeed in sharp contrast with the case 
in which the underlying symmetry of Einstein-Maxwell the
ory is an element of an isometry group. In particular for a 
non-null, nontrivial homothetic vector field, generating a 
homothetic bivector which is also non-null to exist in a com
bined source-free Einstein-Maxwell system, then the bivec
tors Fab and Wab cannot have principle null geodesic direc
tions in common. As a supporting evidence for this 
conjecture, we provide a particular solution to our system of 
equations (1.1 )-( 1.5) in the next section. 

IV. A PARTICULAR SOLUTION 

In this section we construct a special source-free solu
tion for the system of equations (1.1) - ( 1.5 ), satisfying the 
conditions: 

(a) the null directions e't = /1' and elf. = nl' are geode
sics, hypersurface orthogonal and serve as the principle null 
directions of the non-null, source-free electromagnetic field, 
and 

(b) the null tetrad of vectors ~ = (ll',nl',ml',ml'), 
a = 1,2,3,4, are parallelly propagated along the principle 
null directions /1' and nl'. 

The particular solution to Einstein-Maxwell equations 
satisfying the above requirements has been found using the 
Cartan's equations of structure. We will not, however, pres
ent the details of the calculations here, since it has also been 
worked out by Tariq and Tupper20 in Newman-Penrose for
malism. (Some useful results shared by the principle null 
geodesics and when the tetrad of null vectors are parallelly 
propagated along them are also provided by Debney and 
Zund.21 .22 ) Our problem therefore, reduces to determine 
whether or not Eq. (1.4) admits a nontrivial homothetic 
vector field, generating a homothetic bivector which is also 
non-null for the given metric obtained from the field equa- . 
tions (1.1 )-( 1.3). 

The solutions to the Einstein-Maxwell field equations 
under assumptions (a) and (b) may be written in the form 

/1' = 81'" nI' = 81' u' ml' = AI 8I'y + A281'z, (4.1) 

where the coordinates are xI': (Xl = u, x2 = r, x3 = y, 
X4 = z) and the functions Al and A2 are, respectively, 

(4.2) 

with m = (,J3 - 1)/4, and n = - (,J3 + 1)/4. The only 
nonvanishing spin coefficients are: 
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p =p = -1/4r, p, =jl = 1/4u, 

u= q= J'j/4r, A =l =J'j/4u, 

and having the intrinsic derivatives: 

(4.3) 

(4.4) 

Dp = 4p2, Du = 4pu, f¥t = - 4p,2, aA. = - 4Ap" 
(4.5) 

with all other intrinsic derivatives being zero. 
With these spin coefficients, suing the commutation re

lation equations (Alla)-(Alld) and Eqs. (A6a)-(A6j) 
defining the tetrad components of the homothetic vector 
field ~ a (a = 1,2,3,4) along with its compatibility conditions 
equations (AI4)-(AI8), we obtain: 

~~I = 8~1 = ~~2 = 8~2 = 0, (4.6) 

A~I =4p,~1' (4.7) 

D~2 = -4P~2' (4.8) 

A~3 = P,~3 + A~4' (4.9) 

~~3 = A~I - U~2' (4.10) 

8~3 =P~2 -P,~I' (4.11) 

D~4 = - P~4 - U~3' (4.12) 

The integration of these equations gives for the tetrad 
components of the vector field ~ a with respect to the adopted 
coordinate system (u,r,y,z), the expressions: 

~I =cu, 

~2 = (2t/J - c)r, 

~3 = dtYu - "r- m - idz.Zu - mr -", 

~4 = dtYu - "r- m + id2zu - mr -", 

0 _ cos E (ur) -1/2 
{i. 

cos E (ur)-1/2 0 

i;.v= 
{i. 

0 0 

0 0 

(4.13) 

(4.14) 

( 4.15) 

( 4.16) 

0 

0 

0 

sin E 

{i. 

where E is an arbitrary real constant, and i;.v is an electro
magnetic field, in which both the electric and magnetic fields 
are in the radial direction. The vector field ~ p = eI,: ~ a takes 
the form: 

~p = cu, ~u = (2t/J - c)r, 

~r = (2t/J - c)r, ~r = cu, 

~y= -cty, ~y =ctYu-2mr-2", 

~z = Czz, ~z = - Cz.ZU -2mr -2", 

where the constants CI and C2 are 
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CI = J'jc/2 - (1 + J'j)t/J/2, C2 = cI + t/J. 

The vector field ~p, having the squared length 
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(4.24) 

(4.25) 

(4.26) 

(4.27) 

(4.28) 

where c, d l , and d2 are constants. The constants d l and d2 

may be expressed in terms of the constant c and the homo
thetic constant t/J, 

dl = (a - {i.t/J)12. d2 = a/2, 

a = .j6c/2 + {i.( 1 - {i.)t/J12. ( 4.17) 

The tetrad components of the bivector {J)ab from Eqs. (3.2) 
are 

{J)12 = C - t/J, 
{J)13 = mdtYu - "r- m- 1_ indz.Zu - mr -,,- I, 

{J)42 = ndtYu-,,-lr-m - imdz.Zu-m-Ir-", 

(4.18 ) 

(4.19) 

(4.20) 

(J)43 = O. (4.21) 

The complete particular solution to the system of Eqs. 
(1.1 )-( 1.4) with respect to (u,r,y,z) system of coordinates 
may be expressed in the following form. For the metric It'v 
= e/Jeb vlfb and its inverse we have 

0 0 
0 0 

g •• ~ [~ 0 _ u- 2"r- Zm o ] o ' 
0 0 - 2m - 2" -u r 

~.~ [~ 
0 0 

0 0 
o ] 0 _ u2"rm o ' (4.22) 

0 0 _ u2mr" 
where m = (J'j -1)/4, n = - (J'j + 1)/4. The Maxwell 
field, fpv = eap ebv fab, becomes 

0 

0 

sin E 
(4.23) 

{i. 

0 

~2 = (4t/Jc - 2c2)ur _ dyu - 2"r- 2m 

_~ru-2mr-2", (4.29) 

is non-null and generates a bivector {J),.v = ea,. ebv{J)ab, with 
components 

{J)uy = nctYu - 2" - Ir - 2m, 

{J)uz = mcz.Zu - 2m - I r - 2", 

{J)ry = mctYu - 2"r- 2m - I, 

{J)rz = ncz.Zu - 2mr - 2" - t, {J)yz = 0, 

which is also non-null. 
It is easy to verify that 
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(4.31) 

(4.32) 

(4.33) 

(4.34) 
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(4.35) 

as it should according to its defining Eq. (1.5) and the sym
metries of the Riemann tensor Eq. (3.3). 

In addition to the homothetic motion that we have 
found, the solution also admits three parameter groups of 
motion: 

1ft = &;, V; = 8';, (4.36) 

1]) = u8:, - r&: - dy&; + dz8';, (4.37) 

where the constant d = .J3/2 can be found from Eq. (4.28) 
by letting t/J = o. 

APPENDIX A: CONFORMAL MOTION AND ITS 
COMPATIBILITY CONDITIONS IN TETRAD 
REPRESENTATION 

In the following we write the tetrad components equa
tions of Eq. (1.4) and its integrability condition, which is 
generally expressed in terms of the vanishing of the Lie de
rivative of the conformal Weyl tensor: 

L,cal'vU = O. (AI) 

We choose a tetrad of null vector II',nl',ml',ml', with II' and 
nl' real and ml' complex. The only nonvanishing contractions 
are 

Il'nl' = - ml'ml' = 1. (A2) 

A frame defined by the inner product 
I' b _£b ..Jl a _£u ea e I' - U a' "ae v - CT v' (A3) 

where eal' = (ll',nl',ml',ml'), induces a metric ofthe form 

'YJab = 'YJ
ab 

= [! ~ ~ ~O 1]' a,b = 1,2,3,4. 

o 0 -1 
(A4) 

Equation (AI) in tetrad representation takes the form 

;a;b +;b;a =2t/J'YJab +;C(Yacb +Ybea), (AS) 

where Yabe are the Ricci rotation coefficients. 
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Equation (AS) is the equivalent to the scalar equations 

D;I = (E + 'E);I - 'K;3 - K;4' (A6a) 

b.;2 = - (y+ r);2 + V;3 + :V;4' (A6b) 

tJ;3 = ~;I - U;2 - (a - 11);3' (A6c) 

8;4 = ,1;1 - U;2 - (a -{1);4, (A6d) 

b.;1 + D;2 = 2t/J + (Y + r);1 - (E + 'E>;2 

+ (1T - r);3 + (1f -1");4' 

tJ;1 + D;3 = ( a + /3 + 1f);1 - K;2 

+ (E- 'E-P);3 - U;4' 

8;1 + D;4 = (a + 7J + 1T);1 - 'K;2 

+ ('E - E - p );4 - U;3' 
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(A6e) 

(A60 

(A6g) 

tJ;2 + a;3 = :V;I - (a +/3 + 1");2 

+ (,u + Y - r);3 + ~;4' (A6h) 

8;2 + b.;4 = V;I - (a + 7J + r);2 

+ (ji + r- Y);4 +,1;3' (A6i) 

8;3 + tJ;4 = - 2t/J + (,u + ji);1 - (p + P);2 
+ (a -{J);3 + (a - /3);4' (A6j) 

where the spin coefficients a,/3,y, ... are related to the Ricci 
rotations and may be expressed in the form 

YI3I = K, Y132 = 1", Y133 = U, Y134 = p, (A 7) 

Y241 = - 1T, Y242 = - v, 

Y243 = -,u, Y244 = - A, (A8) 

rl2l = E + 'E, YI22 = Y + r, Y123 = /3 + a, 
~M=a+l (A9) 

YI21 - r341 = 2E, YI24 - Y344 = 2a, 

YI23 - Y343 = 2/3, 
YI22 - Y342 = 2r· 

The intrinsic derivatives are defined according to the rela
tions 

Dt/J = t/J;I)I', b.t/J = t/J;p.nl', tJt/J = t/J;p.ml', 8t/J = t/J;p.ml', 
(AlO) 

and are satisfied by the commutation relation 

b.D - Db. = (y+ r)D + (E+ 'E)b. 

- (1" + 1f)8 - (r + 1T)tJ, 

tJD - DtJ = (a + /3 - 1f)D + Kb. 

- u8 - (p + E - 'E)tJ, 

tJb. - b.tJ = -:VD + (1" - a - /3)b. + ~8 
+ (,u - y+ r)tJ, 

8tJ - tJ8 = (ji - ,u)D + (p - p)b. 

- (a - /3)8 - ({J - a)tJ. 

Equation (AI) can be written in the form 

(Alla) 

(Allb) 

(Allc) 

(Alld) 

Cabed;p;p + Cpbed;P;a + Capcd;P;b + Cabpd;P;c + Cabep;P;d 

= 2t/JCabed + ; b [ C,bed (Ya'p + r' pa ) 

+ Carcd(Yb'p + r'pb) + Cabrd(Yc'P + r'pc) 

+Cabe,(Yd'p+r'pd)]. (A12) 

The independent components of conformal curvature tensor 
may be expressed in terms of the five complex scalars "'0' 
"'1, ... ''''4. We have 

CI212 = "'2 + ~2' CI213 = "'I' CI223 = - ~3' 
CI234 = - "'2 + ~2' C1313 = "'0' CI324 = - "'2' 

C1334 = - "'I' 

C2323 = ~4' C2334 = - ~3' 
C3434 = "'2 + ~2' CI314 = C1323 = C2324 = o. (Al3) 

Making useofEqs. (A6a)-(Alld), and (Al3), Eq. (A12) 
becomes 
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t.tl.I/1o + t2DI/10 - t3~1/10 - tljl/1o + 21/10(Dt2 - 8t4) + 21/11 (8tl - Dt3) 

= 2t,bl/10 + 21/10 [ (2y - ,u)tl + (E - f' + p)t2 + (1T - 2a)t3 + (17' - P - a)t4] 

+ 21/11 [(P + a - 21' - 1T)tl - Kt2 + (f' - E + 2p - p)t3 + ut4]' 

t llll/11 + t2DI/J1 - t3~1/11 - t481/11 - I/101lt4 + 1/11 (Dt2 - 8t4) + I/12(8t \ - 2Dt3) 

(AI4) 

= I/10[(1T+ r)t2 -At3 + (y- y-,u)t41 + I/11[(2y-,u)tl + (E- f'+p)t2 + (1T- 2a)t3 + 17'- a -P)t41 

+ 1/12 [ (a +P - 217' - 3T)tl - Kt2 + (3p -.0 - 2E + 2f')t3 + 2ut4]' (AI5) 

t llll/12 + t2DI/12 - t3~1/12 - t481/12 + 1/11 (~t2 -llt4) + I/13(8tl - Dt3) 

= - 2t,bl/12 + 1/11 [ vtl + (21T + r - a - P)t2 -At3 + (y- y+,u - 2,u)t4] 

+ 1/13 [ (a + P - 21' -1T)tl - Kt2 + (2p - .0 - E + f')t3 + ut4]' (AI6) 

t llll/13 + t2DI/13 - t3~1/13 - t481/13 - I/14Dt3 + I/13(lltl - ~t3) + I/12(~t2 - 21lt4) 

= 1/12 [ vtl + (31T + 2r - a - P)t2 - Ut3 + (2y - 2y +,u - 3,u)t4] 

+ 1/13 [(y - Y - ,u)tl + (p - 2E)t2 + (a + P - r)t3 + (2P - T)t41 

+ 1/14 [ - (1' + 1T)tl + (f' - E + P)t3 + ut4]' (AI7) 

t llll/14 + t2DI/14 - t3~1/14 - t48t4 + 21/12 (Iltl - ~t3) + 21/13(~t2 -llt4) 

= 2t,bl/14 + 21/13 [ vtl + (21T + r - a - P)t2 - At3 + (y - y +,u - 2,u)t4] 

+ 21/14 [ (y - y - ,u)tl + (p - 2E)t2 + (a + P - r)t3 + (2P - T)t4]' (AI8) 

APPENDIXB 

In this appendix, we make use of Eqs. (1.1 )-( 1.4), 
(2.15), (2.16), (3.2)-(3.4), (3.9), and Eq. (A13), to write 
out Eq. (3.3) for an arbitrary source-free electromagnetic 
bivector and homothetic vector field. Let 

.01 =WI = W42, n 2=WII = ~(W21 - ( 43 ), 

n 3=WIIl = W13• 

We obtain after a lengthy algebra: 
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Dnl = - 2Enl - 21Tn2 + I/13tl 

- I/12t4 + !R24tl - !R44t3' 

Iln l = - 2ynl - 2vn2 - I/13t2 

+ I/14t3 + !R22t4 - ~R24t2' 
8.01 = - 2pnl - 2,un2 - I/12t2 

+ I/13t3 - !R24t3 + ~R22tl' 
~nl = - 2anl - un2 + I/14tl 

- I/13t4 + !R24t4 - !R44t2' 

Dn2 = Knl - 1Tn3 + I/1lt4 

- I/12tl - !R12tl + ~RI4t3' 
Iln2 = 1'.01 - vn3 + I/12t2 

- I/13t3 + !R 12t2 - !R 23t4' 

8.02 = unl - ,un 3 + I/1lt2 

- I/12t3 + !R 12t3 - !R23tl' 

~n2 = pn I - An3 - I/13t I 

+ I/12t4 - !R12t4 + !R I4t2' 

Dn3 = 2En3 + 2Kn2 + I/1ltl 

- I/1ot4 + !R13tl - !R llt3' 
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(Bl ) 

(B2a) 

(B2b) 

(B2c) 

(B2d) 

(B2e) 

(B2f) 

(B2g) 

(B2h) 

(B2i) 

Iln3 = 2yn3 + 21'.02 - I/1lt2 

+ 1/1~3 - !R13t2 + !R33t4' (B2j) 

8.03 = 2pn3 + 2u!l2 - I/1ot2 

+ I/1lt3 + !R33tl - !R 13t3' (B2k) 

~n3 = 2an3 + 2pn2 + I/12t I 

- I/1lt4 - !Rllt2 + !R I3t4' (B21) 

Equations (B2a)-(B21) are complete equations appli
cable to both homothetic and Killing bivectors in the com
bired Einstein-Maxwell theory admitting either a trivial or 
a nontrivial homothetic vector field. 

A set of Maxwell-like equations can also be written 
down for the homothetic bivector W ab • These are: 

Dn2 + ~n3 = n 3(2a -1T) + Kn l + 2pn2 - ~R12tl 

- !Rllt2 + !R13t4 + !R I4t3' (B3a) 

Iln2 + 8.01 = .01 (1' - 2P) - vn3 - 2,un2 + !R 12t2 

+ !R22tl - !R23t4 - !R24t3' (B3b) 

8.02 + Iln3 = n 3(2y -,u) + un l + 21'.02 + !R 12t3 

- ~R13t2 + !R33t4 - !R23tl' (B3c) 

~n2 + Dnl = .01 (p - 2E) - An3 - 21Tn2 - !R 12t4 

+ !R14t2 + !R24tl - !R44t3' (B3d) 

where the tetrad components of the Ricci tensor are given in 
terms of the components of energy-momentum tensor by Eq. 
(3.7). 

If we now specialize to a source-free, non-null electro
magnetic field in its canonical form FI = FIll = 0, Fn 
= 1/2(F21 - F43 ) :;60, then the corresponding Maxwell 
equations are: 
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j)(p = lpel>, 

ael> = - 2pel>, 

8e1> = 2 reI>, 

8e1> = - 217'4>. 

:(B4a) 

(B4b) 

(B4c) 

(B4d) 

Using Eqs. (B4a) - (B4d) and the commutation rela
tion Eqs. (Alla)-(Alld), we obtain a set of useful intrinsic 
derivative relationships of the Ricci tensor as well as the spin 
coefficients. We have in fact: 

DRI2 = 2(p + P)R I2, 

aR I2 = - 2(p + ji)R I2, 

8R 12 = 2(-T -1T)R I2, 

8R12 = 2(1' -1T)R I2, 

(B5a) 

(B5b) 

(B5c) 

(B5d) 

with R 12 = 2CP¢, as the only non vanishing tetrad component 
of the Ricci tensor. For the spin coefficients we have: 

409 

Dp + 87 = pji - 7(P - a) + CTA + 1T1T + tP2' 

D1T + 8p = pea + lJ) - 70-, 

Dp + flp =p(r+ r) + 1T1T - 71', 

a7 + 8p = pv + p( 7 - a - {3) + 1TX 

- 7(p- r+ r), 
A1T - 8p = -pv - p(T - a -P) 

+ 7..1 -1T(ji - r+ r), 

81T + 87 = p(ji - p) - p(p - p) 

+ 1T(a - {3) - 7(P - a), 

8p = pea + {3 + 7) - 7p 

+ CTT + 21TCT + tPl' 
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(B6a) 

(B6b) 

(B6c) 

(B6d) 

(B6e) 

(B6f) 

(B6g) 

8CT = CTT + 21TCT + u(3a - P) + 2tPl. (B6h) 

Thus in addition to the Maxwell equation, we may use 
Eqs. (B5a)-(B6h) along with the N·Pequations whenever 
we are dealing with a combined Einstein-Maxwell equations 
in which the electromagnetic field is source-free, non-null, 
and has been reduced to its canonical form. 
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A procedure to solve gauge and tetrad invariant conservation equations coupling 
electromagnetic and gravitational perturbations of Kerr and Kerr-Newman space-times is 
presented. This procedure has two steps. In the first place it must be proved that one can use 
the gauge and tetrad freedom to write the conservation equation as a source-free Maxwell-like 
equation, and second, the conservation equation has to be solved in this particular gauge. 

I. INTRODUCTION 

In order to study small electromagnetic and gravitation
al perturbations of a black hole (BH) we must find the gen
eral solution of the Maxwell-Einstein equations in the lin
earized theory. 

If we are successful in this task, problems like the stabil
ity of a BH under small perturbations, the emission of radi
ation from a BH due to some small falling body, or other 
astrophysical problems could be analyzed. 

(a) In the case of a Kerr BH, Teukolskyl and Teukolsky 
and Press,2 using the Newman-Penrose (NP) formalism, 
gave two plus two equations for the Maxwell NP scalars ¢lOB 
and ¢l2B [we call these equations Teukolsky-Press (TP) re
lations]. The ones appearing in Ref. 1 are two decoupled 
separable equations in the Boyer-Linquist coordinates. 

Following these works, Chandrasekhar proposed an 
approach to determine the general solution of the Maxwell 
equation and he also was able to find the solution for the 
gravitational perturbation problem. 

Recently a geometric interpretation ofTP relations has 
been given,4 concluding that for an arbitrary space-time, 
they are not a complete set of equations. On the other hand, 
it was also shown that once (¢lOB ,¢l2B ) have been determined 
as a solution of the completed TP relations, a procedure to 
find ¢lIB can be given. In other words, a method to find the 
general solution of the Maxwell equations was supplied. 

(b) In the case of a Kerr-Newman BH, up to now, no
body has been able to find the general solution ofthe Max
well-Einstein equations in linearized theory. The main diffi
culty is due to the coupling of the electromagnetic and 
gravitational perturbations. 

Several approaches have been proposed, but the results 
have always been incomplete. Chandrasekhar,s Lee,6 and 
Crossman,7 using the NP formalism, were able to find de
coupled and separable equations for some perturbed quanti
ties. 

Using a different approach, Crossman8 has used the Ca
hen-Debever-Defrise complex vectorial formalism,9 find-

ing three decoupled equations for the three components of a 
self-dual complex two-form C, if C satisfies a conservation 
equation, i.e., dC = O. Using the previous approach and the 
gauge and tetrad freedom, Crossman found three decoupled 
equations for ¢lOB' ¢lIB' and ¢l2B from source-free Maxwell 
equations (recall that in a charged case the Maxwell equa
tions have the form of a conservation equation like dC = 0, 
but with C not self-dual) . 

Using Crossman's result and the gauge and tetrad free
dom, Crossman and Fackerellio and Fackerell il found three 
decoupled equations for tPIB' tP2B' and tP3B (NP scalars of the 
Weyl tensor) from a conservation equation, not self-dual, 
derived from the Maxwell-Einstein equations. 

The work of Fackerell il is also a good review of all per
turbations of Schwarzschild, Reissner-Nordstrom, and 
Kerr black holes. 

(c) The conservation equations worked by Crossman 
and Fackerell have the generic form dCB = 0, with 
CB = XIBZ~ + AB in a Kerr or a Kerr-Newman space
time. These conservation equations are directly deduced 
from the Maxwell-Einstein equations, that is to say, involv
ing only algebraic manipulation but not differentiation. On 
the contrary, the decoupled equations for XIB were derived 
from these conservation equations by differentiation. This 
means that, in principle, the derived decoupled equations are 
only necessary but not sufficient conditions for the conserva
tion equations. 

The present work starts from this problem and shows a 
procedure to find the general solution of each one of the 
conservation equations in Ref. 11 for the quantities one 
wants to solve. We will prove that in all cases there exist a 
gauge and tetrad choice in such a way that the conservation 
equations can be written in the form d(XIBZ ~ ) = O. After 
this we will solve these equations partially using the results 
of Ref. 4. 

The paper has the following structure: 
In Sec. II we introduce the complex vectorial formalism. 

In Sec. III we give the expressions of the NP scalars in the 
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linearized theory. We also give the transformation rules of 
these quantities under general gauge and tetrad transforma
tions. In Sec. IV we show our procedure for solving a generic 
conservation equation. In Sec. V we apply this procedure to 
each one of the conservation equations. Finally, in Sec. VI, 
we compare our procedure with the one of Fackerell and 
Crossman. 

II. COMPLEX VECTORIAL FORMALISM 

We consider a null tetrad {/",n",m",m"} satisfying the 
usual conditions 

I"n" = - m"m" = 1, I"m" = n"m" = 0, (2.1) 

where greek indices run from 0 to 3. 
We write the basis one-forms 

I = I" dxl', n = n" dxl', m = m" dxl', m = m" dxl', 
(2.2) 

and the self-dual basis two-forms 

ZO = mAn, Z 1 = n A I - m A m, Z 2 = I Am, 
(2.3) 

where the self-dual character means 

.ZI =jZI, (2.4) 

where f = - 1, • is the Hodge operator with 
• (I A n A m Am) = j, and capital indices I, J, K, run from 0 
to 2. 

We define the following one-forms in terms ofNP quan
tities: 

U o = rl + xn - pm - um, 

U 1 = yl+en -am -pm, 
U 2 = vi + 1T'n - A.m - pm. 

The first equations of structure are 

dZ o = -2uI AZo-u2 AZ 1
, 

dZ I = 2uoAZo - 2u2 AZ 2
, 

dZ 2 = 2ul AZ 2 +UOAZI. 

(2.Sa) 

(2.Sb) 

(2.Sc) 

(2.6a) 

(2.6b) 

(2.6c) 

Equation (2.6b) can be written in the alternative form 

dZ I = -hAZI, (2.7) 

where the one-form h is self-defined. In terms ofNP quanti
ties, 

h = 2 ( - pi + pn + 1T'm - rm). 

The second equations of structure are 

~o = duo - 2uI Auo, 

~I = dUI + UO AU2' 

~2 = dU2 + 2uI Au2, 

(2.8) 

(2.9a) 

(2.9b) 

(2.9c) 

where the ~I are the complex curvature two-forms, which 
may be expanded as 

~I = CIJZ J + !RyIJZ J + EIJZ J
, (2.10) 

where R is the Ricci scalar, EIJ is the Ricci tensor projected 
on the null tetrad, and 

YIJ=(~ ~! ~), (2.11) 

~ 0 0 
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(2.12) 

are, respectively, the induced metric on the space of self-dual 
forms and the projected Weyl tensor on the null tetrad. 

The Bianchi identities can be written 

d~o = lui A~o - 2uoA~I' 

d~1 = u2A~0 - UOA~2' 

~2 = - 2UIA~2 + 2U2A~I' 

(2.l3a) 

(2.l3b) 

(2.l3c) 

The source-free Maxwell equations are, in this formal-
ism, 

dF=O, (2.14 ) 

where F = t/JIZ I, and the t/JI are the Maxwell scalar fields. 
Finally, the Einstein equations for the electrovacuum 

case are 

(2.1S) 

These are the relevant equations we are going to use in 
the following. We will deal with them on a charged Petrov 
type 0 space-time. This kind of space-time can be character
ized choosing a null tetrad satisfying 

x = u = A. = v = 0, 

"'0 = "'I = "'3 = "'4 = 0, 
t/Jo = t/J2 =0. 

III. PERTURBATIONS OF SPACE-TIME 

(2.16a) 

(2.16b) 

(2.16c) 

We will deal with first-order perturbations of a given 
space-time. We will use the following notation. No subindex 
A or B under a quantity means that this quantity is defined 
on the perturbed space-time. An A subindex under a quanti
ty means that this quantity is defined on the unperturbed 
space-time, i.e., on the background space-time. A B subin
dex under a quantity means that this quantity is a first-order 
one. 

The null tetrad basis one-form on the perturbed space
time ai = {l,n,m,m} can be separated as 

(3.1) 

and we can expand tiJ~ taking as basis one-forms on the per
turbed space-time precisely tiJ~. Then we will have 

tiJ~ = b J~, (3.2) 

where b L b L b i. and b ~ are real and b 1 = b 1, b; = b ~, 
b 3 -b4 b 3 -b 4 b 3 b 4 d b 3 -b 4 I I = I , 2 = 2' 3 = 3' an 4 = 4 are comp ex 
functions. For the self-dual basis two-forms we have 

ZI=Z~ +Z1, 

where now 

(3.3) 

Z1 =B~Z~ +~~Z~ (3.4) 

and the coefficients B are simply related to the coefficients b. 
All the equations we can write on the perturbed space

time can be broken in two pieces. One of them is equal to the 
corresponding equation on the background or A space-time 
and the other is the first order of the equation on theA space
time. 
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We assume that the null tetrad on the A space-time is 
fixed at the beginning. We have only the freedom to perform 
order-B tetrad rotation and coordinate translations. We then 
add the B terms of such transformations in the original B 
terms. In other words, only the B quantities change under an 
order-B rotation and translation, leaving order-A quantities 
unchanged. 

The rules for these order-B transformations are the fol
lowing. 

Under a general order-B rotation of the tetrad, with pa
rameters A,v real and a,b complex arbitrary order-B func
tions, we obtain 

1'1 = l'iJ -Al~ +bm~ +bm~, 

n'l = n'iJ +An~ +am~ +am~, 

m'l = m'iJ + al~ + bn~ + jvm~; 

ZBO=Z~ + (A -jv)Z~ -aZ~, 

ZBI = Z1- 2bZ~ - 2aZ~, 

ZB2 = Z~ - bZ~ - (A -jv)Z~; 

"'~B = "'OB' "'iB = "'2B' "'~B = '" 4B' 

"'iB = "'IB + 3b"'2A' "'iB = "'3B + 3a"'2A; 

<PiB = <PIB' 

<P~B = <POB + 2b<pw <piB = <P2B + 2a<PIA' 

Under a general order-B translation, 

X'il = xll + Sll, 

(3.5) 

(3.6) 

(3.7) 

(3.8) 

(3.9) 

with Sll = Xlll + Ynll + Zmll + Zmll, where X and Yare 
real functions and Z is a complex arbitrary order-B function, 
we obtain 

(3.10) 

for any quantity Q. Here L(5) is the Lie derivative with 
respect to the field 5. 

We will call both, tetrad and coordinate transforma
tions, gauge transformations. 

IV. GAUGE INVARIANT PERTURBED CONSERVATION 
EQUATIONS 

In order to determine gravitational and/or electromag
netic perturbed quantities in a Kerr or Kerr-Newman A 
space-time, Fackerellil showed that it is possible to find 
gauge invariant conservation equations from order-B Max
well-Einstein equations. One can see that in all cases these 
equations take the generic form 

dCB = 0, (4.1) 

where CB = XIBZ ~ + AB, with XIB the perturbed quanti
ties we want to find and AB a complex general two-form not 
involvingXIB' 

In the following we present a procedure to obtain the 
general solution of ( 4.1) for a particular choice of gauge. 

(a) Since the conservation equations are gauge invar
iant, we can write in some particular gauge (') 

dC B =d(XIBZ~ +AB) =0. (4.2) 

We now expand AB in terms of AB and the gauge pa
rametersa,b,A,v, and 5 defined in (3.5) and (3.9). Because 
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of the invariant character of (4.1), this is the same as ex
panding X/B in (4.1') in terms of XIs and the gauge param
eters. We can then write (4.2) in the form 

(4.3) 

where the GIB are defined in terms of the properties of trans
formation of XIB' that is XIB = XIB + GIB , and, in general, 
depend linearly on the gauge parameters but not on their 
derivatives. 

If we could choose a particular gauge in which GlB 
would satisfy the equation 

d(GIBZ~) = dAB' (4.4) 

then (4.3) would simply tum out to be d(XIBZ ~ ) = O. 
Since (4.4) has always a solution (for every AB ) in the 

space of complex functions, a sufficient condition to make 
sure that this choice of gauge is possible is the following: the 
relation between GIB and the parameters, considered as a 
system oflinear equations for the latter, has to be compatible 
independently of the values of G lB' 

When this choice of gauge is possible, Eq. (4.1) becomes 
(now removing the primes from X) 

d(XIBZ~) =0. (4.5) 

From now on we will call Eq. (4.5) a source-free Maxwell
like equation. 

(b) In order to integrate Eq. (4.5), a method that has 
proved to be useful in some cases consists of deducing from 
(4.5) equations for XOB and X2B partially decoupled and sep
arable in radial and angular parts. 1.2.7.8 But, assuming that 
these equations hold, do they guarantee the existence of a 
solution for Eq. (4.5)? 

To solve this important question we follow a different 
path based on Ref. 4. 

A system D(XOB,X2B) = 0 is said to be a conditional 
system for (4.5) if all their solutions can be completed with 
XIB being (XOB,XIB,X2B) a solution of (4.5), and all solu
tions of (4.5) also verify D(XOB,X2B) = o. 

It was shown in Ref. 4 that a system like (4.5) admits a 
conditional system of second order in (X OB ,X 2B) if and only 
ifdhA =0. 

In this case the conditional system is 

(4.6) 

where n is a complex two-form with a component identical
ly vanishing; that is to say, (4.6) consists of five equations for 
X OB and X 2B' Their explicit expression can be found in the 
Appendix (in the present case with J B = 0). 

For each solution (XOB,X2B) of (4.6) there exists a fam
ily of solutions X IB that completes the solution of (4.5). If 
X IBp is a particular solution of (4.5) determined from a par
ticular solution of (4.6) for (XOB,X2B)' then the family of 
solutions X IB corresponding to that particular solution 
(XOB,X2B) is XIB = XIBp + X~B' where X~B is the general so
lution ofthe equation d In X~B = hA • 

This general procedure is useful with the only condition 
being that the A space-time fulfills dh A = O. 

(c) If the A space-time is a vacuum type D space-time, 
we can choose a null tetrad following the null directions of 
the Weyl tensor. Then dhA = 0 holds. In this case the five 
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equations of the conditional system have the following struc
ture: (i) two decoupling equations for XOB,X2B [see (A8) 
and (AlO) in the Appendix.] that coincide with the Teu
kolskyequations l

; (ii) two more equations [see (A9) and 
(A 11 ) in the Appendix], mixing X OB ,X 2B' that coincide with 
the ones appearing in the work ofTeukolsky and Press2

; and 
(iii) another equation, mixing XOB,X2B' that was found in 
Ref. 4 for first time. 

(d) In a Kerr A space-time and working with the 
Boyer-Linquist coordinates, the two first TP relations can 
be separated into angular and radial parts by taking 

XI'B=R(r)0(O)e j (ut+mq:», /'=0,2. (4.7) 

Then we can find XOB and X2B but a constant of relative 
normalization. Chandrasekhar3 shows that, given a solution 
for XOB (X2B)' X2B (XOB) and the constant of relative norma
lization can be determined from one of the two second TP 
relations. 

For fields of type (4.7), the fifth equation of the condi
tional system holds provided that the others hold. Then the 
Chandrasekhar procedure is useful for solving the general 
solution of the conditional system for fields like (4.7) and in 
a Kerr A space-time. 

For each solution (XOB,X2B) we can find the family XIB 
that completes the general solution of (4.5) using the above 
procedure. 

It is easy, but tedious, to prove that the whole procedure 
is also suitable for the same kind of equation [( 5.1)] in a 
Kerr-Newman A space-time. 

We have described the whole procedure to solve source
free Maxwell-like equations in a Kerr or a Kerr-Newman A 
space-time. 

(e) Finally we want to remark that, ifthe fields we find 
do not factorize in the way specified in a Kerr or a Kerr
Newman A space-time or if we simply consider another A 
space-time (always with dhA = 0), we must take into ac
count the whole conditional system, i.e., it is not sufficient to 
deal only with the four TP relations; we must add the fifth 
equation. 

v. APPLICATIONS 

In this section we apply the general procedure shown in 
the preceding section in order to solve each one of the conser
vation equations presented in Ref. 11. 

The steps we must follow are (i) identification of the 
quantities XIB and AB in the conservation equation we want 
to deal with; and (ii) determination of the functions GIB as 
functions of the gauge parameters analyzing their mutual 
independence [it is necessary that the sufficient condition 
quoted in Sec. IV, paragraph (a) hold]. 

Ifwe are successful in these two steps we could write the 
conservation equation as (4.5). Then we can easily apply the 
general procedure shown in paragraphs (b), (c), (d), or (e) 
of the preceding section to find the general solution. 

(a) We start with the simplest conservation equation, 
i.e., the source-free Maxwell equation on a vacuum A space
time 

(5.1) 
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This system is the equivalent ofEq. (4.5). We can now fol
low the same procedure to solve it. 

(b) The second case we will deal with is the source-free 
Maxwell equation on a charged type D A space-time: 

d[tPIBZ~+tPIAZ1]=0. (5.2) 

In this case we have X IB = tP IB and Ab = tPIA Z 1. Since this 
equation is gauge invariant, we can write it in a particular 
gauge ('); 

(5.3 ) 

We can expand Z ;} in terms of Z 1, Z ~ , and the gauge func
tions. This is completely equivalent to expanding tPIB in 
(5.2) in terms of tPIB' tPIA' and the gauge functions, i.e., 

tPIB = tPIB - GIB , 

where 

GOB = 2btPIA' 

GIB = - L(S)tPIA 

= - i(s)dtPIA = - i(s)hAtPw 

G2B = 2atPIA' 

(5.4) 

(5.5) 

We have used that dtPIA = hAtPIA holds in any charged type 
D A space-time. 

Then we always can find a gauge (') where Eq. (5.3) 
takes the form 

(5.6) 

i.e., an equation of the general type (4.5). 
(c) The third case we will present is the conservation 

equation for tP (/ + I) B on a vacuum type D A space-time 11: 

d[tPi:t1l3tP(/+I)BZ~ +Wlz~3Z1] =0. (5.7) 

Then we have XIB = tPi:t 113tP(/+ I)B and AB = ~rp2~3z ~. 
This is again a gauge invariant equation. 

We now have 

GOB = 3b~~3, 
GIB = - tPi"AII3L(s)tP2A 

- tP2A 113i(s)dtP2A = - ~~3i(s)hA' 

G2B = 3a~~3, 

(5.8) 

where we have used that dtP2A = ~hA tPlA holds in any vacu
um type D A space-time. 

Then we always can choose a gauge (') where Eq. (5.7) 
takes the form 

d [tP2A 113tP(/+ I)BZ~] = 0, (5.9) 

that is, an equation ofthe general type (4.5). 
( d) Finally we will deal with the conservation equation 

for tP(/+ I)B in a Kerr-Newman A space-time 11 

d [ ,/, - 112." Z I + 3'/' - 112." Z I 'f'IA 'f'(/+ I)B A 2'f'IA 'f'2A B 

+ 2tPIA lIiFB - ¢IA I12FB] = 0, 

A - J,/, - 1/2.,. Z IB + 2,/, - I12-F ::i. - 112F B - 2'f'IA 'f'2A 'f'IA B - 'f'IA B' 

(5.10) 

Following the same steps as in (b) and (c), the G IB are now 
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GOB = 3bt/JiA 1I2""2A' 

GIB = - t/JIA 1/2L(S)""2A = - t/JIA 1I2i(S)d""2A 

= - ~t/JIA 1I2""2Ai(S)hA - t/J:~2~IA 1I2i(S)h~, (5.11 ) 

G2B = 3at/JIA 1I2""2A' 

Then we can choose a gauge (') where (5.10) takes the 
simpler form 

d [ t/JIA 112"";1+ \)BZ ~] = O. (5.12) 

We have shown that in an appropriate gauge (different 
for each case) we can write each one of the conservation 
equations of Ref. 11 as a source-free Maxwell-like equation. 
Then we can proceed to solve these equations with the aid of 
the method explained in Sec. IV. 

Finally we note that the conservation equation derived 
by Belleza and Ferraril2 cannot be treated with our proce
dure, since, in this case, GIB = 0, i.e., the required quantities 
are gauge invariant. 

VI. CONCLUDING REMARKS 

In order to derive decoupled equations for gravitational 
and electromagnetic perturbations of BH, Crossman and 
Fackerell gave a procedure applied to conservation equa
tions. 

In this section we will analyze the analogies and differ
ences between the Crossman and Fackerell procedure and 
ours. 

In both cases one analyzed the same kind of equation: 
the perturbed conservation equation 

dCB = 0, CB = XIBZ~ + AB. (6.l) 

The two-form C B will not be self-dual, in general. 
For any gauge election 

C~ = XIBZ~ - GIBZ~ + AB, (6.2) 

(6.1) gives 

d [X~BZ~] =JB, 

where 

JB=d [ - AB + GIBZ~], 

(6.3) 

(6.4) 

The Crossman and Fackerell procedure consists of op
erating with * A (d - h A 1\ ) * A on both members of ( 6. 3) and 
then taking only the self-dual part, i.e., 

(*A (d - hAI\ )*Ad [XIBZ~ ],Z~) 

(6.5) 

They proved that there exists a gauge in which the right
hand side of this equation vanishes, i.e., a gauge fulfilling 

(*A (d - hAI\ )*AJB'Z~) = O. (6.6) 

The left-hand side consists ofthree decoupled equations (in 
any type D A space-time) for X~B corresponding to three 
values of J. Two ofthese equations coincide with those found 
by Teukolsky. The last one, for XiB' is the Fackerell-Ipser 
equation. 13 

In order to find the general solution of ( 6.1) the Cross
man and Fackerell procedure has two problems: (a) relative 
normalization between X OB and X 2B remains unknown; and 
(b) we cannot know which solution of the Fackerell-Ipser 
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equation corresponds to a particular (X OB ,X 2B) solution. 
In our procedure, the gauge is computed from J B = O. 

Equation (6.1) becomes simply 

d [X~BZ~] = 0, (6.7) 

and we have found the conditional system by applying the 
operator 

eB=j(d-hAI\)i(*AB)Z~, (6.8) 

i.e., the conditional system is 

e(d [X~BZ~]) = O. (6.9) 

It is easy to prove that, in type D A space-time, the Z ~ 
and Z~ components of (6.9) coincide with the Crossman 
and Fackerell equations for X~B and X2B' 

We have proved that the conditional system provides a 
general solution for X~B and X2B to the conservation equa
tion. Then our procedure is more efficient than that of Cross
man and Fackerell. What is the relation between both elec
tions of gauges? 

Taking into account our gauge equation, J B = 0, we 
easily check that our gauge is a particular family of the 
Crossman and Fackerell gauge. This more accurate restric
tion of the gauge functions allows us to compute the general 
solution for the original equation. 

Finally we remark that our procedure, as that of Cross
man and Fackerell does not solve simultaneously (that is, in 
the same gauge) gravitational and electromagnetic pertur
bations in Kerr-Newman A space-time. This is a question 
that seems far from being answered and would demand new 
efforts. 
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APPENDIX: THE CONDITIONAL SYSTEM 

In this Appendix we give the non-null components of 
the conditional system for Maxwell-like equations, 

(Al) 

where J B is a complex closed three-form. 
The useful generalization of directional derivatives are 

.6.~ =.6.- (p-l)y+ (q+ l)jl- (r-l)y+su, 
(A2) 

D~ =D+ (p+ l)E- (q+ l)p+ (r-l)E-sp, 
(A3) 

8~ =8- (p+ l)a+ (q+ 1)17+ (r-l){J-sT, 
(A4) 

c5~ =15+ (p-l)fJ- (q+ 1)1"- (r-l)a+s1T. 
(A5) 

Fackerell l1 used the operators Ncs ' 

NcJ = [D2( 12_ sl,l _ (! + cl .6. 1
1+ 2s,s 0_ c 

- c52 (s 2+ Il,l- (1 + cl c51 + L,so_ c 
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In a vacuum type D space-time, we have 

NcJ= tPic- s)/3Nss [tP2- (C-S)/y], 

and, in a charged type D space-time, 

NcJ= ~,W-S)/2Nss [¢I- (C-S)/2j]. 

In both cases Nss becomes a separable operator. 

(A7) 

(A8) 

Let {OJ,OJ} be the components ofthe conditional sys
tem two-form-O. The non-null components of the condition
al system for XOB and X2B are, in any A space-time with 
dhA =0, 

- 0 0 =DOAXOB + D2A X2B + JOB = 0, 

- Qo =QOAXOB + Q2AX2B + J2B = ° 
O2 =DOAXOB + D2A X2B - JOB = 0, 

Q2=.f)OAXOB + .f)2AX2B - J2B = 0, 

!(Ol + QI) =DIA X2B - DIAXOB - JIB = 0, 

where 

Do= -NII-XV+UA, 

D2 = - 2x6~~ :~~ + 2uD ~~~ :~~ - 6x + Du, 

D ro 0 ~I 0 'D 0 0 - A I 0 - D" _0=022030-.1\. 22U~30-XV- "I., 

D D o 0D I 0 ro 0 - ~I 0 - £ 
_ 0 = - 2 2 3 0 - X~2 2 - X03 0 - uu - oX, 

DI =D~ ~6~ g - (r+ 17-)D~ g 
+ x/1~ ~ + u(tr + r) + /1x, 

(A9) 

(AlO) 

(All) 

(AI2) 

(A13) 

(AI4) 

and - is the operator that permutes separately the real and 
complex vectors of the null tetrad. 

Finally JJB is 
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JO = xjl + 6~ U2 + ui3 + D ~ U4' 
J2 = x.il + ~ ~j2 -D~ ~j3 - 0:i4' (AI5) 

J I = D~ ~jl + /1~ ~j2 + (17-+ r)j3 - (tr+ r)j4' 

in terms ofjB =j;B(j)~, wherejB is the source term in the 
Maxwell-like equation (we have omitted the B subindex for 
J and j and the A subindex for all other quantities) . 
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Starting from the topological conjugacy of a chaotic discrete map with the shift map on symbol 
space, ideas from the Baxter eight-vertex model and a stochastic difference equation due to 
Falk are used to define a notion of a noisy shift map on symbol space. Its long-time behavior is 
determined, along with a discussion of the ramifications of this result on the effects of noise on 
chaotic discrete dynamical systems. 

I. INTRODUCTION 

The effect of noise on chaotic dynamical systems is of 
great interest and has been studied by many authors. The 
early work on this problem was carried out by Crutchfield et 
al.,1 who studied the effect of noise on period doubling in a 
discrete system. Crutchfield et al. found that the noise intro
duced a gap in the bifurcation sequence, which implied at the 
chaotic threshold a scaling behavior in the critical expo
nents. Additional work was carried out by Svensmark and 
Samuelson2 on the Josephsonjunction: They discovered that 
in the presence of noise and a resonant external perturbation, 
the bifurcation point is shifted by an amount proportional to 
the square of the perturbation amplitude. In addition, Wie
senfeld and McNamara3 have studied the amplification of a 
small resonant periodic perturbation in the presence of noise 
near the period doubling threshold. Arecchi et al.4 have 
studied the effect of noise on the forced Duffing oscillator in 
the region of parameter space, where different chaotic at
tractors coexist: They found that the noise may lead to jumps 
between the different basins of attraction, with the noise, 
induced transitions obeying simple kinetic equations. More 
recently and along the same lines, Kautz5 has investigated 
the problem of thermally induced escape from the basin of 
attraction in a dc-biased Josephson junction. Kautz found 
that average escape time increased exponentially with in
verse temperature in the low temperature limit. Last, Kapi
taniak6 has studied the behavior of the probability density 
function (which is obtained form the Fokker-Planck equa
tion) of a driven nonlinear system. Kapitaniak found that in 
the chaotic regime corresponding to the noise-free case, mul
tiple maxima appear in the stationary probability density 
function of the driven noisy system and also defined a maxi
mal Liapunov characteristic exponent in the presence of 
noise. This exponent is a random number and has a corre
sponding probability density function. As the noise strength 
increases, the mean value of this exponent approaches zero. 
The averaged exponent as a function of the system and driv
ing is smoother than in the noise-free case. This implies that 
the noise may introduce a degree of order in the chaotic 
system. (Similar results were found in the Belousov-Zhabo
tinsky reaction by Matsumoto and Tsuda.7

) 

In this work we will study the effects of noise on discrete 
dynamical systems. This has been studied by many authors. 8 

a) Current address: Divison of Math and Science, Dakota State University, 
Madison, SD 57042. 

In particular, in the context of one-dimensional chaotic 
maps, Crutchfield and Packard9 have studied the symbolic 
dynamics of chaotic maps when they are perturbed by a 
noise term. 

The novel approach to be suggested here is to take ad
vantage of the topological conjugacy between a chaotic dis
crete map and the shift map on symbol space. This topologi
cal conjugacy is described as follows: Iff M -+ M is a chaotic 
maplO and S: l:-+l: is the shift map, then/is topologically 
conjugate to S if there exists a continuous map g:M -+ l: such 
that go/ = sag. One then thinks of/and s as effectively the 
same map. Our approach here is the following: Instead of 
adding a noise term to the chaotic map on real space we will 
perturb the (conjugate) shift map by a noise term and study 
the effects of the noise directly on symbol space. This will be 
done by making use of the formalism of the eight-vertex 
model 1 1 and a stochastic difference equation due to Falk. 12 

The sequences in symbol space will be viewed as infinite con
figurations of spins and the shift map will be viewed as the 
particular transfer matrix, corresponding to the weight val
ues (1,1,0,0,1,1,0,0), which builds up the eight-vertex lat
tice. Using the results of Kastelyn,13 we see that if the 
weights in the eight-vertex lattice are set equal to 
(1,1,0,0,1,1,0,0), then the transfer matrix becomes a shift 
operator that shifts all arrows to the left. Taking a point We in 
the neighborhood of Ws = (1,1,0,0,1,1,0,0), We 
= Ws + ew', and expanding the transfer matrix T(we ) in 

powers of e gives, to first order in e, 

T(we) z1(ws ) + eT' = Ts + eTsH, (1) 

where H is the Hamiltonian for the X- Y-Z model. 
We can view (1) as a perturbed shift map 

T = Ts + eTsH, which was obtained by assuming fluctu
ations in the weights, i.e., thermal fluctuations. The perturb
ing term (which involves H) will be viewed as a term intro
ducing noise into the system. The presence of the 
nearest-neighbor Hamiltonian H in the added term moti
vates us to treat a simple case where the added term is taken 
to depend randomly on nearest neighbors and the random 
variable will be taken to be independent and identically dis
tributed. (We caution the reader that what we are calling a 
perturbation here is not necessarily a small perturbation). 

II. FALK'S DIFFERENCE EQUATION AND THE NOISY 
SHIFT MAP 

In order to obtain concrete results and avoid the very 
difficult case of an infinite number of spins, we will assume 
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that there is a one-dimensional lattice of spins at sites labeled 
by the integers I, ... ,N. where N is an extremely large positive 
integer. Then in this model the spin at sitejhas the left neigh
bor j - 1 and the right neighbor j + 1. At each site a discrete 
time-dependent spin variable Sj (t) is assigned which takes 
the values ( 1, - 1). In this language the strictly determinis
tic behavior of the original shift map is as follows: At time t 
the spin at sitejtakes on the value of the spin at sitej - 1 at 
time t + 1: 

Sj(t+ 1) =Sj_1 (t). (2) 

In our model of the noisy shift map the evolution of the 
spib variables is given by the following stochastic process at 
time t: Spin Sj (t) depends on the two neighbor spins Sj _ I (t) 

and sH I (t). If the two neighbor spins are parallel, then 
Sj (t + 1) assumes the value of Sj_1 (t) [or sH I (t»). If the 
two neighboring spins are antiparallel, then one takes a Ber
noulli trial, where Sj (t + 1) is either spin up or spin down 
depending on the value of the random variable in the Ber
noulli trial. This process can be described by the following 
nonlinear stochastic difference equation first considered by 
Falk in a different contexe 2

: 

Sj(t + I) 

= H Sj _ I (t) + Sj + I (t) ] 
( 

+ ! [1 - Sj_1 (t)sj+ I (t)] OJ (1), for 2<.j<.N - 1, 
(3) 

where 

SI(t + 1) = S2(t), SN(t + 1) = SN_I (t), 

the random variables OJ (t) are independent and identically 
distributed, and 

probability(Oj (t) = + 1) =!, 
probability(Oj (t) = - 1) =!. 

Equations (4) mean that the coin is taken to be fair. 
Define 

(4) 

sj = Sj (t + I), Sj = Sj (t) , ( 5 ) 

and let des,s') =!(1 + ss') be the Kronecker delta. The 
above stochastic process can be associated with a probability 
pes; ' ... 'SN!SI' .... SN) such that the spin system will be in a 
states; "",SN attime t + 1 if it was in astatesl,. .. ,sN attime t. 
This probability is given by the expression 12 

P(S;"",sNlsI"",SN) = 1-(1 + S;S2){ II [1-0 + Sj_ISj+ 1)1-0 + SjSj+ I )d(sj,sj) + 1-(1 + Sj_ISj+ I) 
2 j = 2 •...• N - I 2 2 2 

X~(1 - SjSH I )d(sj, - Sj) + ~(1 - Sj ISH 1 ) [~d(Sj,l) + ~(Sj, - l)]]}~( 1 + SNSN_ I)' 
2 2 - 2 2 2 

This is a one-step transition matrix and defines a Mar
kov chain associated with the stochastic difference equa
tion. Let P be the 2N X 2N matrix with the elements 
pes; "",SN ISI"",SN)' Here P is a stochastic matrix since each 
of its elements are in the interval [0,1] and the elements in a 
column sum to 1. 

Since the result (heads or tails) of tossing a coin is not 
dependent on the value of the spin at a nearest-neighbor site, 
then (Sj(t)Oj(t» = (S,.(t»(Oj(t) and hence from (3) it 
follows that l2 

(SI(t+ I» = (S2(t», 

(Sj (t + 1) = (Sj _ I (t» + (sH I (t» J /2 

+ [1- (SJ_l(t)Sj+l(t»](Oj(t», 

(SN(t+ I» = (SN_I(t». (7) 

For a fair toss one has that (OJ (t» = 0 and the system (7) 
becomes a closed and linear system of equations involving 
only single-spin averages: 

(s(t+1»=A(s(t», (8) 

where A is the N XN nonsymmetric matrix Au = 0, 
A 12 = 1 = A N,N _ I and has all elements on either side ofthe 
diagonal equal to !. All other elements are equal to zero. This 
implies that A - qI is a nonsymmetric matrix that is the 
same as A except that it has Au = - q for every i. Define 
a = - q, b = 1, c =~, and define l2 a real N XN diagonal 
matrix S by SII = SNN = b 1/2, S22 = S33 -
= SN _ I.N _ I = CIIZ, where all other elements are zero. 
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(6) 

Then S -I is the matrix with Sill = S N~ = b -1/2,S 2; I 
= "'S1_I,N_1 = c- 112

• From this one has that the 
matrix elements of the similarity transformation S' 
= S -I (A - qI)S of A - ql are given by S;,. = a for every i, 

S;2 =S21 =SN_I,N =SN,N_I = (bc)lf2,wherealloth
er elements on either side of the diagonal are equal to c, and 
S ij = ° for all other i,j. Therefore, 12 S -IASis real and sym
metric, which implies that its eigenvalues are real. By the 
Sturm separation theorem, S -I AS has N distinct eigenval
ues. Hence the same theorem applies to A and therefore the 
eigenvalues of A are real and nondegenerate. The character
istic equation IA - qI IN = 0 can be expressed as l2 

sinpsin(N - I)P= 0, (9) 

with the solutions 

Pk = krr/(N - 1), (k = O,l, ... ,N - 1). (10) 

The components of the right eigenvectors Vk of A given byl2 

(11 ) 

If Uk are the right eigenvectors of the matrix S -lAS, then 
since the N eigenvalues of A are distinct we have v k = Sok 
and Uk = S - IV k • Also, since S -I is symmetric it is equal to 

its transpose. Therefore, taking the Uk gives uk = vis - I. The 
spectral representation of the matrix S - I AS is 12 

l. Carlson and W. C. Schieve 417 



                                                                                                                                    

e u uT 

S-IAS=}~ 
"r' UkUk 

S -I Ts-I 
= ~ ek VkVk 

£.. Ts-2 
k Vk Vk 

and thus the spectral representation of the matrix A is 

Ts ' 
A = ~ ekvkvk 

£.. Ts-2 
k Vk Vk 

(12) 

The solution of (8) is then 12 

(s(1» = C=O~N-I e~:r:Es2-2Vk )(S(O», (13) 

where ek = COS({3k)' 
Since t - 00 the only terms left in the sum are for k = 0 

and k = N - 1. The term with k = 0 corresponds to "ferro
magnetic" alignment and k = N - 1 corresponds to "anti
ferromagnetic" alignment. Therefore, we have l2 

limt _ 00 (Sj (2t» 

= . L {(V~:£S:2) (s;(O» 
1= I.N Vo Vo ij 

+ (V;s-_12V~s~/) <Si(O»}, 
VN _ I VN _ I ij 

p+ (fl) = limt _ oop( Ilfl;t) 

= limt _ 00 [1 + (Sj (21)] 

= [1 + (Sj ( 00 ) ) ] 12, 

p-(uo) = [1- (Sj(00»]l2, 

where the limit of (Sj (2t» as t- 00 is given byl2 

(Sj(oo» = (N-l)-I~/2 +2(N-1)-1 

x L s?,. 
n= 1 •...• NI2-1 

Ill. THE SUPPRESSION OF CHAOS BY NOISE 

(14) 

(15) 

In order to analyze these results and their relation to 
chaotic dynamics we will use the topological characteriza
tion of chaos using the formalism of symbolic dynamics. 14 In 
symbolic dynamics the transition matrix of a subshift of fi
nite type tells us what sequences are allowed in symbol space. 
For a transition matrix given by 

A=G ~) (16) 

all pairs of symbols can occur: 11,01,10, and 00. However, 
for 

(17) 

the pair 00 cannot occur. We can represent the shift map on 
the set of these admissible sequences in terms of the arrow 
diagrams in the eight-vertex model I I as follows. Let the tran
sition matrix be given by (16) and let {xJ be an admissible 
sequence, say, for example, 
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.... ~ ~ ! ~ r r r t t r t ! l ! l ...... 
'" ·3 ·2 ·1 0 2 3 4 5 6 7 8 9 10 

FIG. 1. Representation of the sequence {x,} as an infinite configuration of 
spins. 

= 1, 0,;;;;i,;;;;6, 

=0, i>6. 

Define the value of Xi = 1 as "spin up" and X; = 0 as "spin 
down" and fix this infinite configuration in space (see Fig. 
1). Then the shift Son this sequence {x;} can be represented 
as shown in Fig. 2. As a convenient mnemonic, this diagram 
can also be represented in terms of eight-vertex diagrams I I 
using the usual rules which follow. 

(i) If two spins in the horizontal direction are parallel 
(antiparallel), then between them place an up (down) ar
row. 

(ii) If two spins in the vertical direction are pointing in 
the same (opposite) direction, then between them place a 
right-pointing (left-pointing) arrow. 

The above shift operation can then be represented as 
shown in Fig. 3. One can continue the shift operation and its 
inverse to obtain an infinite two-dimensional lattice. Note 
that if the spin at place i has orientation x;, then this orienta
tion will be preserved along the diagonal of the lattice. This 
means that under the operation of the (deterministic) shift 
map the vertex diagrams shown in Fig. 4 are not allowed 
physically. This is not surprising since in the eight-vertex 
model it was learned that the shift map is the transfer matrix 
parametrized by the weight values (1,1,0,0,1,1,0,0), which 
correspond to the diagrams shown in Fig. 5. However, the 
noisy shift map can flip spins along the diagonal and thus 
introduce extra diagrams not present in the ordinary deter
ministic shift map. Motivated by these considerations it is 
instructive to make the following definitions. 

Definition 1: Let F:M -Mbe a chaotic map on some set 
M and suppose it is topologically conjugate to the shift map 
on the sequences S: ~A -~A' If under a noisy perturbation 
of S there exist additional admissible sequences for S one 
says that the chaos is enhanced by noise. 

Definition 2: If under the perturbation some of the ad
missible sequences do not exist after an infinite period of 
time, one says that the chaos is suppressed by noise. 

The notions expressed in Definitions 1 and 2 can be for
malized even more as follows. If A is an n X n transition ma
trix, where ~A is the set of admissible symbol sequences, 
then ~A is a Cantor set unless A is a permutation matrix. IS 

..... ! ~ l ~ r r t r r r t l ~ l ~ .... . 

..... ! ! l t t t t t ttl ! ! ! l .... · 
FIG. 2. Representation of the shift operation on the sequence {x,}. 
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-f-ft t -f-f-f-f-ft 
FIG. 3. Representation of the shift operation on the sequence {Xi} in terms 
of eight-vertex diagrams. 

This is true since a permutation matrix has only a single "1" 
in each row and column. If the transition matrix is a permu
tation matrix, then the shift on ~A is a single periodic orbit. 
One can then restate the second part of Definition 2 as fol
lows. 

Definition 3: If under the noisy perturbation the transi
tion matrix approaches a permutation matrix after infinite 
time, then the chaos is suppressed by noise. 

In Sec. II the Falk solution I 2 ofthe Markov chain asso
ciated with what we interpreted as the noisy shift map was 
stated. It was seen that on average only the sequences in a 
"ferromagnetic" configuration survived. In other words, 
only the pairs 00 and 11 can occur and the pairs 10 or 01 
cannot occur. Thus with the noise term the transition matrix 
approaches a permutation matrix after an infinite amount of 
time. Thus the chaos, as characterized topologically, is sup
pressed by the noise. 

Since it is the intersecting of the stable and unstable 
manifolds that results in the chaotic behavior of dynamical 
systems, it is of interest for the present formulation to char
acterize these points of intersection, or homoclinic points, 
explicitly in symbol space. The stable and unstable mani
folds l:.A are characterized as follows. Ifx is a point in ~A' 
then the local stable and unstable manifolds of x in l:. A are 
given bylO 

W~ (x) = {y in ~A IYk = X K for every k>m}, 

W~ (x) = {y in l:.A IYk = X k for every k<m}. 

The (global) stable and unstable manifolds of x are then 
given by 

WS(x) = limm _ oo W~ (x), WU(x) = limm __ 00 W~ (x). 

A point y in l:. A is homoclinic to a point x in l:. A if y is in 
the intersection of W (x) and W" (x). For example, if 
x = ( .. -00·· ·000· .. ), then ify is homoclinic to x, y is ofthe 
formy = ( .. ·OOOYmYm+ I·· ·Yn_IYnOOO···) for some inte
gers nand m. If one shifts a sequence in a homoclinic config
uration using the shift map it will always remain in a homo
clinic configuration. From the results in Sec. II, it is seen that 
a sequence in a homoclinic configuration will no longer re
main so (on average) after an infinite amount of time when 
the shift map is perturbed by the chosen noise term. Under 
the action of the noisy shift map, the only configurations that 
remain are those that have all the symbols the same or the 

++++ 
FIG. 4. Unallowed eight-vertex diagrams for the shift map. 
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++++ 
FIG. 5. Allowed eight-vertex diagrams for the shift map. 

configuration with zero in place i and 1 in place i + 1. Thus, 
again, we can say that the chaos is suppressed by noise. 

In Ref. 16 the authors used a notion of a quantum Mel
nikov function to show that quantum fluctuations have the 
effect of suppressing the chaotic behavior in the forced Duff
ing oscillator. Also, in Ref. 17 Carlson used the formalism of 
Churchill et al. 18 and the notion of the Gaussian effective 
potential due to Stevensonl9 to show that quantum fluctu
ations have the effect of suppressing the chaos in the Henon
Heiles potential. Further, in Ref. 20 it is shown by using 
Melnikov techniques that weak Langevin noise has the effect 
of raising the threshold for chaotic behavior. Thus these re
sults furnish additional examples of Definition 3. 

One might wonder if there are any examples of Defini
tion 1. In Refs. 17 and 21 it is shown that noise due to quan
tum fluctuations can enhance the chaotic behavior. 
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Using a hyperinflation rule, the free energy of the two component Ising system on a chain with 
an arbitrary quasiperiodic order is shown to be given by an average of the free energy of each 
component, in agreement with the result obtained by the transfer matrix formalism. 

I. INTRODUCTION 

Quasiperiodicity has been known to give rise to various 
extraordinary dynamic properties that cannot be seen in ei
ther periodic or random systems.) On the other hand, it is 
believed that critical exponents of phase transitions on quasi
periodic lattices are the same as those for periodic lattices 
and quasiperiodic lattices belong to the universality class of 
periodic lattice.2 This is a clear contrast to random systems, 
which may have non universal critical exponents. 3 

In this paper, I use a hyperinflation rule4 to obtain the 
exact expression of the free energy of the one-dimensional 
Ising model, where two kinds of interactions are arranged in 
a certain quasiperiodic order. The hyperinflation rule relates 
two different quasiperiodic (and periodic) sequences. Thus 
repeated applications of the hyperinflation transformation 
transform a quasiperiodic sequence to a sequence at the fixed 
point of the transformation. If the free energy of the se
quence at the fixed point is known, one can determine the 
free energy of the quasiperiodic chain by inverting the trans
formation. 

The Ising model with zero external field on a chain can 
be solved exactly by the transfer matrix formalism,5 since the 
transfer matrices commute. Therefore, the aim of the pres
ent paper is to clarify how the hyperinflation rule can be 
utilized to obtain certain physical quantities such as the free 
energy. Although this method is very similar to the renor
malization group method for regular Ising chains,6 these two 
methods are essentially different in that while the renormal
ization group technique requires the system be self-similar 
after a renormalization group transformation, the present 
method is based on the similarity in two different sequences 
related by a hyperinflation. 

II. THEORY 

I consider the familiar Hamiltonian H(Ko,K),a) for the 
semi-infinite one-dimensional Ising model for spins, 
U j = ± 1, with two kinds of nearest neighbor interactions 
KoandK) (kT= 1): 

00 

H= - L KS(iJujuj +), 
;= I 

where Sci) is defined by 

Sci) = [a(i+ 1)] - [ail, 

(1) 

(2) 

.) Present address: Department of Physics, Kyoto Institute of Technology, 
Matsugasaki, Sakyoku, Kyoto 606, Japan. 

with the Gauss symbol [ ... ]. The sequence of S( i) consists 
of 0 and 1 and it is periodic when a is rational and quasiper
iodic when a is irrational. It is trivial that the frequencies of 0 
and 1 in the sequence are 1 - a and a, respectively. The 
sequence of 0 and 1 determined by Eq. (2) has hyperinfla
tion symmetries.4 For example, an inflation 

0-10, 1-1 (3) 

transforms a sequence for a to a sequence for a', which is 
defined by 

a' = 11(2 - a). (4) 

The left fixed point of this transformation is a* = 1. 
Now, I consider the partition function 

Z(Ko,K),a) = L exp[ - H(Ko,K),a)] (5) 
{U;= ± J} 

and the free energy per spin 

f(Ko,K),a) = - N-)ln Z(Ko,K),a) 

(N is the number of spins in the system and is always consid
ered to be infinity in the thermodynamic limit) for sequence 
a and sequence a', which are related by the hyperinflation 
transformation (4). One can easily perform a partial sum
mation for the partition function Z(Ko,K),a') and obtain 
the renormalization transformation 

Z(Ko,K),a') = e(1-a)Ng(K,.K')Z(Kb,K),a), (6) 

where 

g(Ko,K) =! In[4 cosh(Ko + K)cosh(Ko - K)] (7) 

and 

tanh K b = tanh Ko tanh K). (8) 

Therefore the free energy satisfies the following recursion 
relation: 

f(Ko,K),a') 

= [11(2 - a) Hf(K b,K),a) - (1 - a)g(Ko.K)>]. 
(9) 

I consider first a series of rational a's, a(m) = ml(m + 1) 
(m = 0,1, ... ), where a(m+ 1) and a(m) are related via Eq. 
(4). Noting that m = 0 corresponds to a regular chain of Ko 
and hence 

f(Ko.K),G} = -In(2 cosh Ko), 

it is straightforward to show by induction that 

f(K K ~) = _In(2 cosh Ko) + m In(2 cosh K) . 
0' ), m + 1 m + 1 

( 10) 
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Note that as m-- oo,f(Ko,KI,m/(m + 1) behaves as 

f(Ko,KI,m/(m + 1» 
= -In(2coshKI) +~ln coshKo +O(m-2 ). 

m coshKI 
(11) 

Now, for an arbitrary a, I apply the transformation (4) 
n times, to obtain a,a', ... ,a(n) , for which the free energy 
satisfies the recursion relation 

f(K ~n - k - I) ,KI,a(k + I) 

= [11(2 - a(k»] [f(K ~n- k),KI,a(k» 

_ (1 - a(k»g(K ~n- k- I),K
I
)] , 

where 

tanhK~k+ I) = tanhKI tanhK~k) 

or, equivalently, 

cosh2 K ~k + I) cosh2 KI 

(12) 

cosh2 K ~k) cosh(K ~k) + KI )cosh(K ~k) - K 1 ) , 

with K ~O) = Ko and a(O) = a. Eliminating f(K ~n - k), 

KI,a(k» (k = 1,2, ... ,n - 1) from this set of equations, I find 

f(K~n),KI,a) = (n + 1 - na)f(Ko,KI,a(n» 

n-I 

+ (1 - a) L g(K~k),KI)· (13) 
k=O 

Now, take the n -- 00 limit. Then a(n) converges to the fixed 
point, a* = 1, of the transformation (4) and thus 
f(Ko,KI,a(n) ) approaches 

-In[2 cosh(KI)] + n- I In[ (cosh Ko)/(cosh K I )] 

as in Eq. (11). Using the explicit expression of g(K ~k),KI)' 
one can easily show that the free energy for the sequence for 
an arbitrary a is given by 
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f(Ko,KI,a) 

= - [(1- a)ln(2 cosh Ko) + a In(2 cosh K I )] . 
(14) 

This reduces consistently to Eq. (10) when a 
= m/(m + 1). 

III. CONCLUSION 

I have obtained in this paper the exact expression of the 
free energy for the Ising system with binary couplings ar
ranged in a quasiperiodic order ofEq. (2) using the hyperin
flation transformation. The expression (14) indicates that 
the free energy is given by the simple average of the free 
energies of each component, in agreement with the result 
obtained by the transfer matrix formalism.5 The present 
method can be considered as a generalized renormalization 
group approach, in which the transformation relates two 
different systems instead of self-similar systems required in 
the usual renormalization group method. Thus this method 
may be applicable to a much wider class of problems includ
ing problems in higher-dimensional quasilattices, although 
hyperinflation rules in two- and higher-dimensional quasi
lattices are yet to be found. 
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The Bargman-Wigner theory is used in order to quantize and build interactions "a la 
Fermi"between massive or massless particles with spin~, 1, ~, and 2. 

I. INTRODUCTION 

Until now only spin-! and spin-l particles have been 
observed as elementary particles. But we have no reason to 
exclude the existence of elementary spin-~ or spin-2 particles. 
On the contrary, recent unified theories such as supersym
metry (SUSY), implies the existence of such particles. 

Nevertheless, SUSY has not yet won experimental sup
port. Consequently one has to look for other approaches in 
order to get a unified theory; the superstring theory being 
one of them. Before establishing a satisfactory unified theory 
we must therefore be able to describe, even approximately, 
interactions between particles with different spins in order to 
give the experimentalist a way to identify these hypothetical 
new elementary particles. This is our motivation for propos
ing a general method "a la Fermi" for constructing effective 
interactions. We obtained a large class of interactions with 
this model. 

To construct such interactions we first need a formalism 
involving both massive as well as massless particles. With 
the Bargmann-Wigner (BW) theory) as a starting point, we 
have recently developed its connection with the usual for
malism for massive particles. 2 

In the present work we have shown how we can con
struct the BW theory for massless particles (Sec. II). From a 
two-component formalism described in Sec. III, we obtained 
a four-component spinor formalism, and have been able to 
construct interactions between particles with or without 
mass, by contractions of spinor indices. Before constructing 
the interactions, we verify in Sec. IV that our theory gives the 
usual results for massless particles with spins 1 and ~. We 
have also constructed projection operators for spin-~ mass
less particles and calculated the sum over polarization for 
spin-2 massless particles. (Our notation is summarized in 
the Appendix.) 

II. THE BW MASSLESS THEORY 

Following BW's theory, we assume that a massless par
ticle of spin s is described by a spinor 

tPo, ... 0 •... 02, (x), ak = 1,2,3,4, 

of rank 18, symmetric in its spin variables, that obey a system 
of 18 Dirac's equations: 

i(r·a), tPo ... 0 •... 0 (x) = 0, 
Qkak 1 2.1 

(2.1) 

with k = 1, ... ,18. 

From Eq. (2.1) we may derive the following two equa
tions: 

(2.2) 

where 

tPR (x) = (tPR )0 .... 02' (x) 

= ~(/ + r)o,oi" .~(/ + r)oz,oi,tPo; ... oi, (x), 

tPdx) = (tPdO, ... 02'(X) 

= !(l- r)o,ai" '1(/ - r)02,oi, (x)tPo; ... oi, (x). 
(2.3) 

We note that symmetry in spin indices for tP implies symme
try in spin indices for tPR and tPL' 

It is clear that if tP transforms under the Poincare group 
like the tensor product of 18 bispinors: 

_(SI) ® '" ® (SIIS) 
tP;e ill. ' 

then, in chiral representation, which we will use from now on 
for convenience, tP Rand tP L will transform like: 

tPR -(~)®'" ®e~s), 
tPL -~I) ® ••• ® ~~IS) . 

Since the spin operator in chiral representation is 

:I = KI®I®'" ®I + .. , + I®· .. ®:I) 

(in this definition we have a sum of 18 terms, each of them 
being constituted by 18 tensor products) and in momentum 
space is 

a-nt( p) = s( p), 

a-nX( p) = - X( p), 

where n = (p/!p!), we will have the following properties: 

:I°ntPR (p) = StPR (p), 
(2.4) 

:I°ntPL (p) = - StPL (p), 

provide that tP transforms like the tensor product of 18 bi
spinors. Equations (2.4) means that tPR and tPL describe 
particles with spin + S ( - s). Adopting the notation 
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(2.5) 

where fjJ and ware the only nonzero components of rPR and 
rPL' and are two-component spinors of rank 2s: 

the only nontrivial equation, derived from the Eqs. (2.2) are: 

( - iuoao - i<1"V) ® 1 ® ••• EIllfjJ(x) = 0, (2.6) 

( - iuoao + i<1"V) ® 1 ® .•• EIllw(x) = 0, (2.7) 

fjJ (x) and w (x) being symmetric spinors. We remark that we 
can derive, for example, Eq. (2.7) from Eq. (2.6) by space 
reflection. We can see that the only nontrivial components of 
a particle of spin s ( - s) are those associated with a two
component symmetric spinsor 'Pb ... b (x) (wb

, ... b2,(x» 
I 2.1' " 

obeying Eqs. (2.6) and (2.7), where now bl, ... ,b2s ' b l , ... ,b2s 
= 1,2. 

Our aim in next section is, using the properties of the 
two-component spinors fjJ and w, to obtain a four-component 
formalism for rPR and rPv that is analogous to the formalism 
constructed for the massive case.2 

III. FROM TWO-COMPONENT SPINORIAL FORMALISM 
TO THE FOUR-COMPONENT SPINORIAL FORMALISM 

The symmetry in spin indices of the two-component 
spinsors fjJ and wallow us to express these fields as a linear 
combination of the symmetric (2 X 2) matrices.3 The coeffi
cients of such expansions are the following new fields: (i) 
vector fieldsp(x) andj*k(x) in the case of spin-l particles 
(k = 1,2,3), (ii) vector-spinor fields 1]~ (x) and 19 ~ (x) in 
thecaseofspin-~particles (k = 1,2,3, andb = 1,2), and (iii) 
tensor fields jkj (x) and j*kj (x) in the case of spin-2 particles 
(kJ = 1,2,3). We derive the properties ofthe new fieldsj\ 

TABLE I. From BW formalism to usual fields. 

Spin 

2 

Two-component 
spinors 

fPb,b, (x) 

fPb,b,b, (x) 
c,/"b,b,(X) 

fP b, b,b,b. (x) 

Decomposition 

= JG.fk(X)· (if'C')b,b, 

= JG.rk(x)· (if'C')b,b, 

= 71:, (x)· (if'C,) b,b, 

= 6:, (x)· (if'C')b,b, 
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j*k, 1]~, 19~,fkj, andj*kj from the symmetry properties of 
the spinor fjJ and wand from the Pauli equation (2.6) and 
(2.7) satisfied by fjJ and w, respectively. We summarize our 
results in Table I. In this table, indices bl, ... ,b2s,bs, ... ,b2S take 
the value 1,2. The variables k,j, I, take the value 1,2,3, and 
G I , G2 are constants with the dimension of mass. 

We are now able to construct a four-component formal
ism. Recalling definition (2.3) for rPR and rPL and Eqs. (2.2) 
satisfied by these fields we have shown that the correspon
dence between two-component and four-component formal
ism is coherent, or in other words, that Eqs. (2.3) and apro
priate decomposition for rPR and rPL give rise to the new 
fieldsj\j*\ 1]~, 19 ~,fkj, andj*kj

, and obeying the proper
ties indicated in Table I. 

For a spino! field we have 

i(r·a)rPR =0, 
L 

where 

rPL =!(I + r)rP = (6)' 
rPL = !(I - r)rP = (~). 

On the other hand, for a spin-l field we obtained 

{i( y-a) ® I}rPR = ° 
L 

whereas, 

rP~ = ~~:k)H(I ± r) (l:kC», 

(3.1a) 

(3.1b) 

(3.2) 

Cbeing the ( 4 X 4) conjugation matrix. In the case of a spin-~ 
field we get 

L 

{i(r·a) ®I®I}rPR = 0, 

L 

L 

Properties of the 
new fields 

fkk=O 

fk1=p' 
akfk} = 0 

aofk1 + iE'n1a/ /k" = 0 

(3.3a) 
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and where we have defined t/J~ as 
L 

(OR)k =!(l + r)Ok = (6} 
(OL)k = !(l- r)Ok = (;k)' 

For a spin-2 field we have 

{i(y·a) ®I®I®I}t/JR = 0, 
L 

whereas, 

where aI' a2, a3, a4 = 1, 2, 3,4. 

(3.3b) 

Before constructing interactions, something that we are 
now technically able to do, we will first check in the next 
section that the formalism constructed here gives rise to the 
usual projectors for particles with half-integer spin and sum 
over the polarizations for particles with integer spin.4 In ad
dition we will also obtain a way to write the decompositions 
Eqs. (3.1)-(3.4) in a relativistic form. 

IV. QUANTIZATION OF THE FIELDS 

First we will quantize the nonvanishing two-component 
spinor fields fP (or cd) assuming3 commutation relations 
(4.1), 

[ fPb""b' (x), fP b+. ... b' (y) ]5' 
I 2s 2 2.\" 

= ( - i)2s-IK"\.' i(iaoao - icrV) , ... 
~ b,b, 

Xi(ia Gao - icrV) bi,b"D(x - y), (4.1) 

where D(x - y) is the Jordan-Pauli function for massless 
particles, K is a constant to be determined, and g; denotes all 
possible permutations among the spinor indices. We are us
ing the convention (4.2) 

[¢,t/J). =¢t/J+ (_1)2s-It/J¢, (4.2) 

s being the spin of the field. We remark that commutation 
rules for cd follows from (4.1) by space reflection. We obtain 
in this way a method to derive all the properties of cd fields 
from the properties of fP fields. When we expand the two
componet fP fields in terms of the new field f \ 1JZ, f k

j
; im

posing (4.1) we get the commutation relations for the new 
fields. From now on we will treat the problem in two distinct 
ways, depending whether we are dealing with integer or half
integer spin. When we are interested in particles with half
integer spin we use Eqs. (3.1) and (3.3) to obtain commuta
tion rules between the four-component fields (t/J R ) a and 
(OR ): (particles with spin-! and ~). On the other hand, we 
derived from the well known plane wave expansion of the 
field t/J Rand (OK): another expression of the anticommuta
tor for these fields. Comparing the two last expressions and 
adopting convenient normalizations, we were able to fix the 
value of the constant K and we obtained projection opera
tors. The results for particles with four-momentum 
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p = (pO,p) are summarized in Table II. In this table we used 
Bjorken's notations 

if = (1,0,0,0), 

if' = « P"1J)2 - p2)1/2(plt - (p"1J)1JI-'). 

However if we are interested in particles with integer spin, 
we will proceed in a slightly different way. For an spin-l 
particle,3,6 if we define 

.f,.. (x) = !€Ol-'apyaP(x) (4.3) 

(note that/o is necessary zero), where in (4.3) 

yaP (x) = FaP(x) - ipaP(x), 

FaP(x) = a P ,sffa(x) - aa ,sffp(x), 

paP(x) = !~PI-'VFI-'v(x), 

a, p, fL' v = 0,1,2,3, 

(4.4) 

,sff ix) is the vector potential. Using the properties of the f 
fields given in Table I and Eqs. (4.3) and (4.4) we clearly 
reobtain Maxwell's equations. Postulating the usual plane 
wave expansion of,sff I-'(x), 

where 

p= (po,p) , 

[A(p,.;l),A +(p',.;l')] =03(p-P')OAA" (4.6) 

A. and A. ' are polarizations. and using (4.3) we obtain a differ
ent expression from that of the beginning of Sec. IV, for the 
commutator between f fields. Equalizing these two results 
(adopting Bjorken's5 notation) we obtain for a particle with 
four-momentum p and spin 1: 

2 

XI-'V( p) = L €It( p,.;l)€v*( p,).) 
,1=1 

= _gl-'v+1Jl-'r(_jJltjJv. (4.7) 

Equation (4.7) is exactly the well known expression for sum 
over polarization, We derive from the relations satisfied by 
the f fields, given in Table I. the usual properties of the 
polarization vector €I-'( p,.;l). For a spin-2 massless particle 

TABLE II. Operators of projection for massless! and ~ particles. 

Spin K Operators of projection 

(P:L. (p) = (u:t (P)(u:t: (p) 

= 21~1 (~ (l ± y')PY') 0,0, 
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we proceed in a quite analogous manner, that is, we define 
I' OTaP a'p , 

JI'I" (x) = !EOl'aPEol"a'P',f . (x) (4.8) 

(note that the only nontrivial component off are obtained 
for p. and p.' are nonzero). Here 

yaP.a'P' (x) = FaP.a'P' (x) - ipaP.a'P' (x) , 

yaP.a'P' (x) = a a(aa'.sf(J(J'(x) - a P'.sfPa'(x) 

- a p(aa'.sfaP'(x) - a P'.sfaa'(x» , 

PaP.a'p'(x) = l~fJp.v~'P'I"VF 
4. I1:V,P'v' , 

a, fl,a', fl', p.,v, p.',v' = 0,1,2,3, 

and .sf I'V(x) plays the role of the vector potential as in the 
case of spin-1 theory. We postulate the following plane wave 
expansion for .sf I'V(x): 

.sfI'V(x) = 1 f d
3
p ± EI'V(p).) 

(21T)3/2 M A = 1 

X{A (p).)e- ipx + A + (p).)eiPX} , (4.9) 

where we used the commutation rules given in (4.6). Pro
ceeding in the same way that we did for a spin-1 particle, we 
obtain for a particle of four-momentum p and spin 2, the sum 
over polarization given in Eq. (4.10). 

2 

SI'VI"V(p) = L EI'V(p,).)E*I"V(p).) 
A=I 

= Hxw (p) y 1'1" (p) _ X 1'1" (p) yw (p) 

+ XVI" (p) yvl'( p) + XVI'( p) yvl" (p) 

_2XI'V(p)XI"V(p)}' (4.10) 

where X I'V( p) is given by (4.7) and Y I'V( p) is defined in 
Table II (p.,v,p.',v = 0,1,2,3). 

As for a ~pin-1 particle, we derived the relations satisfied by 
EI'V( p).) from the conditions imposed to f I'V and given in 
Table I. One has 

~(p).) =E>I'(p).) =EJ'O(p).), EI'I'(P).) =0, 

EI'V(p).) = EVI'(p).) , pI'El'v(P).) =0, 

ipOEI'V( p).) - iE>YaPpaEI'P( p).) = 0. 

Concluding this section, we remark that we have obtained 
with our formalism all usual results. In the next section we 
will give some effective interactions as stated in Sec. III. 

V. EFFECTIVE INTERACTIONS 

In order to classify the interactions, we remember that 
under Poincare coordinate transformation, a 2s rank spinor 
transform as: 

",(x) -""(x') = D(I) ® ... ®D(l)"'(x) , 

where the operator D(1) satisfies 

D -I (1) y I'D (I) = /l'vYv 

and 

yOD+yO=D- I • 

The 2s rank spinor "¢I(x) defined by 

"¢I(x) = "'+ (x)yO ® ... ® yO 

transforms like 

"¢I(x) -"¢I'(x') = "¢I(x)D -1(1) ® ... ®D -1(1) . 

Note that all tensor products written above contains 2s 
terms. Since BW's theory is a generalization of Dirac's theo
ry, we can use the well known results for Dirac's theory in 
order to ensure ourselves that the following forms transform 
as 

(i) scalar 1 = ~(l ® ... ® I + ... + I ® •.. ® I) , 
2s 

(ii) pseudoscalar 
1 

r 5 =-(r®"'®T+ .. , +I®"'®r), 
2s 

(iii) vector 
1 

rl'= 2s(yl'®"'®I+ ... +I®"'®YI'), 

(iv) pseudovector 1 r I'r5 = 2s (yl'r ® ... ® I + ... + I ® •.. ® yl'r) , 

1 l: I'V = _( ql'V ® ... ® I + ... + I ® ... ® ql'V) , 
2s 

(v) tensor 

where all the above terms contains 2s terms, composed of2s 
tensor products. 

We denote by rn the following set of matrices: 

rn = {1,r5,rl',rl'r5,l:l'v}. (5.1) 

We are now able to construct Dirac forms for different parti
cles with the same spin, such as 

"¢Irn
"" = {#',"¢Irs",',"¢IrI'VI,"¢Irl'rS",',"¢Il:I'V",'}, (5.2) 

where in (5.2) "" (and/or "¢I) are 2s-rank spinors describing 
different partic:les with or without mass. In fact we con
structed the above forms involving particles with same spin 
particles, i.e., forms that contain: 
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massive particles-massive particles2
, 

massive particles-massless particles, 

massless particles-massless particles. 

(5.3a) 

(5.3b) 

(5.3c) 

We can also construct Dirac forms mixing particles with 
different spins. For convenience we will use, from now on, 
the following notation: 

0 0 (0 0 ) is a massive (massless) particle of spin ~; 

'a,a, (to,o,) is a massive (massless) particle of spin 1; 

tPo,o,o., (4)0 10,0,) is a massive (massless) particle of spin ~; 

ta,a,a.,o. (tala,o.,o. ) is a massive (massless) particle of spin 2, 
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where tilde means different particles with the same spin. 
All Dirac forms involving particles with different spin 

are listed in Table III. In this table all considered particles 
are indifferently massive or massless and all expressions are 
supposed to be symmetrized in spin indices. We omitted con
tracted spin indices. 

We can now construct interactions involving: (i) parti
cles with the same spin whether they are massive or massless 
for example scalar-type interactions like as 
('¢Ir"f/I) ('¢Ir" f/I), where here rn denotes the same matrix in 
the two factors; vector-type interactions like as 

('¢Ir iJt/J') ; '¢II. iJvt/J' qv 

where q is the momentum transfer, etc., and 
(ii) particles with different spins 

In this case Table III gives us some interactions. Obvi
sously since Table III is not exaustive, we can also obtain, for 
example, vector-type interactions in the following manner 
for particles with or without mass: 

{tI. /'v¢0qvl~ /'v~~ 'qv,tI. /'v~0'qv,tI. /,v00'0" qv}; 

{¢I. /'v~qv'¢I. /,v00'0" qv}; 

{~I. iJv00'qv}' 

q being, in all these cases, the momentum transfer. An im
portant property of the last interaction is that the currents so 
constructed are conserved due to the antisymmetry of the 
tensor I. /'v. We obtain the usual formulation using the de
composition of BW's fields for massive2 or massless parti
cles. We will develop explicit interactions and study their 
phenomenological properties in a future publication. 

VI. CONCLUSIONS 

The aim of this paper is to give the theoretical principles 
necessary to construct all types of interactions between mas
sive (or massless) fields. Taking the interactions of Sec. V as 
a starting point, we deduce Feynman rules for massive or 
massless particles with spin !, 1, ~, and 2. In addition we 
obtained another interesting result. We describe free parti
cles with spin 1 and 2 in a quite different manner than usual.4 

In order to connect our theory with quantum electrodynam
ics we will, based on our formulation, construct Lagrangians 
of interaction involving photons and spin-! particles.7 Later 
we will generalize this treatment of QED to particles with 
higher spin. 

TABLE III. Dirac forms for particles with different spin. 

Spin s = something Dirac forms 
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2 ~r'CI>s 
~r"tt' 
~r"tes' 
tr"SS'SS"S-

<I>r"te 
<I>r"SS'S" 
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APPENDIX 

We used in this paper the metric g/,v 

= (l, - 1, - 1, - 1). The Pauli matrices are defined as be
low 

U 0 = (~ ~); U I = (~ ~); 

U 2 = (~ 0- '); U 3 = (~ _0
1
) . 

By convention u I' = (u 0 = 1,0') designates (tT') b,b, 

bl ,b2 = 1,2. We have used also the property that 

(UO)b,b,:;= (UO)b,b,; (U k)b,h
2 
= - (ukh,b" 

where CI denotes the charge conjuction matrix in (2X2) 
space and obeys 

tCI = - CI ; CI + = CI -
I
. 

Useful results for chiral representaion are: (i) Dirac 
matrices 

( 
0 -U) yl' = (yO,y); yl' = I' ; 

-U/' 0 

(ii) Charge conjugation matrix 

C = (~I ~ 1- } f = iyOylrr = (~ ~); 

l: = fyOy = (~ ~); I = (~ ~); 
uI'v=~[y/',yV] . 
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After an analysis of the concept of Lagrangian gauge fixing, it is shown that the arbitrariness in 
the parametrization of gauge transformations gives rise to a whole family of classical BRS 
transformations. This is explicitly shown for the free-relativistic particle. Two inequivalent 
classes of BRS Lagrangians are defined. While the former generates a Kato-Ogawa-like 
Hamiltonian BRS formalism, the latter gives rise to the Batalin-Fradkin-Vilkovisky theory. A 
comparison is made between these Hamiltonian theories, the multitemporal description of 1st
class constraints, the Konstant-Sternberg and Loll approaches, and the Bonora-Cotta 
Ramusino interpretation of ghosts. The relevance of an equivariance condition for the BRS 
observables is shown. The quantum BRS theory is briefly discussed. 

I. INTRODUCTION 

Looking at the literature concerning the theory and the 
applications of the BRS methodology, one remains aston
ished at how many variants exist and, on the other hand, by 
the nearly total absence of attempts to extract a unified pic
ture. Therefore, we felt the need to investigate this matter, 
starting from the classical level with a finite number of de
grees of freedom. To simplify the subject even further, we 
shall consider the example of the free relativistic particle as a 
guide in the study of the Lagrangian and Hamiltonian forms 
of the BRS method. Only in Secs. IV and V shall we investi
gate systems whose constraints are associated to a Lie alge
bra, to make contact with more sophisticated concepts of the 
BRS theory. 

Let us first make some general considerations on the 
problem of the Lagrangian gauge fixings. Ifwe have a singu
lar Lagrangian Lo (q,q) on a configuration space Q with local 
coordinates qi, i = 1, ... ,n, whose Hessian matrix AOij 
= a 2 Lol if aqi has only one null eigenvalue, for the sake of 

simplicity, then there exists J
•
2 a set of Nrether transforma

tions ooqi = ~f~ oEU)(t)S j _j (q,q) for some J[EU) is an ar
bitrary function] such that ooLo = dF 01 dt. Since the ooqi are 
gauge transformations, in the phase space T*Q(po 
= aLoiaqi) there will be a set of 1st-class constraints 

GJ_ j (q,po) ;::;;O,j = O,l •...• J (Go is the primary one), so that 
ooqi = {qi.G} with G= ~f~oEU)(t)GJ_j' At the Lagran
gian level we obtain GJ_j(q,po) = GJ_j(q,q) =.0. because 
they are the acceleration-independent subset of the Euler
Lagrange equations (=. means evaluated on the solutions of 
the Euler-Lagrange equations) . 

It is well known that to fix the gauge in T*Q one adds a 
set of Dirac gauge-fixing constraints XJ _ j (q,po) ;::;; O. 
j = O,l, ...• J, such that detl{Gh,xk}1 #0, builds the corre
sponding Dirac brackets and so obtains a copy of the re
duced phase space. 

To have a consistent model, one must assume that Lo is 
such that the commutators of any order of the single gauge 
transformations OOjqi = EU) (t)S j _ pj = O.l •... ,J, must close 

upon the gauge transformations themselves 1 (gauge algebra 
hypothesis; the algebra is open when the O~i are velocity 
dependent) and the same must happen for the commutator 
of the gauge transformations with the deterministic evolu
tion implied by Lo. In T*Q this is the Dirac test 
{Gh,Gk } = C~k (q,Po)G" {H.Gh} = V~ (q,Po)Gk • whereH 
is the canonical Hamiltonian. 

To introduce a Lagrangian gauge fixing. one defines the 
new Lagrangian: 

(1) 

with the only condition det(Aij = AOij + aA lij ) #0, which 
ensures that the original gauge invariance has been broken: 
ooL=dFoidt +at/Joot/J. When oot/J#O. 00t/J#t/J-1(dFII 
dt), no gauge freedom is left and, as is shown in Ref. 2. 
i/J(q.q) may be obtained by prefixing the gauge, i.e., by as
signing A °U) = p", (q,q) in the Dirac Hamiltonian 
HD = H + A o(t)Go and by making a suitable Legendre 
transformation. To assign A °U) = p", (q,po) = p", (q.q) 
does not mean choosing Dirac gauge-fixing constraints, but 
only restricting the gauge fixing Xo;::;;O for the primary 1st
class constraint Go;::;;O to be a solution of the differential 
equation XO=.GO.HD} = Go.H} +p",(q.Po)Go,Go};::;;O. 
The other gauge fixings XJ _ j' j = 0.1 •. .. ,J - 1. then have to 
satisfy certain compatability conditions shown in Ref. 2 for 
each chosen solution X o. Since, in general. a global gauge 
fixing is not allowed (think the Gribov ambiguity in field 
theory), it becomes interesting to see whether with a t/J(q.q) 
not in the previous class we can give some meaning to the 
equation oot/J = 0 (we do not consider in this paper the more 
general condition oot/J = t/J-I dFl/dt for some F1); oot/J = 0 
cannot be satisfied with O~i depending on an arbitrary E( t). 

because L is regular. However. we could read oot/J = (at/JI 
aqi )O~i + (at/Jlaqi )Ooqi = 0 as an equation for E(t) and 
look for solutions E", (t) such that 15ot/J = 0 for 
150qi = O~i I E ~ E' In general. we may have solutions 
E", (t Iq,q). but for the sake of simplicity we shall consider 
only t/J such that E", = E '" ( t). Therefore. if we restrict the 
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arbitrary function E(t) to the special class of functions 
E", (t), i.e., if we restrict ourselves to the subset ~cll of the 
gauge transformations /jelli , we get ~oL = ~oLo = dFoIdt, 
which is a quasiinvariance. Therefore, the ~eIli describe the 
"residual gauge freedom" left by the Lagrangian gauge fix
ing t/J. 

Let us remark that ifin Eq. (1) we had put a Lagrangian 
multiplier a(t), so that (t/J(q,q»2 = 0 results as an equation 
of motion, we would have had problems with the Jacobi 
equations (see Ref. 2). Therefore, this is not a good way to 
impose a Lagrangian gauge fixing. 

Since L is regular, ~oL = dF 01 dt will imply the existence 
of as many constants of the motion as there are independent 
time derivatives of the special functions E", (t). Therefore, we 

. ~ i ~J", -U)(){ i-G ( )} . h J J can wnte uoq = ~j=oE", t q, J-j q,p Wlt '" < . 
Here, Pi = aL laqi = POi + apli' Pli = t/J at/Jlaqi, so that 
GJ_j(q,p=PO+apl)~GJ_j(q,po) for ~, j<.J",. If 
LOi = aLoiaqi - (d Idt)(aLoIaqi)::=o are the Euler-La
grange equations for Lo, those for L are 

L. = Lo' + a[t/J at/J. _ ~ (.,. at/J.)] . 
I I a I dt 'f/ a'l . q q 

(2) 

If we put GJ-j(q,p) = GJ_j(q,q),j<:.J"" then 
~oL = dFoidtimplies OJ _ j =Oby usingLi =0. Since, due to 
the definition of gauge transformations,I,2 we have 
/joLOi = JOi (/joqk) =0 for LOi =0, where JOi are the Jacobi 
equations, we get 

The constants ofthe motion GJ_j(q,q),j<.J"" are rath
er special: (i) they are associated with Nrether transforma
tions ~eIli depending on the functions E", ( t); (ii) they satisfy 
GJ_j(q,q)~GJ_j(q,q)=O for a~ due to LOi=O. More
over, on the solutions of the equation t/J(q,q) = 0 we have 
Pi = POi> Li = Lo;. Ji (~oqk) =0 for LOi =0, and therefore 
GJ_ j = GJ_ j =0 for LOi =0. This implies that t/J(q,q) = Ois 
compatible with LOi =0: among the solutions of LOi =0 there 
is a special family which satisfies LOi =0, t/J = 0, so that 
t/J(q,q) = 0 is a restriction of the gauge freedom in the solu
tions of LOi =0, which still leaves a residual gauge freedom. 
In this special family of solutions we have 
GJ_ j = GJ_j=O,j<.J"" and this explains why in this case 
the first Nrether theorem works with the Nrether transfor
mations ~eIli depending on the special class of functions 
E", (t) rather than on constant parameters. 

When we select this special family of extremals of L, 
defined by t/J = 0, by means of a restriction of the initial data, 
we obtain that class of extremals of Lo which is consistent 
with the restriction of the original gauge freedom to the re
sidual one described by the ~oqi with E", (t). This means that 
the originally arbitrary velocity function (Ref. 1) tJ. (q,q) of 

429 J. Math. Phys., Vol. 31, No.2, February 1990 

Lo has its arbitrariness consistently restricted with the ~eIli'S. 
Here tJ. is that function, nonprojectable to phase space, 
which exists because the singular nature of Lo forbids us 
from expressing all the velocities as functions of qi, POi by 
means of POi = aLoi aqi (Refs. 1 and 2): its functional form is 
chosen in such a way that the Hamilton equations imply 
tJ. (q,q) =,1 0(t). Therefore, the restriction to the residual 
gauge freedom implies that the arbitrary Dirac multiplier is 
also restricted to a special class of functions 1 ~ ( t). Let us 
remark that t/J = 0 could uniquely determine 
rl (q,q) =,1 0 ( T) = 1 ~: in this case, the Lagrangian residual 
gauge freedom becomes the Hamiltonian freedom of choos
ing anyone of the Dirac gauge fixings compatible with the 
given Dirac mUltiplier (think to the residual conformal 
gauge transformations of the string in the orthonormal 
gauge). 

Let us also note that L ' = Lo + a (t) t/J does not work as 
a Lagrangian gauge fixing, because even if the Euler-La
grange equation for a(t) implies t/J=O, the other Euler-La
grange equations do not reduce to LOi =0 when t/J=O. In
stead, the Lagrangian L " = Lo + bt/J - b 2/2, where b( t) is 
a nonlinear Lagrange multiplier, is relevant for our problem 
because its Euler-Lagrange equation L b = t/J - b=O has 
the solution b = t/J, b # 0: If we put this solution in L ", we 
recover L of Eq. (1) with a = 1. Here, L b =0 also has the 
following second sector of solutions: b=O,t/J=O. In this sec
tor, the other Euler-Lagrange equations for L" coincide 
with those for Lo and the net effect is now to restrict the 
extremals of Lo to the class satisfying t/J = O. Therefore, the 
use of L " allows us to separate the two classes of extremals of 
the L ofEq. ( 1 ). The phase space description associated with 
L " has either two sectors with different constraints (this is 
an example of ramification of sectors and proliferation of 
constraints2 as we shall see in Sec. II) when t/J(q,q) is pro
jectable to ~(q, p) or only one sector with well-defined con
straints when t/J(q,q) is not projectable. In this last case, the 
two Lagrangian sectors correspond to two sectors of the 
Hamilton equations. 

This ends our discussion of the Lagrangian gauge-fixing 
problem, which was modeled on the well-known methods 
used for the electromagnetic and Yang-Mills fields. How
ever, the restriction E(t)~", (t) does not assure us that the 
subset of gauge transformations ~eIli satisfies the conditions 
for being a consistent gauge subalgebra of the original one. 
This is why one has to introduce the BRS method3 in which 
E", (t)~pc(t) with c(t) the ghost and p a constant odd pa
rameter: The special Nrether transformations l>oqi become 
the BRS transformations /jsqi. As we shall see in Sec. IV, the 
nilpotency condition /j; = 0 is just the condition for having a 
global gauge algebra. Then the first Nrether theorem, which 
associates the constant of the motion ~f = 0 E~j) (t) G J _ j to 
l>eIli, now determines the BRS charge .0. from the BRS sym
metry of the BRS Lagrangian under the /jsqi'S. 

II. THE CLASSICAL FREE-RELATIVISTIC PARTICLE 

Instead of trying to treat the general case, let us use the 
free-relativistic particle as a simple example whereby to 
study the various variants ofthe BRS method. We shall first 
consider the following Lagrangian containing the einbein 
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A = E"'#O: 

L = x2/4A + m2A, (4) 

and only at the end shall we speak about L ± = ± mR. 
Here, L can be obtained as the Dirac Lagrangian associated 
withL ± ,if we make the inverse Legendre transformation of 
the Dirac Hamiltonian flo ± = A ± (p2 - m2) without us
ingp2 - m2 ::::;0: the einbeinA(t) is the Dirac multiplier and 
L takes into account simultaneously the two branches of the 
mass hyperboloid p2 = m2, which instead are treated sepa-

rately with L ± : A + > 0 implies Po = + ~p2 + m2, A_ < 0 
the other branch. The momenta and the Euler-Lagrange 
equations for L are, respectively, 

aL xp 
Pp = axP =U' 

aL 
1TA =-. =0, 

aA 

Lp = - :r ~ = - ~ (Xp - ~ Xp) =0, 

LA = m2 - x2/4A 2=0. 

The solutions of Eqs. (6) are 

A(t) arbitrary, jf'(t)=mA P, 

/1TA =0, 

/( p2 _ m2) + 2j1TA + lirA = - iLA' 

(5) 

(6) 

d . . 
- [/( p2 _ m2) + / 1Td = - (j(xPLI'IA) + iLA)' 
dr 

D-

They reproduce the Dirac-Bergmann algorithm: in 
phase space 1TA ::::;O is the primary 1st-class constraint, 
p2 _ m2 ::::;Othesecondary 1st-class one, and the Dirac Ham
iltonian is flo = A( p2 - m2) + p( r)1TA [p( r) is the Dirac 
multiplier]. Since the constraints are 1st class, there is the 
contracted Bianchi identity xl'LI' - A (dLAldr) =0 and the 
arbitrary velocity function of L (nonprojectable to phase 
space) is A =p ( r), The canonical transformation5 

p'x z = 7J/jiI (x _ .!.xo) , 
A xl' A m po 

~ 7J/jiI 
1TA Pp 1TA "Iff - m k = ~ P "I = ±, 

7J/jiI 
(11 ) 

exhibits a canonical basis in which two of the momenta are 
the constraints, A and p' xl 7J/jiI are the gauge variables 
and z, k are strong observables. Since, besides 

7J/jiI - m = 7JRIU - m andp'xI7J/jiI = 7Jx'xIR, we 
have 
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where A I' is a constant timelike unit vector. The Hessian 
matrix of L has a null eigenvalue, so that under the following 
Nrether transformations: 

8A = ~ (E(r)/), 
dr 

8x1' = E(r)(xPIA)j, 

we get the following quasiinvariance: 

8L = ~ (E( r)j!:...) . 
dr A 

(8) 

(9) 

Here E( r) is an arbitrary function of rand/is an arbi
trary function of its arguments (to have Poincare invariance 
we excluded a dependence on xI'). The arbitrariness of/re
flects the arbitrariness in the parametrization of the gauge 
transformations:! = I amounts to using an orthonormal set 
of eigenvectors of the Hessian. 1.2 This arbitrariness is also 
present in the first Nrether theorem (see its extensions4

): 

there is an infinite family of Nrether transformations asso
ciated with each constant of the motion.4

•
I ,2 The resulting 

Nrether identities 1,2 are 

( 10) 

7JR ( x 0) [0 A 0(0)] z = -- x - -:-x ="1 x( ) - -0 x , 
zmA XO A 

(12) 

We see that at the Lagrangian level, these strong observables 
correspond to a possible parametrization of the independent 
initial data. Indeed, the only physical relevant quantities 
are x(xo) =x(xo = 0) + (AlA o)xo with x(xo = 0) 
=x(r=O) - (AlA o)xo(r= 0) and (AlA 0)= [dx(xo»)/ 

dxo. 
Let us now put E( r) = pc( r), where c( r) is the ghost. 

Then Eqs, (9) and ( 10) become 

8sA =jc + Ii:, 
8sx I' =/(xPI).)c, /=/(x\).).). (13) 

8sL=:r(/~c), 
Since a/I axP = 2X I' a/ I ax2, we get 
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~ al x,.. [(.. (. l \~) ] sl = 2 ax2 T I:r' + 1- -Xl r c+fic"e 

al . al..· 
+ aA. (Ic + Ie) + al (Ic + 21e + Ie). 

(14) 

Ifwe evaluate ~~A. and ~~ xl-' we get the following result: 

~~A. = 0 _ (2X2 al al i al ). al .. 
~; xl-' = O~~·e - T ai2 + aA. + 2j al ce + al ce, 

(15) 

which is the BRS transformation rule of the ghost e when the 
gauge transformations are parametrized with! To remem
ber this fact it would be more correct to use the symbol ~ / 
but to abbreviate the notation we shall go on with ~ •. Ne~~ 
we get 

~2C= _~ a! ..!!...-(I a!)cee 
s I aA. dT aA. ' (16) 

~~e = 0 ~ a! = 0 or ..!!...- In(aJ.2) = O. 
aA. dT aA. 

Our first result is that not all the parametrizations/pro
duce a nilpotent ~{ (i.e., consistent with the hypothesis of 
gauge algebra), but only those for which 

(17) 

In what follows we shall, for simplicity's sake, only con
sider the case I = l(x2 ,A.). Let us note that if in the class of 
the allowed/we make the change of parametrization,/; = JJ. 
then we get the following rule connecting the ghosts C2 and c 
associated with the parametrizations ,/;,/" respectivelY~ 
C1 =lc2· 

Before going on, let us consider the BRS transformation 
properties of the Lagrangian counterparts of the quantities 
defined in Eqs. (11) and (12). Since 1T,l. =0, we have, from 
Eqs. (13), 

~.A. =ie + Ie, 

~.(TJff- m) =~. (71; - m) 
= TJ,fP I (X'X _ l) c-'-O 

U A. X2 A. -, 

~ ~ _ ~ TJx'x _ x·x I (X2 +x·x X'X) 
US -u.---TJ--- -- c 

TJff ,fP ,fP A. X· X X2 

=TJ,fP L e, 
A. 

~ k ~ mi TJm 1(.. x.x.) u. =usTJ--=--- x--x e=O 
,fP ,fP A. X2 ' 

(18) 

~ z = ~ TJ,fP (x _ .!. xo) 
• s 2mA. XO 
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X
O 

(.. i "0)] 0 - -:-0 x - -:-ox c=, 
x x 

where" =" means by using L,.. =0 ofEqs. (6). Therefore, on 
the extremals of Lo the gauge variables are A. and TJx' xl,fP. 

Let us now define the most general BRS gauge-fixed 
Lagrangian which can be associated to L if we choose a cer
tain BRS-allowed parametrization lof the gauge transfor
mations: 

I=L/Vn/ =L+~s[C(~(X2,A.,l) - ~)] 

+ :T [CTJ(x2,A.,l,c,e» 

=L-b212+b~+cTJ+c(fJ-~s~)' (19) 

where ~ is the Lagrangian gauge fixing, b( T) is a nonlinear 
Lagrange multiplier (often referred to as the Stiickelberg 
field), C is an odd variable (the antighost), and 71 is an odd 
function. In the following we shall use I as a shorthand for 
L/Vn/' The BRS transformation properties ofc and bare 

~sc= b, 
~sb = o. 

(20) 

Since the Euler-Lagrange equation for b is ~ - b=O, b 
could be eliminated and we could use the Lagrangian: 

I' = L +! ~ + CTJ + c(fJ - ~.~). (21) 

But now we should use ~sc = ~ with ~2C 

= ~s~ = -I ~ =0, where I ~ = Ie =0 is the Euler-L~
grange equation for c and the nilpotency of ~s would hold 
only on the extremals.6 As said at the end of the previous 
section, one should remember the existence of the two sec
tors b #0 and b = O. Let us remark that if in Eq. (19) we 
drop the term - b 2/2, then we come upon the case 
L ' = L + a( T) ~ discussed at the end of Sec. I. 

Equation (21 ) shows that ~ is just the Lagrangian gauge 
fixing of Sec. I. Instead, Eq. (19) shows that the antighost c 
is a Lagrange multiplier if we choose 71 = 0, but becomes a 
dynamical variable if 71#0: its associated momentum is 
!!) = 71· 

The form of the Lagrangian (19) and Eqs. (20) imply 

~sl = ~s xl-'I,.. + ~sA.I,l. + ~seic + ~sclc 
d ( al al al al) + -d ~sxl-'- + ~sA. -. + ~sc-+ ~ c-
T aJcl-' aA. ac s de 

= :T (!~ c + ~s (CTJ)] 

= ! (!~ e+bTJ+c~sTJ]' (22) 

where I,.. , ... , are the Euler-Lagrange equations for l. 
The first Nrether theorem produces as a constant of the 

motion the BRS charge 

n = ~ xl-' al + ~ A. a~ + ~ c al S aJcl-' saA. Sac 
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r;:_aL fL b -r;: + u c-- -c- 'l'l-Cu 1"1 
S ac A ., s·" (23) 

Let us remark that in phase space 0 = n. is the gener
ator of the N rether BRS transformations (13), (15), (20): 
since 8A = {A,pO} ~8sA, we get 8.A = {A,O} for A even, 
8s A = - g,O} for A odd. 

However, for every given allowedfwe have to put re
strictions on the functions r/J and ,.,: (i) they must be local 
functions of their arguments; (ii) L must be independent 
from the accelerations. We have to study the term iJ - 8s r/J 
and restrict it to be a local function of i 2,A),c,c. We get 

. _ 8 .1. = 2X'X a,., + A a,., + ~ a,., C a,., + e a,., 
,., s'f' ai2 aA aA + ac ac 

- 2 ar/J i [~(fX!" + (i - A f) ill) c 
ai2IL A A 

f Xl' .] ar/J (fl' f . ) + -c -- c+ c 
A aA 

- a~ (jc + 2ic + fe). 
aA " 

(24) 

Withf=f(i2,A) we get four conditions (of which the 
first is the coefficient of e, the second of ~, and the third of 
i'x): 

a,., -f a~ = 0 a,,! _ af a~ c = 0 
ac aA ' aA aA aA ' 

:; - [~ (t + 2X2 :~) :t 
af ar/J 2A a 2f a~] c _ 2 at a~ c = 0 

+ ai2 aA + aA ai2 aA ai2 aA ' 

[ 
af (""2 + ..... ) + 2(" ,")2 a

2f
] ar/J = 0 (25) 

ai2 x x x x x a(i2)2 aA c . 

The solution of the first of Eqs. (25) is 
,., = A (i2,A)C + f(ar/JlaA)C. ThesecondofEqs. (25) then 
implies the following two conditions: 

fa~r/J =0 
aA 2 

~r/J = r/Jo(i2,A) + Ar/J. (i2,A)~'" = Ac + fr/J.c, 

a1_ af a~ =0~A=B(X2,A) +A af r/J (i2A). 
aA aA aA aA • , 

The remaining Eqs. (25) become 

aB -~(f+2X2 af)ar/Jo_ af ar/Jo=O 
ai2 A ai2 ai2 ai2 aA ' 
ay af ar/J. af ar/J. 

aA ai2 r/J. - aA ai2 + ai2 aA 

+ ~ (f + 2X2 af) ar/J. = 0 
A ai2 ai2 ' 

f ar/J. _ af .1. - 0 
ai2 ai2 'f'.- , 

either :~ = 0 or r/J. = 0, 

with the following two sets of solutions: 
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(26) 

(27) 

( 1) af(i
2
,A) -'O~8 c = (2X2 af af) cc 

ai2 r s A ai2 + aA ' 

r/J= r/Jo(i2,A), 

,., = B(i2,A)C, with 

aB _ af ar/Jo 1 (f 2X2 af) ar/Jo 
ai2 - ai2 aA + T + ai2 ai2' (28) 

iJ - 8s r/J = A (:~ - ~ (:{ - {) :~~ - :{ ~o) c 

+ [B _f(ar/Jo + 2X2 ar/Jo)] c 
aA Aai2 ' 

81"1= [2X2 (af B _faB) + af B_f aB ] cc 
s·, A ai2 ai2 aA aA' 

(2) f=f(A) ~8sc = df(A) cc, 
dA 

r/J= r/Jo(i2,A) +Ar/J.(A), 

,., = [B(i2,A) + A d~~) r/J. (A)] c + f(A)r/J.(A)C, 

B = a(A) +f(A) r/Jo(i2,A), (29) 
A 

. _ 8 .1. = A [aB _ 2X2 (df _ f) ar/Jo _ df ar/Jo] c 
,., s'f' aA A dA A ai2 dA aA 

+ [B _f(ar/Jo + 2X2 ar/Jo)] C 
aA A ai2 ' 

8,.,= [df a_fda _p (ar/Jo_ r/Jo)] cc 
s dA dA A aA A ' 

where in Eqs. (28) B is a solution, local in the variables A and 
r, of the included differential equation and, in Eqs. (29), 
a(A) is an arbitrary function. If instead we insist on having 
,., = Oin Eqs. (25)-(27), i.e., thatcis a Lagrange multiplier, 
then the previous solutions have to be restricted as follows 
[the restriction comes from the i' x dependence of 8. r/J in
duced from 8.r, due to Eqs. (13)]: 

1 af(i2,A) -'0 
( 0) ai2 r, 

r/J = r/Jo(i2,A) solution of af ar/Jo 
ai2 aA 

~ (f + 2i2 af) ar/Jo = 0 
+ A ai2 ai2 ' 

8 r/J = A [2X2 (af _ f) ar/Jo + af ar/Jo] c 
s A aA A ai2 aA aA 

+f(2X
2 

ar/Jo + ar/Jo) c 
A ar aA ' 

(20 ) f=f(A), 

r/J = r/Jo(A), 

8 r/J = A df dr/Jo c + f dr/Jo c. 
s dAdA dA 

(30) 

(31) 

In Eqs. (28) and (30), r/Jo(i2,A) must be a solution, 
again local in its arguments, of the corresponding differen
tial equation; ( 10 ) is a special case of ( 1 ) when B = 0 and r/Jo 
is one of the said solutions, while (20 ) is a special case of (2) 
when B = r/J. = 0 and ar/JoIai2 = O. The result we have ob-
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tained is that, oncefis given, the Lagrangian gauge fixing t/I 
and the function 7J are severely restricted by the need to have 
a Lagrangian independent from the accelerations. There
fore, even when 7J = ° we cannot add an arbitrary Lagran
gian gauge fixing t/I. 

Let us remark that in between ( I) and (1o) there is the 
case 

( 1') af(j2,A)....t.O 
a5c2 ..,...., 

t/I = t/lo(5c2,A) 

solution of af at/lo + J.- (f + 2X2 af ) at/lo = ° 
a5c2 aA A a5c2 a5c2 ' 

7J = B(A)e, B(A) =/=0 arbitrary, 

. _ {j ./, = A. [dB _ 2X2 (af _1.) at/lo 
7J s'f/ dA A aA A a5c2 

_ _ af at/lo] e 
aA aA 

+ [B _f(at/lo + 2X2 at/lo)] i: 
aA A a5c2 ' 

[
2X2 af af dB]. 

{j'YI= --B+-B-f- ee 
s " A a5c2 aA dA' 

and in between (2) and (20) there is the case 

(2') f=f(A), 

t/I = t/lo(A) 

7J = B(A)e, B(A) = a(A) +f(A) t/lo(A), 
, A 

(32) 

. _ {j ./, = A. [dB(A) _ df dt/lo] e + (B -f dt/lo) i: 
7J s 'f/ dA dA dA dA ' 

{j 7J= [df a_fda _p (dt/lo _ t/lo)] ei:. 
s dA dA A dA A 

(33) 

Let us remark thatL = L - b 2/2 + bt/l - c{js t/lfor(1o), 
(20) and L = L - b 2/2 + bt/l - c{js t/I + (d Idr)(CTJ) for 
( 1'), (2') have the same Euler-Lagrange equations, because 
they have the same t/I and differ for a total r derivative. But if 
we call OR)' (2R ) the classes (1), (2) with (1'), (2') ex
cluded, respectively, then there is no analog for them in ( 1o), 
(20); (IR ) is thesubcaseof (1) defined byaB la5c2 =/=0, while 
(2 R ) is the subcase of (2) defined by at/lola5c2, t/l1' 
B = a + ft/lol A not vanishing simultaneously. (1 R ), (2 R ) 
allow us to use more general Lagrangian gauge fixings, 
which necessarily require the function 7J, because, without 
(d Idr) (c7J), c{js t/lwould introduce a dependence on the ac
celerations. 

For the sake of simplicity we shall restrict ourselves 
from now on to the gauge transformations parametrized by 
f = k + hA (h = ° is the parametrization usually chosen, see 
for instance Ref. 7), for which {jse = hei:. Then (2R ) and 
(20 ) reduce to 

(A R) t/I = t/lo(5c2,A) + A.t/ll (A), 

7J = [a(A) + hA.t/lI(A) + [(k + hA)IA )t/lo(5c2,A»)e 

+ (k + hA)t/lI(A)i:, (34) 

(Ao) t/I=X(A). 
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To simplify the matter we shall also restrict (A R ) to 
t/lo = X(A), B = a + [(k + hA)/A)t/lo = 0, t/ll = a, so that 
we shall use 

(A R) t/I = X(A) + aA., a =/=0, 

1]=a[(k + hA)i:+ Me), 

LR = L - b 2/2 + b(X + aA.) + a(k + hA)ci: 

+ aMce - M x'Ce - (k + hA) X'Ci: 

= Lo + albA. + (k + hA)ci: + hA.ce] , (35) 

(A~) t/I=X(A), 

Lo = L - b 2/2 + bX - X' [Mce + (k + hA)ci:) , 
(36) 

where if A = A(A) then A '(A) = dA(A)/dA. In Eqs. (36) 
we must require X' =/=0. Let us now study the Hamiltonian 
description associated with the inequivalent Lagrangians Lo 
and LR , corresponding to the two different ways of intro
ducing Lagrangian BRS gauge fixings of L when the gauge 
transformations are parametrized with f = k + hA. As we 
shall see, a Kato-Ogawa8 like Hamiltonian theory will cor
respond to Lo, while L R will produce the BFV9, 10 approach. 

Let us start with Lo, whose momenta, canonical Hamil
tonian and Euler-Lagrange equations have the following ex
pressions: 

9 ° = a;o = (k + hA)X'c, 

- aLo 9 0 =--=0, ac (37) 

d 5c1l 
LOll = Lil = - dr -U=O, 

Lo). = L). + X'(b + hce) - (k + hA)X"ci: 
'2 

= m2 - ~ + X'(b + hce) - (k + hA)X"ci:=O, 
U 

LOb =X-b=O, 

LOc = - (k + hA) ~ (X'£:) =0, 
dr 

LfiC = - x'[Me + (k + hA)i:) =0. 

The conserved BRS charge is 

no = (k + hA)(r/4A 2 - m2)e 

(38) 

= (k + hA) (p2 - m2)e = no {no,no} = 0. (39) 

There are four primary constraints: 

Xo). = 1To). + hx'Ce:::::O, 1Tb :::::0, 

Po = 9 0 - (k + hA)x'C:::::o, 9 0 :::::0, 
(40) 
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and the Dirac Hamiltonian is liD =Ho+lll(r)XM 
+ 1l2( r) 1Tb + 1l3( r)PO + 1l4( r) 9 0, with 113 and 1l4. odd 
Dirac multipliers. The Dirac-Bergmann algorithm for Po 
and 9 0 determines 113 and 1l4' while for 1Tb generates the 
secondary constraint b - X(A) :::::0, which in tum deter
mines 1l2' By using the Poisson brackets {c, 9 o} = {c, 9 0} 

= - 1 we obtain 

- hill X" -
1l2=X'IlI' 1l3= k +hA C, 1l4= -71lIC, (41) 

Then X 0'< generates the secondary constraint bX' _ (p2 
- m2) + h(hX' + kX")/(k + hA)lllcc:::::O, which unusu

ally depends on III (r), and its r-constancy produces Il I = 0, 
so that 112 = 113 = 114 = 0. 

In the end we get the following three pairs of 2nd-class 
constraints (except for the value b = 0): 

b - X(A) :::::0, 1Tb :::::0, 

Po= 9 0 - (k +hA)X'(A)C:::::O, 9 0 :::::0, 

X(A)X'(A) - (p2 - m2) :::::0, Xo.< = 1To.< + hX'(A)CC:::::O, 
(42) 

which allow the elimination of the variables b, 1Tb , C, 9 0 , A, 
1To.< by means of Dirac brackets. We remain with the vari
ables :xI", PI" C, 9 0, This is the situation found by Kato
Ogawa8 in their BRS approach to the string. However, there 
is a second sector in which b - X(A):::::O is satisfied by b:::::O, 
X(A):::::O (proliferation of constraints2

: here, instead ofEqs. 
( 42), we get three pairs of 2nd-class constraints (b::::: 0, 
1Tb :::::0, Po:::::o, 9 0 :::::0, X(A) :::::0, Xo.< :::::0) and one lsi-class 
onep2-m2:::::0 with li;{=A(p2_ m2). This sector re
produces the original theory with A gauge fixed by X (A) ::::: 0. 
IfX(A):::::OhasdsolutionsA(r) = AI,· .. ,Ad (A=O),thisis 
the residual discrete gauge freedom left by the Lagrangian 
gauge fixing. By going to Dirac brackets one has li iJa 

aIR xI' 
PRp = aXIL =Pp =u' 

1TR'< = a(b + hec) - hX' CC, 

9 R = (k + hA)(X' C - ae), 

9 R = a[Mc + (k + hAle], 

L Rp =Lp=O, 

= Aa (p2 - m2
), a = 1, ... ,d [the Dirac multiplier of the 

original theory assumes d discrete values Il ( r) = Aa , 

a = 1, ... ,d] and OOa = (k + hAa ) (p2 - m2 )c:::::O. This sec
tor corresponds to selecting those special extremals of the 
gauge-fixed theory which are the subset of the original extre
mals compatible with the residual gauge freedom. Let us 
note that this sector is not present when in the Kato-Ogawa 
approach the Lagrangian gauge fixing '" is allowed to be 
velocity dependent [in this model, case (20 ), it is not possi
ble]. In the sector b =1= ° we can rewrite the final Dirac Hamil
tonian li ~ = lio in the following form by taking into ac
count Eqs. (42) and (39): 

- 2 2 b 2 

Ho=A(p -m ) +--bX 
2 

= (A _ p
2
_m

2
) (r-m2) _ r-m

2 
(x_r-m2) 

2x'2 X' X' 

1 [ (p
2 

m2)2] +"2 (b-X)2- X- ;, 

_ _ p2_m2 ( p2_ m2) __ 
= {,oo¢,Oo} - X' X - X' :::::{,oo¢,Oo}, 

- = _ 1 (A _ p2 - m2) 9 ( 43) 
Po¢ k + hA 2X,2 o· 

Since {Oo,Oo} = 0, we have obtained a nilpotent BRS 
charge, a BRS invariant Hamiltonian (modulo the 2nd-class 
constraints), and the Hamiltonian form Po¢ of the Lagran
gian gauge fixing", = X(A). In the sector with b = ° we get 
liiJa = {- Aa/(k + hA), OOa}· and {OOa' Ooa}· = 0: this 
is the sector compatible with p2 - m2:::::O in the Kato
Ogawa approach. 

If we consider I R , the momenta, the canonical Hamil
tonian, and the Euler-Lagrange equations are 

(44) 

LR,< = L.< + bX' + ah ce - hx" Acc - [hX' + (k + hA)x" ]ce - ~ [a(b + h cc) - hx' cc] =0, 
d1' 

L Rb = X + aA - b=O, (45) 

L Rc = hA(x' C - ac) - ~ [(k + hA)(X' C - ae)] =0, 
dr 

. d· 
L Rc = - x' [hAc + (k + hA) e] - - [a(hAc + (k + hA) e)] =0. 

dr 
The conserved BRS charge is 

OR = (k + hA){(x2/4A 2) - m2)c + ab [hAc + (k + hAl e] = (k + hA)(p2 - m2)c + b9 R = OR {OR lOR} = 0.(46) 
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We now have only two primary 2nd-class constraints: 

XR,t = 1T'R,t - ab + [h I(k + hA) ] 9 RC~O, 

1T'b ~O, 
(47) 

which imply the elimination of band 1T'b and the determination of f1-., f1-2 in Hi, = HR + f1-tXR,t + f1-21T'b' If we use Dirac 
brackets we get 

- 2 2 1 ( h 9 R C)2 X ( h 9 R C) , _ - -HR =A(p -m ) +-2 1T'R,t +-- -- 1T'R,t +-- + (xla)c9 R - 9 R9 Rla(k+hA), 
2a k+hA a k+hA 

n R = (k + hA)(p2 - m2)c + (Va) (1T'R,t + h9 Rcl(k + hA».9 R' 
(48) 

and 

HR = \ORrP'rJ,nR}* 

_ -A [1 ( h9RC)]_ PR."." =--- 9 R + X-- 1T'R,t + C. 
k + hA 2a (k + hA 

Again, H R is BRS in. variant, P RrP'rJ is the Hamilto~ian 
version of tP = X(A) + aA., and 71 = a[ (k + hA)e + hAc]. 
In this case we have recovered the BW-HenneauxlO ap
proach. Now, since X + a .. L:::O, implied by b = 0, is not a 
Hamiltonian constraint, the two sectors b = 0 and b #0 are 
described by the same constraints and the difference between 
the two appears only at the level of the solutions of the Ham
ilton equations. 

Let us make some general comments. In both cases (35) 
and (36) with/CAl = k + hA Eqs. (37) and (44) would 
imply the notations 9~x, .9~x = 0 and 9~rP'rJ, .9~rP'rJ, respec
tively, because their definition depends on these quantities. 
Moreover, in both cases we have Euler-Lagrange equations 
for c( 1") and c( 1"). On the extremals we get c( 1") =,=c~X( 1"), 
c( 1") =,=c~X( 1") and e( 1") =,=c~rP'rJ( 1"), c( 1") =,=c~rP'rJ( 1"), respec
tively. Therefore,pe~X( 1"),pc~rP'rJ( 1") are the BRS analogs of 
the l", (1") associated with the residual gauge freedom con
sidered in Sec. I. They are a refinement of the l", (1"), because 
now the condition 15; = 0 (i.e., {n,O} = 0) ensures that the 
residual gauge transformations satisfy the gauge algebra hy
pothesis .. Since c5s tP = - Ie =,=0 (the Euler-Lagrangian 
equation for c) turns out to be the equation of motion for c 
[see Eqs. (38) and (45)], we find again as in Sec. I that 
l", (1") is determined by c5s tP = O. 

Moreover, instead of the original constraints 1T',t ~O, 
p2 _ m2~0 (implied by ir,t ~O) we have the quantities 
1T'0,t, p2 - m2 or 1T'R,t, p2 - m2 which do not vanish. The 
original constraint submanifold of phase space is no more 
known. Therefore, it is improper to say that in 00 
= (k + hA)(p2 - m2)c and 

OR = (k + hA)(p2 - m2)e + (Va) (1T'R,t 

+ h9 Rcl(k + hA».9 R 

we have the original constraints. Even formally this shQuld 
be true for OR only if h = 0: we recover the BFV -Henn~aux 
interpretation only with simple allowed parametrizations / 
of the gauge transformations. With the impro~r interpreta
tion, the Kato-Ogawa case would correspond to the elimina
tion of the primary constraint 1T',t ~O associated to the ein
bein A, leaving only the relevant secondary constraint 
p2 _ m2~0. The 2nd-class constraints ofEqs. (42) are the 
equivalent of the addition of a Dirac gauge fixing X (A) ~ 0 to 
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(49) 

the original model with L. The Kato-Ogawa form of the 
BRS charge 00 corresponds, in the case of a set 1T'A ~O, 
¢JA ~O of 1st class constraints, to considering only the ¢JA 's: 
this is the form of the BRS charge used in the theoretical 
discussions. 

However, this improper interpretation is valid in the 
sense that 0 is the generator of the BRS transformations 
c5s qi, generalizing the residual gauge transformations 8~i, 
after the addition of the Lagrangian gauge fixing, via 
€( 1" )J--+ope ( 1"). 

In the original model we had 1T',t ~ 0 and ir,t 
= {1T',t,Ho } = - (p2 - m2) ~O. If in the improper inter
pretation of the BFV case we impose 1T'R,t + h 9 R .9 R I 
(k + hA) ~O we have from Eqs. (48) 

{1T'R,t + h9 R.9 RI(k + hA), HR}* 

= - (p2 _ m2) + (x'la) (1T'R,t + h9 Rel(k + hA» 

- (XU la)c.9 R ~ - (r - m2) - (XU la) c.9 R' 

If we ask for its vanishing, we recover p2 - m2~0 only if 
XU (A) =0, This is the Govaert's condition II for the free
relativistic particle path integral. In its evaluation following 
the prescriptions of Ref. 10 one should do an integration on 
the quantity, called modulus, C,t = f~:d1" A( 1") (the total 
proper time) with e,t E ( - 00, + 00). Therefore, e,t depends 
on the Lagrangian gauge fixing tP = aA + X(A) = 0 (the 
Teichmuller space of the model, subsequently reduced to the 
modular space C,t E[O, + 00». Actually, instead of an inte
gral over dc, one has to do an integral over AN 
= A ( 1"2) deriving from the measure DA ( 1"): the solution of 

tP = 0 now gives a AN spanning only once the whole range 
( - 00, + 00) only for XU = o. 

We end this section by noting that in the BFV case the 
Hamiltonian gauge fixing P RrP'rJ of Eq. (49) has a restricted 
form. What happens if we choose a different P R in Eq. (49) 
as in the usual BFV approach? Clearly, the connection with 
IR ofEq. (35) is lost, because we have a different Hamilto
nian Hit. We can start from this Hamiltonian, solve the first 
half ofthe Hamilton equations to find new functions giving 
the momenta in terms of the velocities, and look for I It. Due 
to the different relation between momenta and velocities, OR 
will define a new operator 15' s so that c5;qi # c5s qi ofEqs. (13). 
This implies that I ' R will have the form I ' R = L ' + 15' s 
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[e(t/I' - b /2)] + (d /dr)(e1]') withL '= L + Lp such that 
/jlsL '= dF'/dr. WhenpR = PRI/nI' then we recover /j; =/js 
and Lp = O. It is clear that the use ofpR #PRI/nI' natural in 
phase space, is very complicated at the Lagrangian level, 
because we also have to do a functional change of the form of 
the original Lagrangian. 

III. MORE ON THE FREE PARTICLE 

In this section, we shall discuss various other aspects of 
the two main variants of the BRS approach. 

In the BFV case we have, from Eqs. (48), 

/jJjJ R = - {&' R,OR}* 

= (k + hA)(p2 _ m2) _ ~ &' R g; R __ p'X , 
a k + hA 1]ff 

/jsP"X/1]ff = {P'X/1]ff,OR}* 

= 21]ff (k + hA)C __ &' R' 

/jsA = {A,OR}* = (l/a) g; R++-C' 

/jse = - {e,OR}* = ~ (1TRA + h&' ReI(k + hA»--A. 
a 

(50) 

• 2 2 -For h = 0, Eqs. (50) Imply that p - m , c, &' R' 1TRA 
are trivial BRS observables [Eqs. (50) gives their general
ization for h #0]: they have vanishing Poisson brackets with 
the BRS charge but are irrelevant for the search of the phys
ical observables, which are equivalence classes ofBRS obser
vables just modulo the trivial BRS observables. Therefore, 
their conjugate variables P"X/1]ff,&' R,e,A [shown in the 
second column ofEqs. (50)] are to be interpreted as gauge 
variables: indeed the even ones are the gauge variables of the 
original model. This justifies the terminology according to 
which c, g; R are negative degrees of freedom erasing 
p2 _ m2 and 1T A' This is the Kugo-Ojima quartet mecha
nism, 12 basis of the Parisi-Sourlas approach 13 in field theo
ry. 

Let us now consider the anti-BRS transformations l4 in 
the standard case f = k and with L R of Eqs. (35): 

BRS Anti-BRS 

/jsxl' = k(X"/A)C, ~sxl' = k(x"/A)e, 

/jsA = kc, 

/jsc = 0, 

/jse = b, 

/jsb = 0, 

~sA = kc, 

~se= 0, 

~sc= -b, 

~sb =0, 

However, we get 

/jsLR =- k-e+akbc -- d(L "'") 
dr A 
+ kX'(bc - he) + kx"ecc. 

/j; =~; = 0, 

/js~s + ~s/js = O. 

(51) 

(52) 

Therefore, only for X' (A) = 0, i.e., t/I = a + aA. in Eqs. 
(36), we haye a quasiinvariance with the conserved anti
BRS charge nR = k(p2 - m2)e - (l/a)1TRA &' R' Since OR 

2 2 - {"'" "" } =k(p-m)c+(1/a)1TRA &'R' we get fiR ,fiR 
= {OR,OR} = {OR,OR} = {OR,HR} = {ORHRl..,= O. 
In any case, also when X' (A) # 0 so that the previous fiR is 
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not a constant of the motion, one can algebraically build a 
linear realization of the group Osp (1,1,2)7,15-17 (which is 
not an invariance group of.J. R ): two of its generators are 
linear combinations of OR ,n R and the eight variables sup
porting this linear realization are proportional to c, &' R' e, 
g; R,A, 1TRA ,P'X/p2,! (p2 - m2). By englobing the Poincare 
group in D dimensions, this construction is enlarged to ob
tain the group IOsp (D,2,2), also containing the Parisi
Sourlas supersymmetry generators connecting the members 
of the previous quartets. This is the invariance group of a 
field theory action deduced from the first quantized theory 7 

and whose quantization is equivalent to the usual one for the 
Klein-Gordon field due to the Parisi-Sourlas mechanism. 

Let us add some remarks about the path integral quanti
zation.9.10.18 When one uses a Lagrangian gauge fixing and 
the BRS Lagrangian with 1] = 0 (Kato-Ogawa formalism), 
the ghost and the antighost are introduced to exponentiate a 
Jacobian, which roughly speaking is introduced to eliminate 
the infinite volume of the gauge group and which describes 
the gauge transformations properties of the Lagrangian 
gauge fixing. It can be recovered from the phase space path 
integral with the Faddeev-Popov measure associated with a 
family of Dirac gauge-fixing constraints, each one depend
ing on an arbitrary function, by making a Gaussian average 
over these functions (this is the transition from a completely 
gauge-fixed situation to the approach with the Lagrangian 
gauge fixings and the associated residual gauge freedom). 

In the 1]#0 case the BFV approach recovers the La
grangian path integral starting from the phase space inte
gral: moreover, by doing a certain contraction,9.10 which is 
equivalent to completely fixing the residual gauge freedom, 
it can recover the phase space path integral with Faddeev
Popov measure corresponding to those Dirac gauge-fixing 
constraints performing the same complete fixation. In this 
limit, the scaled ghosts and antighosts become the Faddeev
Popov ones needed to exponentiate the determinant of the 
Poisson brackets of the original constraints with the Dirac 
gauge fixings. 

In the original BRS (1] = 0) and BFV (1]#0) ap
proaches no restriction is put on the boundary conditions for 
the path integral and the submanifold of the original con
straints is not selected in the extended configuration/phase 
space. The philosophy is that the expectation value of those 
quantities, which were gauge invariant for the original theo
ry, now depend neither on the Lagrangian gauge fixing t/I nor 
on its phase space counterpart Pl/ni (see, for instance, the 
Fradkin-Vilkovisky theorem9.1O

). This amounts to a selec
tion of the gauge-invariant quantities as is done in Eqs. (18) 
for the relativistic particle. If we do a BRS transformation, 
which is unitarily implementable in the extended phase 
space, the path integrals before and after such a transforma
tion should be connected in the standard wayl9: the formal 
Fradkin-Vilkovisky theorem is applicable just in these situa
tions. 

There is another possibility. In Sec. I we said that by 
choosing a special class of initial data for the gauge-fixed 
Lagrangian we could restrict ourselves to a subclass of the 
extremals of the original Lagrangian, those which have their 
gauge freedom reduced to the residual one. In phase space, 
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this amounts to projecting on the constraint submanifold 
and again to restricting the gauge freedom to the residual 
one. Therefore, when we add to the BFV path integral a set 
of BRS invariant boundary conditions as proposed by Hen
neaux-Teitelboim,20.1O we are just restricting ourselves to 
the constraint submanifold and to the residual gauge free
dom. 

Let us end this section by noting that to the Lagrangians 

L" = 'TJmR,'TJ = ±, Lagrangian and BRS gauge-fixing 
terms can be added as shown in Sec. II, but only with 'TJ = ° 
because there are no einbeins and the BFV approach cannot 
be applied. The BRS transformations 

8sxl' = (xl'l'TJR) c, 

8s c = 0, 

8sc = b, 

8s b = 0, 

(53) 

imply 8sL" = (d Idt) (mc) and the BRS Lagrangian is 

l = L" + 8s [c(tP(x2
) - b /2)] 

= ( m + 2 :tz Cc) 'TJR + btP - b
2

2 
. (54) 

Without loss of generality we can take tP = 1dc2 - h, cor
responding to the proper-time gauge fixings. The momenta 
and the Euler-Lagrange equations are 

PI' = (m + 2kcc) (xl'l'TJR) + 2kbxl' , 

9 = - 2k'TJRc ~b9 = - ('TJ.fiiL - m)c 
9=0, 

LI' = ~ [( m + 2kcc + 2kb'TJR) ~] :::,::0, 
dr 'TJR 

Lb = kx2 
- h - b:::,::O, 

(55) 

Le = - 2k~ ('TJRc):::'::o, (56) 
dr 

Lc = 2k'TJRc:::,::0. 

Therefore, if we put [m + 2k(kx2 - h)'TJR] (XI'I 
'TJR) :::,::A I' with AI' a timelike integration constant (p2 

:::,::A 2), we get 'TJR:::,::p('TJJIP - m,k,h), where P is the 

solution of the equation 'TJR(ldc2 
- h):::,:: (1/2k) 

X ('TJJIP - m). The solutions of Eqs. (56) are 

AI' 
xl'( r) :::,::xI'(O) + P-- r, pI':::,::A 1', 

'TJJIP 
b( r) :::,::ldc2 - h:::,::kp2 - h, (57) 

c( r) :::'::CO' 9 (r):::,:: - 2kPco, 

c( r) :::'::co' 

When 'TJ.fiiL :::'::'TJJIP = m we get p2:::,::h Ik, i.e.,x2:::,::h Ik 
and b:::,::O, which are the extremals of L" in the proper time 
gauges. 

If one studies the Hessian matrix of l", one finds that 
one of its nonzero eigenvalues vanishes for the isolated value 
b = 0, reproducing the null eigenvalue of L". This phe
nomenon of variable rank of the Hessian matrix implies 
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that for b = 0: (i) Eqs. (55) cannot be inverted to get x2 in 
terms of p2 and cc; (ii) there is an induced primary con-

straint 'TJ.fiiL - m:::::O; (iii) the primary constraint 

b9 + ('TJ.fiiL - m )C:::::O is absent. Moreover, we obtain 
He = x'p + h7Tb + c9 + c9 -l" = b 2/2 - b(ldc2 - h) 
+ 'TJR ('TJ.fiiL - m). Therefore, we need a generalized Le

gendre transformation2 to define He: 'TJRt-+J-l1 ( r), where 
J-ll is the induced Dirac multiplier of the induced primary 

constraint 'TJ.fiiL - m:::::O. The Dirac Hamiltonian is 

with J-l3(r) = ° for b = 0, because the corresponding con
straint is absent. Then we get 

1rb = {7Tb ,Hp} = - b + k(J-l1)2 - h - J-l39 :::::0, 

9 = {9,HD } = J-l3( 'TJ.fiiL - m) :::::0, 

~ [b9 + ('TJ.fiiL - m)c] (59) 
dr 

= {b9 + ('TJ.fiiL - m)c,HD } 

= J-l2 9 + ('TJ.fiiL - m )J-l4 :::::0, for b #0. 

In the sector b # 0, 'TJ.fiiL - m # ° from Eqs. (59) we get 

J-l3 = 0, J-l4 = - J-l2 9 1 ('TJ.fiiL - m) and the secondary con
straint b - [k(J-l1)2 - h ] :::::0, whose r-constancy impliesJ-l2 
= 2kJ-lljL I. As the reality condition for the final Dirac Ham

iltonian requiresJ-l4 = 0, we getJ-l2 = jL I = 0, i.e.,J-l 1 = const. 
The final result is: two pairs of 2nd-class constraints elimi
nating, b, 7Tb' C, 9, and, by using Dirac brackets, H~I 
= J-ll ('TJ.fiiL - m) - ~ [k(J-l1)2 - h). The Hamiltonian 

equations give XI' :::'::J-llpl' 1 'TJ.fiiL and reproduce the Euler-La
grange equations. 

Instead, in the sector b:::::O, 'TJ.fiiL - m:::::O, where J-l3 

= 0, the first two Eqs. (59) imply only J-ll = ~ h 1 k and h::::: ° 
gives J-l2 = O. We now have a pair of 2nd-class constraints 
b:::::O, 7Tb :::::0, J-l4 = 0 from the reality condition of the Dirac 
Hamiltonian, which turns out to be H ~2 
=~ h 1 k ('TJ.fiiL - m), and the two constraints 9::::: 0, 

'TJ.fiiL - m :::::0. These two constraints have been called 3rd
class in Ref. 2, because their Dirac multipliers are fixed 

(J-ll = ~ h 1 k ,J-l4 = 0), i.e., their conjugated variables satisfy 

deterministic lst-order equations of motion: XI' :::,::~h Ik pl'1 

'TJ.fiiL (proper-time gauge) and c:::'::O: therefore, they are 
neither Ist- nor 2nd-class. 

In both cases, from Eqs. (23) the conserved BRS charge 
is 

n = (2kcc + 2kb'TJR)c = ('TJ.fiiL - m)c = n, (60) 
- F { I -} I 2 - F and we have H DI = - J-l 9,n - Hk(J-l) - h ], H D2 

={-~hlk 9,n}. 
We conclude that the Lagrangians L" = 'TJmR de

scribe a single sheet of the mass hyperboloid and their BRS 

Luca Lusanna 437 



                                                                                                                                    

gauge fixings to the proper-time gauges imply a nontrivial 
Kat<r-Ogawa approach. (In Sec. II, we had two sectors but 
no problems of variable rank and of projectability to phase 
space.) Let us remark that LTJ has the associated Dirac 

Hamiltonian liD = P ( 1') (TJff - m) and it coincides with 

H:;2 for p( 1') = ~h Ik : since there is only one constraint, 
this value of p( 1') (proper-time gauge) can be obtained for 

instance with the Dirac gauge fixing p' xl TJff - ~ h I k l' 
zOo 

This example shows that covariant gauge fixings may 
also be implemented with a Kat<r-Ogawa approach, but at 
the price of a more complex Hamiltonian theory. The advan
tage of the BFV approach is to have a simple Hamiltonian 
description, but with a doubling of the number of constraints 
and ghosts. 

IV. OTHER ASPECTS OF THE BRS THEORY 

Let us now try to find a connection among the previous 
BRS approaches, the multi temporal description of models 
with 1st-class constraints,1 the Hamiltonian Konstant
Sternberg21 algebraic point of view on the BRS approach, its 
differential geometry reinterpretation given by Loll,22 and 
finally the Bonora-Cotta Ramusin023

•
6 interpretation of the 

ghosts at the Lagrangian level. This would permit us to un
derstand both the static kinematical aspects of BRS theory 
(formal interpretation of the ghosts, of the BRS invariance, 
and of the extended phase space) and the dynamical ones 
given by either the Euler-Lagrange or the Hamiltonian 
equations for the ghosts, whose solutions identify the residu
al gauge freedom left by the chosen allowed Lagrangian 
gauge fixing. 

Let us suppose to have a system described by a singular 
LagrangianL(qi,qi), i = 1, ... ,n, whose Hessian matrix has m 
null eigenvalues. Let L be quasiinvariant under m Nrether 
transformations OAqi = ~(1')AS ~ (q,q), where AS ~ are the 
null eigenvectors of the Hessian matrix. This implies the ex
istence of m primary 1st-class constraints ¢A zO in phase 
space. For the sake of simplicity we have chosen a system 
without secondary constraints [0 A qi depends only on ~ ( 1') 
and not on its 1'-derivatives 1.2]. If the null eigenvectors A S ~ 
have been chosen orthonormal (AS~ = ASgO» we have 
A S gO) = a¢~O) I apo for a certain functional form of the con
straints. It turns out that the A S ~ 's can be chosen orthonor
mal only locally in general and that with the local form ¢~O) 
one locally gets2 {¢~O).¢kO)} = 0 (local abelianization lO

). 

Let us assume that there exists a global form for the nonorth
onormalized A S ~ such that the associated constraints ¢ A , 

obtained via the second Nrether theorem, 1.2 are globally de
fined, so that they globally define the constraint submanifold 
yC T*Qofphase space. Let us also assume that these global
ly defined constraints ¢A satisfy {¢A>¢B} = - C~B¢C' 
where C ~B are the structure constants of a Lie algebra g. The 
associated Hamiltonian vector fields XA = { .• ¢ A} then sat
isfy [XA'xB] = C~BXC' The set of all the possible func
tional forms of the constraints, all of them locally defining 
the same submanifold y, are connected via the theory of 
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function groupS.24 The transition from one functional form 
to another one cannot be realized in general with a canonical 
transformation in phase space, but it can be done with a 
supercanonical transformation in the extended phase 
space. 10 

The change in the functional form of the constraints is a 
reflex of the parametrization of the gauge transformations 
OAqi = ~(1')fA (q,q) AS gO) (q.q) = ~(1') AS ~ (q,q), where 
the functionsfA generalize thefofSec. II. For each choice of 
thefA let us put ~ (1') = pA ~ (1') and let us study the BRS 
transformations. Let {fA } denote the set of functions fA for 
which 0; = 0: to it will correspond a set offunctional forms 
{¢ A} of the constraints that are compatible with the classical 
BRS theory. This means that for all these functional forms, 
the gauge algebra hypothesis is globally satisfied. Let the 
previously discussed global constraints belong to this set and 
let us consider only them in what follows. 

Let us consider those BRS Lagrangians. with allowed 
Lagrangian gauge fixings in the sense of Sec. II. which do not 
contain terms d(cA TJA )/d1', so to get a phase space Kata
Ogawa theory (the same considerations could be made for 
the BFV case with a doubling of the constraints). Therefore, 
one gets fermionic constraints implying that the momenta 
9 A are proportional to the antighosts C A : from now on we 
will speak only of 9 A and not ofc A [in the BFV case the role 
of the ghosts ~ is taken by (~, 9 A) and the role of the 9 A 

by (9 A'C A ) ]. Let us assume that the BRS charge has the 
standard form n = ~¢ A - ~C ~B~CB 9 C, so that osqi 
= CA{qi,¢ A} satisfies o;qi = O. 

Our hypotheses until now amount to saying that there 
exist2 1 a linear action of the Lie algebra g, 0: ~F( T*Q) 
= COO (T*Q), into the set of Coo functions/(q,p) on the 

phase space T*Q. If eA is a basis for g( [eA,eB] = C~BeC)' 
we have 0: e A ~ A' where ¢ A are the globally defined con
straints; the dual basis for the dual g* ofthe Lie algebrag will 
be denoted with ~ and ~(eB) = o~. Moreover, we have a 
Hamiltonianrightactioncp:~x( T*Q), where X ( T*Q) are 
the vector fields over T*Q, such that cp: eA~XA = {"¢A}' 
The XA are then called the fundamental vector fields. Let us 
assume25.26 that the action cp is: (i) effective (i.e., it is an 
isomorphism onto its image); (ii) free (i.e., the XA'S are 
independent and without zeroes); (iii) foliating (i.e., T*Qis 
foliated with m-dimensional gauge orbits, all diffcomorphic; 
only the gauge orbits f p ofyC T *Q are physically relevant); 
(iv) regular (i.e., the gauge orbits are regular submanifolds 
of T * Q). Then the vector field X A restricted to a gauge orbit 
fp become a basis for its tangent vector fields. 

Let us remark that with a singular Lagrangian only the 
primary constraint submanifold y of T *Q is identified by the 
Legendre transformation. The Dirac-Bergmann description 
of constrained systems is based on making an extrapolation 
of all the relevant quantities from y to a small neighborhood 
of yin T*Q. Instead, in the previous hypotheses one is as
suming the possibility of doing such an extrapolation to the 
whole T*Q. The Dirac-Bergmann approach together with 
its BRS extensions would need to be reformulated in an in
trinsic way by using only the manifold y, which is presym
plectic. Since this will be done elsewhere, let us go on with 
this framework using the whole T*Q like in Ref. 21. 
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The next problem is to integrate the local action f{J of g to 
a Hamiltonian right group action. A necessary condition is 
the completeness of the vector fields XA • In general, when 
the integration is possible, one identifies only a local Lie 
group G. For the sake of simplicity let us assume that our 
system is such that the f{J action can be globally integrated to 
a Hamiltonian right action of a well-defined Lie group G 
with Lie algebrag on T * Q: i.e., there exist "": G .... Diff( T * Q) , 
associating to each group element G A a diffeomorphism of 
T *Q, implemented via Poisson brackets. This implies that all 
the gauge orbits are homogeneous spaces, on which G acts 
transitively, and are therefore diffeomorphic to the group 
manifold of G. Moreover, let us assume that G acts freely, 
that the reduced phase space (space of the gauge orbits) 
YR = YlG is a manifold and that 1T: Y .... YR is a principal G 
bundle. Also let Gbe connected, simply connected and com
pact so that the exponential map fromg to G spans the whole 
G: the associated exponential map from f{J(g) to ",,(G) will 
allow us to reconstruct the whole gauge orbits starting from 
a point of each one of them. Therefore, Y (and also T *Q) is 
foliated with these gauge orbits and in this framework using 
T*Q one can also introduce the momentum map21 J.l: 
T*Q---+-g*,J.l:zeT*~~A (z), so that Y = J.l- 1(0): i.e., the 
constraint submanifold is the inverse image under J.l of the 
coadjoint orbit corresponding to the origin of g* . 

Let us first study the multitemporal approach 1,27 to 
such a system. Besides the primary constraints ~ A' there will 
be a canonical Hamiltonian H = i/Pi - L, which in general 
will satisfy {H'~A} = V! (q'P)~B :::;:0. For the sake of sim
plicity, let us assume that {H,~ A} = 0, when the ~ A'S are the 

- - -B-
globally defined constraints. The case {H,t/J A } = V A t/J B 

could be treated from the algebraic point of view in the same 
way by considering a Lie algebra g' with structure constants 
e~B and egA = V! and an extra generator eo-+Xo = {.,H} 
besides the eAt--+XA. The Dirac Hamiltonian is 
HD =H + ~AA A(T)~A' where the A A(T)'S are the Dirac 
multipliers and the Hamilton equations are 

For fixed A A( T), Eqs. (61), with the initial data given 
by a point za= (qi,pi)ey lying on the gauge orbit focy, 
describe its evolution as composed of two parts: an evolution 
on the gauge orbit fo' generated by ~AA A( T)XAJ plus a de
terministic evolution from the gauge orbit Io to another 
gauge orbit, generated by Xo. Since each gauge orbit f is 
diffeomorphic to the Lie group G, whose group manifold can 
be described with coordinates~, the generator ~AA A( T)XA 
is the counterpart on f of the generator of an one-parameter 
subgroup of G, identified by a set of functions ~(T) 
['Ti1 = ~(O) denote the point in G corresponding to ~ in 
f o). 

In G we can introduce the Maurer-Cartan left-invariant 
one-forms () A = A ~ (Tc)d~ and their dual left-invariant 
vector fields YA =B!(Tc)(a/a~), where iyA(}B = t5! im
plies A ~B ~ = t51;. If E is the identity in G, with coordinates 
~ = 0, we have YA IE = eA, whereeA arethegeneratorsofg, 
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and (}A IE =~, with ~ the generators of g* (g and g* are 
identified with TEG and TtG, respectively). We have 

c E aA ~ E aA ~ c D 
[YA,YB] = e ABYC::::}A A ar -A B ar = e ABA c' 

(62) 

d(}A = - ~ C~c(}BA(}c. (63) 

Both Eqs. (62) (63) are called Maurer-Cartan equa
tions. 

Therefore, to assign the Dirac multipliers A A( T) is 
equivalent to assigning some set offunctions ~(T) and the 
connection is given by 

AA(T) =A~(tC(T»d~;T) ::::}AA(T)dT=(}AI"c="c(,,). 

(64) 

This suggests that the Dirac-Bergmann theory with the 
associated Hamilton equations (61), should be rephrased in 
the following way: the coordinates qi( T), Pi (T), which for 
each value of T contain the gauge degrees of freedom asso
ciated to the gauge transformations related to the gauge 
group G, must be replaced by functions qi ( T, TC) ,p i ( T, TC) 
which depend simultaneously on an evolution parameter T 

for Xo = {.,H} and on the group manifold parameters T C• 

The Hamilton equations (61), with arbitrary A A ( T) 's, are 
then replaced by the multitemporal (in T and T C

) Hamilton 
equations 

:T I(q,p) ={};H} = Xo]; 
(65) 

y2(q,p) =A!(r<) a~I={};¢A} =XA]; A= 1, ... ,m. 

The second set ofEqs. (65) are justthe Lie equations for 
the Lie group G, acting as a transformation group on yeT *Q 
via a symplectic right action.28,26 This means that the second 
set of Eqs. (65), when restricted to a gauge orbit f with 
given initial conditions on it, allow the reconstruction of f 
by means of their integration with those initial conditions. 
The integrability conditions of Eqs. (65) are just the 
Maurer-Cartan equations (62) plus their analogs on y, i.e., 
[XA,XB] = e~BXC: 

[YA'YB ]1= e~BYcl= [XA,XB]I= e~BXc]; (66) 

0= [YA, :T]I=[XA,xo]I=O. 

The second set of Eqs. (65) carry the information which 
is missing in the Euler-Lagrange equations for L: the unde
termination in the extremals of L due to the gauge transfor
mations is not totally arbitrary, but is connected to the Lie 
group G associated to the gauge freedom. 

When a Lagrangian gauge fixing is added to L, the re
sulting "residual gauge freedom" becomes a restriction in 
the functional form of the Dirac multipliers A A ( T )t--+l A ( T), 
as presented in Sec. I. This restriction may change from 
point to point of yeT*Q if 1 A = A A( Tlq,p) [remember 
E = E( Tlq,q»). This means that instead of spanning all the 
possible one-parameter subgroups of G one is restricted to 
span only a special subset of them identified by the residual 
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gauge freedom. This subset could change either from a gauge 
orbit to the other in a smooth way, if 1 A = 1 A ( 1'1 f), or also 
from a point to another one in the same gauge orbit, if 

1 A = 1 A( 1'lq,p). 
When we add an allowed set of Dirac gauge fixings 

XA ::::;0, the equations XA =={XA,Ho}::::;O determine the 
A A( 1')'s and therefore a unique one-parameter subgroup is 
chosen: by means of Eqs. (64) we see that Eqs. (61) with 
these A A ( 1')'s are the corresponding "one-time" theory and 
it is recovered from the linear combination of Eqs. (65) cor
responding to the following decomposition: 

~=~+AA(t)YA I 
d1' a1' r C = r( r) 

_~+ d~(1') ~I (67) 
- a1' d1' a~ r = rC(r) • 

If for instance the Lagrangian gauge fixing is such to 
give a family of residual 1 A( 1'), which can be interpreted 
as the assignment of functions ~ = ~(pa), A = l, ... ,m, 
a = l, ... ,k < m, where pa are the coordinates of a subgroup 
G' of G, the (m + 1) -times Eqs. (65) are restricted every
where on r to the following (k + 1) -times equations: 

~1==Xo]; 
a1' 

- b a -
Zaf=Da(P) apbf 

=D!(p) d~(~) A!(1'(p»~1 I 
dp a~ r=r(p) 

• b d~ (p) - - = - -
=D a (p) dTXAfderXJ, 

X- :;>AX :;>A...!-Db d~(p) 
a = Sa A' Sa - a dpb ' 

[Za,Zb] = C~~Zc> [Xa,Xb] = C~~Xc' 
Xa = L ra(q,p)~A}::::;raXA' 

(68) 

Here, the ra (q,p) are those suitable functions on phase 
space which select the generators Xa of the Lie algebra g' of 
G " which is a generalized Lie subalgebra of g (it is a Lie 
subalgebra of g when g;: = const). In this case, the functions 
I' having vanishing Poisson brackets with the linear combi
nations of the ~ A'S functionally independent from the ~ a's, 
are not yet observables. The observables are 10, flo,~ A }::::; 0, 
A = l, ... ,m, because there is still the residual gauge freedom 
connected to the generators Xa' The 10 are recovered from 
thel' by going to the quotient with respect to these residual 
gauge transformations. 

However, in general, it is difficult to recast the effect of a 
Lagrangian gauge fixing in this multitemporal approach, be
cause the corresponding equations of the type of Eqs. (68) 
could vary in a smooth way from point to point ofyeT*Q. 

It is here that the BRS approach becomes really impor
tant. First of all it selects the functional forms of the con
straints compatible with 8; = 0 (see Sec. II). Then it re
places Eqs. (68) with the BRS Hamilton equations on the 
extension of T*Q, which, when restricted to y, contain the 
information on the residual gauge freedom hidden in the 
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ghosts ~ : ~ ( 1") ==E( 1'). The conserved BRS charge 0 is 
then used to find the BRS observables, i.e., those functions F 
on the extended phase space satisfying {F,O} = O. Each Fis 
defined modulo the trivial BRS observables {li,O}: this is 
the reflex of the residual gauge freedom in this approach. 
The real observables lo(flo'~A} = 0, A = 1, ... ,m) are re
covered as the equivalence classes (F + {R,O}) for Fwith 
zero ghost ~umber N..&. = ~fjJ A ({~,Ng} = ~,{fjJ A,Ng} 
= - fjJ A,{O,Ng} = 0), i.e., by making the quotient of the 
BRS observables with respect to the residual gauge transfor
mations. This interpretation is consistent with the fact that 
o is the generator of the global extended Nrether transfor
mations for the BRS Lagrangian and, as noted in Secs. II and 
III, this is the global Nrether symmetry englobing the resid
ual gauge transformations via ~ ( 1') == E( 1"). Further sup
port to this interpretation will come from what follows. 

This intuitive picture is at the basis of the Konstant
Sternberg approach21 to the Hamiltonian BRS theory. Their 
algebraic point of view is centered on the fact that we are 
interested more on the observables 10 rather than on the 
Hamilton equations (61) and (65). These observables are 
the functions defined on the reduced phase space YR = WG, 
which is a symplectic manifold under our hypotheses, with 
Poisson brackets {"'}R' Since the canonical Hamiltonian H 
is an observable, the only relevant Hamilton equations are 

(69) 

Therefore, Konstant-Sternberg abandon the detailed 
study of the dynamics on yC T*Q and only concentrate on 
the functionsl(q,p) on T*Q. They develop a method based 
on homology and cohomology to extract the observables 10 
from thel's (see Refs. 29-31 for other approaches to classi
cal BRS cohomology). They interpret the ghosts ~, as a 
basis, ~ , for the dual g* of the Lie algebra g of G and the 
momenta fjJ ~ as a basis, e A' for g. Then they define the 
Grassmann (exterior) algebras Ag*,Ag associated to g* and 
g, respectively:. g*IA'" Ag;E APg*,gIA'" AgpEAPg. They 
consider the complex Ag*®Ag®Y(T*Q). By using the 
linear action 8: e A ~ A of g they define a "boundary opera
tor" 8: APg®Y(T*Q)t-->-AP-Ig®Y(T*Q), 82 =0, and 
show that the associated zeroth homology group is equiva
lent to the quotient of Y ( T *Q) with respect to its subspace 
formed by all the functions I vanishing on the constraint 
manifold yC T*Q: in this way we get a characterization of 
Y(y). Then they introduce a "coboundary operator" d: 
APg* ®Y( T*Q)t-->-AP+ Ig* ®Y(T*Q), d 2 = 0, whose ze
roth cohomology group identifies the subspace of Y ( T *Q) 
containing all the G-invariant functions on T *Q. The BRS 
operator is the "coboundary operator" D = d + ( - )P28 
(when acting on APg), D 2 = 0, so that, due to the combined 
effects of d and 8, its zeroth cohomology group identifies 
the G-invariant functions present in Y (y), i.e., the observa
bles 10. Then after a canonical identification of Ag* ® Ag 
with A(g* EDg), they succeed to introduce a super-Poisson 
bracket such that {C'A,fjJ;'} = 28~, {C'A,C'B} 

= {fjJ ~ , fjJ ;,} = 0: at this stage, the elements of g* ED g have 
become Grassmann variables, i.e., something like one-
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forms. Finally, they give the representation D = {.,n'}, 
where n' is the BRS charge. 

With our notations, this amounts to the following rede
finition: 

~-+C'A = _~, 

9 A -+ 9 ~ = 29 AI 

{~,9 B} = - c5~ -+{c'A,9~} = 20~, 
- ...4- I c ...4 B n = C ¢A - 2 C ABc C 9 c 

-+ - C,A(¢A + l C~BC'B9;), 

so that we get (za = (qi,Pi»: 

c5s~ = {~,n} = {~'¢A}~ = (XA~)~ 

= c5A~~ = - c5A~C'A, 

c5s~ = - {~,n} = -! ~ccBcc-+c5sc'A 
- {c,A,n} = !C~CC'BC'c, 

c5s 9 A = -{9 A ,n} 

(70) 

(71 ) 

Due to the second line of Eqs. (71) one says that the 
ghosts satisfy the Maurer-Cartan equations by analogy with 
Eqs. (63). 

In a subsequent paper by LolJ22 an attempt is made to 
reinterpret the Konstant-Sternberg algebraic approach 
from a differential geometry point of view, which is more 
desirable for the study of the global properties of the system 
and for the connection with the Hamilton equations. Loll's 
construction suggests the following interpretation of the ex
tended phase space Sext with coordinates (qi,Pi,C'A,9~): 
The supermanifold Sext is a trivial vector bundle having T * Q 
as base space, A (g* E9 g) as fiber and G as structure group, 
associated to the trivial vector bundle T*Q X (g* E9g). Here, 
Sext is a symplectic manifold admitting the Konstant-Stern
berg super-Poisson bracket. The group G acts on the fiber 
A (g* E9 g) by means of its adjoint action on g and its coad
joint action on g*25,26: 

ADv(a*,b) = (AdT--, a*,Ad v b), VeG,a*eg*,beg. (72) 

The associated frame bundle to Sext (i.e., the bundle of 
all frames over Sext' defining its local coordinates) has Osp 
(m,m,2n) as its structure group. This would explain the rel
evance of the Osp's groups even when the anti-BRS charge is 
not a constant of the motion. The action of G on g* E9 g is 
symplectically realized by a means of a subgroup of the 
O(m,m) transformations contained in Osp(m,m,2n). In 
this way one is also choosing the subgroup Sp(2n) of 
Osp(m,m,2n) as the relevant subgroup of the canonical 
transformations of T*Q. In Osp (m,m,2n) there are also 
generators performing infinitesimal changes of the func
tional form of the constraints. The triviality condition is as
sumed because only in this case one can do a separate global 
quantization of the even and odd variables, obtaining the 
tensor product of the associated Hilbert spaces. 
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The trivial vector bundle, Sext over T*Q, is derived by 
another nontrivial vector bundle S ;xt over T *Q IG, which is 
well defined when the action of G is foliating the whole T*Q 
andnotonlyy (so that T*Q IGcontainsYR = riG), always 
with fiber A(g* E9g) and structure group G. The cross sec
tions of S ;xt are 
functions on T*Q with values in A(g. E9g) and there
fore belong to the Konstant-Sternberg complex 
.9""( T*Q) ® A(g* E9g). The key observation of Loll is that a 
function F of the complex is compatible with the projection 
T*~T*Q IGifitis equivariant25

,26 with respect to the ac
tion (72) of G on S ;xt : if s denotes the whole set of variables F 
depends upon and VeG, this means [U( V)tjI](s) 
= tjI(sV) = AD v -' tjI(s) and for Vnear the identity E of G 

one gets {tjI(S)'¢A} = - {tjI(s),HA}· Here, XHA = {.,HA} 
is the infinitesimal generator for the symplectic realization of 
the action AD and [XHA,xH

B
] = C~BXHc' Then Loll looks 

for the subclass of the BRS-observables which satisfy the 
equivariance condition: she claims that they are independent 
from the 9 A'S, but it is not clear to us which BRS charge is 
used by her. 

Therefore, let us go back to our notations and let us look 
for the generators X H realizing the AD action. It turns out 

_A 

that the following HA have the right properties: 

HA = - C~BCB9 c' 
(73) 

{¢A +HA'¢B+HB}= -C~B(¢c+Hc)' 
so that the equivariance condition is {F,¢ A + H A } = 0 and 
our BRS charge becomes 

n = ~(¢A + H A) + !C~~~cB9 C 

=~(¢A+HA)-~~HA' (74) 

It seems reasonable to identify Loll's charge with 
~ (¢ A + H A ), because for equivarient functions one gets 
that the equation 

{F'~(¢A + H A)} = {F'~}(¢A + H A) = 0, (75) 

has for solution 9 A -independent equivariant functions. 
Instead, let us investigate which is the restriction im

posed by the equivariance condition on the BRS observables 
by using the BRS charge ofEqs. (74): 

{F,n} = {F'~}(¢A + H A) -! {F,~HA} 
(76) 

Since these equations have to hold both on 
T*Q(¢A :to) and on Y(¢A = 0), Eqs. (76) imply (strictly 
speaking {F,9 A} is proportional to the constraints, but we 
can choose a prolongation 00\ r to T *Qwhich is ~ indepen
dent) 

{F,~} = {F,9 A} =O=>{F,HA} = 0, F=l(q,p), 
(77) 

so that the equivariance condition implies 

{F=I(q,p)'¢A} = o=>F=I=Io. (78) 

It turns out that the equivariance condition selects 
among the BRS observables the real oneslo, which are also 
the final result of the Konstant -Sternberg approach. There
fore, the equivariance condition realizes the passage to the 
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quotient with respect to the trivial BRS observables (the 
residual gauge freedom) without the necessity to require by 
hand the vanishing of the ghost number ofF. 

The equivariance condition is a natural requirement due 
to the identification ~~Eg*,&' A~AEg proposed by 
Konstant-Sternberg, so that the action of G on them must be 
AD. Since {¢A +BA,n}¥=O, we see that the trivial BRS 
observables are not equivariant and that ¢A + BA is not a 
BRS observable. 

Let us now go back to the multitemporal equations 
(65), whose second set implies that the original Nrether 
transformations 8 A qi are a particular case of the phase space 
general gauge transformations 

8d"(q,p) = L ~(r)X;]== L ~(r) YAf. (79) 
A A 

Now under the substitution ~.-p~( r), we get 
~(r)XA ==~( r) YA which becomes ~(r)XA ==~'( r) YA 
with the Konstant-Sternberg identification ~~Eg*. In 
accord with Loll's construction on each point z = (q,p) of 
yC T*Q is attached a copy of g* and the multitemporal 
equations say that the generator of the gauge transforma
tions, ~(r)XA (which, in general, changes with the time r 
associated to the deterministic evolution generated by B), is 
equal to ~(r) YA , the corresponding generator on the group 
manifold of G (which is diffeomorphic to the gauge orbit 
containing z, with z considered as the origin of the coordi
nate system ~ ). Since y -+ y R = Y; G is a principal G-bundle 
under our hypotheses, Eq. (79) describe only a subgroup of 
the infinite-dimensional group [§ of the gauge transforma
tions23

,32 [the concept of connection, i.e., the definition of 
the horizontal vectors in each point ZEY, is defined by look
ing for a 2(n-m)-dimensional symplectic basis of observa
bles around Z and connecting these bases in a smooth way; 
the vertical vectors areXA Iz]' Here [§ = r(Ad y), i.e., the 
gauge transformations are identified with the cross sections 
of the bundle Ady = yx G G, associated to y......y R' with fiber 
G and with G acting on itself with the adjoint action. For an 
element of [§, Eq. (79) is replaced by 

8J"(z) = L~( rif)(X,J) (z) == L~( rif) Y,j(z( r», (80) 
A A 

with ~ also smoothly depending on the gauge orbit I" to 
which ZEY belongs. In this more general setting, ~ (rlf) 
.-~ (rlf)~ (rif), where ~ (rlf) XA [and by identifi
cation ~ (rlf)XA ] can be interpreted as the left-invariant 
Maurer-Cartan one-forms on [§ with values in the Lie alge
bra of the vertical vector fields on y (or, by using the multi
temporal equations in the Lie algebra of the left-invariant 
vector fields on G). If eA (rlf) are the left-invariant vector 
fields on [§ duals of eA (rlf) one has 
ieAHf) (eB( rlf)XB) = X A. This is the Bonora-Cotta Ramu
sin023 interpretation of ghosts, adapted to phase space. But 
now there is an interpretation also for the &' A (and there
fore for the antighosts, which are present in the BRS Lagran
gian as C A 8 s ~ and are proportional to &' A in the Kato
Ogawa approach). Since from Eqs. (65) we have 

442 J. Math. Phys., Vol. 31, No.2, February 1990 

dl(z(r»= al dr+ al d~= al dr+ (Y,J)(}A 
ar a~ ar 

== (Xof>dr + (X,J)(}A, (81) 

by writing (y,J) () A = - (y,J) {~, &' B}(} B we get that 
&' A (r)(}Ais thecounterpartof~( r) YA • In the general case, 
this suggests that &' A ( rl f) () A are the left-invariant vector 
fields on [§ with values in the Maurer-Cartan one-forms on 
G. There is no counterpart of ~(rlf)XA ==~( rlf) YA, be
cause y is a presymplectic manifold so that the one-forms on 
ydualofXA are not uniquely defined. Equations (64) imply 
that on a one-parameter subgroup one has 
&' A (}A.-&, AAA(r)dr. In the Kato-Ogawa approach we 
haveaHamiltonianB + {D,n}, n = ~¢A + ... , withpbe
ing the Hamiltonian gauge fixing corresponding to the La
grangian one ~. For consistency, when tf;A == 0, the extended 
Hamilton equations for a functionl( q,p) must coincide with 
the Hamilton equations (61) but with the Dirac multipliers 
A A ( r) restricted to X A ( r) (the residual gauge freedom): 
therefore, &' A(}A~&, AX A (r)dr==p dr. 

Let us make a last remark. Equations (71) imply 

8:z" = - {8sz",n} = (8,XAz")~ + (XAz")8s~ 
=! [( [XB'xc] - C~CXA )z"]d'cc = 0, (82) 

i.e., 8; = 0 due to the phase space gauge algebra of the XA 's. 
Then similar conclusions have to hold at the Lagrangian 
level for the gauge algebra of the Lie-Backlund vector fields 
X A associated to the XA as shown in Ref. 1. 

As was said in Sec. II, we could have chosen another 
arbitrary parametrization of the gauge transformations, i.e., 
another functional form ¢~ for the constraints with struc
ture functions C~C<q,p). Iffor the corresponding 8s we get 
8; ¥= 0, this means that the vector fields X ~ or X ~ have some 
kind of pathology that forbids us to get a consistent global 
gauge algebra and then to use the Frobenius theorem to re
construct the gauge part of the extremals. I 

v. QUANTIZATION 

Let us now suppose to quantize our theory with a para
metrization of the gauge transformations such that globally 
one has {¢A '¢B} = - C~B¢C' i.e., such that 8; = 0 classi
cally. If we get the quantum algebra 

(83) 

the off-shell quantization I of the multi temporal equations 
(65) is 

a .... 
i- t/J = Ht/J, t/J = t/J(qlr,~), 

ar 
(84) 

and Eqs. (83) are the integrability conditions of Eqs. (84). 
Instead, the on-shell quantization ofthe Hamilton equations 
( 69) for the observables is 
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CI> = CI>(q"I1",qA) {Q = t, ... ,n - m, 
A= t, ... ,m. 

(85) 

This notation is oriented to constraints of the form .. '" 
r/JA = PA - TA (qa,po)' Equations (85) are again integrable 
due to Eqs. (83). In Ref. 1 it is explained that the off-shell 
scalar product for the", ( conserved with respect to 1" and rA) 
has nothing to do with the physical on-shell one for the CI> 
(conserved with respect to 1" and qA), which are equivalence 
classes of the VIs with resuect to the unitary gauge transfor
mations generated by the r/J A'S. The latter scalar product has 
a measure d " - mq" and the qA are now those coordinates q 
that are gauge degrees of freedom. Indeed, since we have 
done the quantization without the fixation of the gauge, the 
gauge freedom is still there in those configuration variables 
that carry a realization of the group manifold of G [in gen
eral a (possibly local) unitary transformation is needed to 
make this realization explicit]. A complete gauge fixing is 
obtained by restricting the solutions of Eqs. (85) to a "one
time" theory qA = A. A ( 1") (choice of a one parameter sub
group in the group manifold of G); instead a partial gauge 
fixing may, for instance, be realized with the restriction 
qA = qA(pO), a = 1, ... ,k < m (choice of a k-parameters sub
group in the group manifold). 

When there are ordering problems generating the cen
tral extension 

[~A>~B] =C'iB~c+IiKAB' [~A,H] =0, (86) 

with k AB = - k BA = const, we have a transition for a vector 
to a projective (or ray) unitary representat.ion of the gauge 
transformations. This means33 that if U( rt), U( r1) are the 
unitary operators corresponding to VI' V2EG, respectively 
(with rt,r1 being their group manifold coordinates) and 
pA ( 1"1,1"2) are the coordinates of VI V2 from the group compo
sition law, then U(1"I)U(1"2) = ei<l>(T"T')U(P(1"I,1"2» and 
U -I (1"1) = e - i<I>(T"T,) U(TI ), where T1 are the coordinates 
of V - I. Here CI> is called an exponent and it is a two-cocycle. 
By defining f/J A (1") = a<I>( 1"',1")/a1",A IrA = 0' called the "right 
generators," one gets33 

(87) 

where the constants tAB = - tBA are the said ray constants 
of the projective representation and satisfy C ~B t CD 

+ C~AtBD + C~CtAD = o. 
Therefore if the fzk AB'S in Eqs. (86) satisfy these condi

tions, the on-shell quantization equations (85) are replaced 
by the following ones: 

a 6 

i a1" CI> = HCI>, CI> = CI>(qQI 1",qA), 
(88) 

~ACI> = f/JACI>, f/JA = f/JA (q), 

with the functions f/JA (q) solutions ofthe equations 

~Af/JB - ~Bf/JA = C'iBf/JC + IiKAB , (89) 

because Eqs, (89) and (86) are the integrability conditions 
ofEqs. (88). 
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With more severe ordering problems, the canonical 
quantization is inconsistent (anomalies in the form of 
Schwinger terms). The same procedure has to be followed 
with every parametrization having 15; = 0: in general, it will 
be possible to ha~e a consistent canonical quantization only 
of a subset of these parametrizations. 

The quantum BRS method starts with the quantization 
of the coordinates qi, Pi' c4, q; A of the extended phase space 
(we are using the Kato-Ogawa approach but the same holds 
~i~h t~e By;' one):Jqi,pj] =ilW), ~~,.9B]+ = -ic5~, 
~ = ~, q; A = - q; A' If the ordenng problems for the 
chosen parametrization (with 15; = 0) of the constraints ¢ A 

allow us to build a Hermitian BRS operator 
6... '" 
O=~(r/JA - (1I2)C'iBcBq;c - (i/2)C~B) . such that 
{n,n} = 0 goes into [lUi] + = 202 = 0 we get a consistent 
BRS quantization (maybe in some critical dimension), 
which is compatible with an indefinite metric (n I) is a zero 
norm state). Since the original gauge freedom has been re
duced to a residual one with the BRS gauge-fixing method, 
the BRS quantization lies in between the off- and the on-shell 
quantizations. Instead of Eqs. (84) and (85), we get the 
following Schrooinger equation with the BRS Hamiltonian: 

(90) 

~d the BRS states 'l'BRS are sel~ted 1>y the requirement 
Q'I'BRS = 0 (~that tBRsEKer 01 Ng 'l'BR~ = 0, where 
Ng = (i/2)(~q; A - q; A~) = - Nt = i~q; • - 112 is 

.0. :,..g .0. n 

the ghost number operator and [O,Ng ] = O. Again these 
BRS states are defined modulo the trivial zero norm BRS 
states O'l'EIm 0 (the residual gauge freedom) and the final 
physical states are the equivalence classes with respect to 
these zero norm states, This is called the quantum BRS co-
h 2934 6 6 omology, ' 6Ker O/Im 0, which does not contain zero 
norm states if 0 is "complete,,34: i.e., ifIm 0 = Kero n. the 
set of all the zero norm states in Ker 0; then Ker 0 doe~ not 
contain negative norm states. 

This quantization procedure gives rise to interpreta
!i.0nal problems35 about the necessity of the condition 
Ng'l'BRs = 0 (inequivalent quantum theories could be ~n
erated by relaxing it), about the vacuum states for ~ aJ ,Y A' 

and about the finiteness of the scalar product [so that the use 
of an off-shell-like scalar product produces a Gupta-Bleuler 
quantization of 1st-class constraints: also, in the multitem
poral approach, the solutions of Eqs. (85) have an infinite 
norm in the off-shell scalar product and this is cured by real
izing that these solutions are equivalence classes of the off
shell solutions and therefore require a new on-shell scalar 
product]. 

Our attitude is that when 02 = 0 one is realizing a par
tial gauge fi~ng of the unitary gauge transformations gener
ated by the r/J A'S, which satisfy either Eq. (83) or Eq. (86), 
and that the physical theory should correspond either to 
Eqs. (85) or to Eqs. (88), with the corresponding partial 
gauge fixing of the parameters qA. 

Equation (90) should be implemented with a scalar 
prodUCJ (,) constant in 1". Moreover, if 'I' is a solution ofEq. 
(90), 0'1' is also. When one restricts 'I' to be a BRS state 
'l'BRS' Eq. (90) becomes 
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i ~ \IIBRS = (if + ilp )\IIBRS' U\IIBRS = 0, (91) 

where Up describes the residual gauge transformations. 
Since, in general, \IIBRS is not normalizable by using (,), a 
new scalar product, (')BRS has to be found with the same 
methodology like for Eqs. (85). The original variables in the 
\II ofEq. (90) have to be divided into two groups dictated by 
the way in which the equation U\IIBRS = 0 is solved. One of 
these groups of variables will form the parameters of the 
residual gauge transformations. The scalar product (')BRS 
will only contain an integration on the other group of vari
ables and will have to be conserved with respect to the gauge 
parameters beside with respect to r. To find (,)BRS will be 
the most difficult part of the BRS quantization like it hap
pens with Eqs. (85).5 

What makes things complicated is the fact that in the 
BRS quantization, one is quantizing also the group manifold 
and the ghost-dependent part of the solutions of Eq. (90) 
describes the quantum analog of the determination of the 
residual gauge freedom, which at the classical level was ob
tained by means of p~ ( r) == fA ( r). Since the ghosts and 
their momenta go into the Faddeev-Popov ghosts only in a 
limit in which the gauge is completely fixed (see the Fad
deev-Popov measure), we get a nontrivial quantum me
chanics for the ghosts, which must reduce to the trivial one 
for the Faddeev-Popov ghosts when the gauge is fixed. Even 
if this nontrivial quantum mechanics seems to be the price 
for a quantum control of the hypothesis of gauge algebra, it is 
not clear to us the meaning of things like the doubling of the 
vacuum states. 

Let us remark that the selection of a representative \II F 

(a true physical state) from each class (\II BRS + U \II) can be 
done, as in the classical case, by requiring that it satisfies the 
quantum equivariance condition. Equation (73) and (74) 
become 

A Ate "B A A A B HA =HA = -!CAB (C-g e -g eC ) 

- C~BClI9 e - ~ C!B' 
~ "".A A _cA A 

[t,6A +HA,t,6B +HB] = -IC AB (t,6e +Hc>, 

U = ~(~A + HA +! C~B ClI9 e), 

and we get for an equivariant wave function \II:RS 

444 

_ 1 '>A (HA i CB ) .I.E - - 2 C A +"2 AB or BRS 

= !~(~A - (i12)C!B )\II:RS 

=> ~\II:RS = 0 
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(92) 

(93) 

(94) 

This last result is contradictory because ~ A = ~~ so that 
A 

it must also be 9 A \II:RS = O. Since the wave function \II 
belongs to the tensor product HE ®Ho of an even and an 
odd Hilbert space (\II = \II E ® \II 0 ), the equations ~ 

E ~E' E { } \IIBRS = ;:;r A \IIBRS = 0 Imply that \IIBRS = \II F ® \II 0 = 0 , 
where {\II 0 = O} is the origin of the vector space H 0 (this 
same mechanism works for the Gupta-Bleuler method ap
plied to even 2nd-class constraints 1). Then, Eqs. (94) imply 

~A\IIF=O. (95) 

Again, the equivariance condition eliminates the residu
al gauge freedom and reproduces the on-shell quantum theo
ry. 

As a final remark let us note that we are very far from 
understanding how to demonstrate the physical equivalence 
of the quantum theories coming from different BRS quanti
zations of the same system, due to the completely formal 
nature of the Fradkin-Vilkovisky theorem. A priori we could 
get nonunitarily equivalent Hilbert spaces, different critical 
dimensions and so on: What should we choose for the good 
quantum theory? 

VI. CONCLUSION 

We hope to have succeeded in presenting a unified pic
ture ofthe various aspects of the BRS approach, at least at a 
qualitative level. Each point of view shows some of the fea
tures of the theory, but often the differences in the technical 
langauges produce difficulties in the comparison of the re
sults and may obscure the concepts. Another problem is that 
usually a physicist has only a local knowledge of the system 
and is only able to define the action of some local Lie algebra 
on it. Instead, most of the beautiful mathematical results he 
would like to use assume that a global action of a Lie group is 
given. Once more the necessity of a global description of the 
physical system from the very beginning turns out to be one 
of the most relevant problems. Actually, one often tries to 
adapt methods, having their justification only in the well
defined context of Lie algebras and groups, to situations in 
which they can at best work locally, so that one looses any 
global control. For instance, this is the case when one has 
structure functions instead of structure constants in the 
Poisson algebra of the constraints. Another example is the 
problem to find which is the really suited cohomology theory 
to be associated with the BRS method. Part of the problem is 
that one starts with a Lagrangian description and the coho
mological description should be adapted to it.31 Instead, it 
turns out easier to study the cohomological aspects of the 
associated Hamiltonian description, which in any case has 
its own problems, especially in field theory. However, also 
here there is the hard problem that the Legendre transforma
tion of a singular Lagrangian identifies only the primary 
constraint manifold: this is a presymplectic manifold (there 
is no concept of Poisson brackets), which is coisotropically 
embedded36 in the reference phase space in which the Dirac
Bergmann theory is defined. One should try to adapt the 
concepts of Lagrangian gauge fixing and BRS invariance to 
presymplectic manifolds and then look for a cohomology 
theory adapted to them (see Ref. 29 for attempts in this 
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direction). As a preliminary step one has to develop the dif
ferential geometry of exact presymplectic manifolds, the 
ones associated with singular Lagrangians, which has not 
yet been investigated. This will be the subject of a future 
paper, which will be the natural continuation of the study of 
the theory of singular Lagrangians and Hamiltonian con
straints, initiated with Refs. 1 and 2 and prosecuted with the 
present paper. 
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In this paper an exact solution of the Dirac equation in an anisotropic Kasner metric is 
presented. 

I. INTRODUCTION 

It is now almost established that the quantum-mechani
cal effects playa crucial role in the evolution of space-time 
near singularity, as in the last stages of a collapsing star or in 
the early stages of the universe, viz., a few seconds after the 
big bang. This is why recently much interest has been 
evinced by a large number of workers to study quantum the
ory in curved space-time and to examine the creation of par
ticles and antiparticles in curved space-time. l

-4 Recently 
Chimento and Mollerachs.6 have studied the particle cre
ation in Robertson-Walker metrics and extended the study 
to Bianchi type I metrics. In this paper we examine the Dirac 
equation in the curved space-time represented by an aniso
tropic Kasner metric. The exact solution of the equation is 
derived. 

II. GENERALIZED DIRAC EQUATION AND SOLUTION 

The generalized Dirac equation in curved space-time is 

[rilVIL - m]tP(x,t) = 0, 

where 

Vil = all - ull 

and 

- Ir(a)r<lJ) V "V ull -" a (P)".Il· 

(1) 

(2) 

(3) 

Here u
ll 

are spinorial affine connections, r(a),r(P) are flat 
space-time Dirac matrices, r Il are curved space-time Dirac 
matrices, VIa) " are four-vector fields called vierbein and are 
related to the metrics by the equation 

VIa) av(p) bTj(a)(P) = /t'b; (4) 

Tj(a)(P) are Minkowski metric with signature 

{ - 1, - 1, - 1, + n. 
Also, the Dirac matrices in the two space-times are con

nected by the relation 

rll = V(a)llr(a). (5) 

Let us now take the anisotropic Kasner metric in the 
form 

d~ = dt 2 - t 4/3 dx~ - t 4/3 dx~ - t -2/3 dx~. (6) 

With the help ofEq. (4), vierbeins worked out for the metric 
(6) are 

V 1_ t -2/3 - V 2 
(I) - - (2)' 

V 3 1/3 
(3) = t , 

VIOl ° = 1. 

(7) 

Now with the help of (5) and (7) the Dirac matrices in 
curved space-time may be obtained as 

rl = t -2/3r l), y = t -2/3r 2), 

r = t 1/3r 3), yO = rO)o 
(8) 

In Eq. (3) VIP) ". Il are expressed as 

V(P)"'1l = al' V(P)" - r "!l AV(P)A' (9) 

where r "Il A are Christoffel's symbols whose nonvanishing 
components are 

ro - 2t 1/3 - ro 
II - 3 - 22' 

rlo = r~1 = 2/3t = no = r~2' 

~3 = - (l/3t S/3
), 

r~o = - 1/3t = n3' 
The connections U Il can now be written as 

U I = (1/3t 1/3)rO)rl), 

U2 = (1/3t 113)rO)r2), 

U 3 = - (1/6t 4/3 )rO)r3), 

uo=O. 

( 10) 

(11) 

The Dirac equation (I) can now be solved by the meth
od of separation of variables. We take the solution in the 
form 

tP(x,t) = (8n3t)-1/2 

e 
i 1: Bpdt 

ik·x e . (12) 

Inserting (12) in (1) we get the following matrix equation: 

[

(1Jp_-o m) 0 E3 E2 1 
(Sp - m) EI - E3 

E3 E2 (Ap + m) 0 

EI - E3 0 (Bp + m) 

e 
il"lpdt 

;fspdl 
e 0 

=0, X ; i Apdl 
e 

e 
;iBpdl 

where 

EI = (k llt
2/3 ) + (i(k2It 2/3» = EI + iE2' 

E2 = (kIlt 2/3) - (i(k2It 2/3» = EI - iE2' 

E3 = k3t 1/3, 

(13) 

(14) 
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and 

k·x = klx l + k 2x 2 + k 3x 3. 

Equation (13) will have nontrivial solutions if 

[E2_ (Bp +m)(1]p -m)] [E2_ (Ap +m)(sp -m)] 

+ E~ (1]p - sp)(Bp -Ap) = 0, 

with 

E2=Ei+E~+E~. (15) 

For simplicity we now consider that the particle travels 
along the z direction so that k3 = k and kl = 0 = k 2. Then 
Eq. (13) reduces to 

[

(1]p -0 m) 0 

(sp - m) 

kt 1/3 0 

o - kt 1/3 

; ScI 'T/pdt 
e 0 

if Spdl 
e 0 

=0. X iii Apdt 
e 0 

e 
i.1 Bpdl 

kt 1/3 

o 
(Ap + m) 

o 

(16) 

Solving Eq. (16) and introducing the condition that 

(1]p - m)(Ap + m) = k 2t 2/3 = (Bp + m)(sp - m), 
(17) 

the column matrix may now be expressed as 

i (' Bpdt 
e Jo 

[

(AP + m) - kt 1/
3

] 

(Bp + m) - kt 1/3 

= (1]p-m)-kt I/3 ' 

kt I/3 _(sp-m) 

(18) 

Operating Eq. (16) from the left with the operator 
[1"O)ao + ikt 1131"3) - m] and substituting (18) we get the 
following four differential equations in 

~p [Ap - kt 1/3 + m] + i1]p [kt 1/3Ap - mAp + mkt 1/3 _ m 2 - (i/3)kt -2/3] 

+ [-im(kt I/3Ap -mAp +mkt I/3 -m2 - (i/3)kt-2/3)+ik2(-kt+mt2/3+ (i/3)t- 1/3)] =0, 

tp[Bp -kt I/3 +m] +iSp [kt I/3Bp -mBp +mkt I/3 -m2 - (i/3)kt- 2/3 ] 

(19) 

+ [ _ im(kt 1/3 Bp - mBp + mkt 1/3 - m 2 - (i/3 )kt -2/3) + ik 2( - kt + mt 213 + (i/3)t -1/3)] = 0, (20) 

Ap[1]p -kt I/3 -m] +iAp[kt I/31]p +m1]p -mkt I/3 -m2 - (i/3)kt- 2/3 ] 

+ [im(kt 1/31]p + m1]p - mkt 1/3 - m 2 - (i/3 )kt -2/3) + ik'2( - kt - mt 2/3 + (i/3)t -1/3)] = 0, 

Bp [Sp - kt 1/3 - m] + iBp [kt 1/3Sp + msp - mkt 1/3 - m 2 - (i/3)kt -2/3] 

(21) 

+ [im(kt I/3s p +msp -mkt I/3 -m2 - (i/3)kt-2/3)+ik2(-kt-mt2/3+ (i/3)t- 1/3)] =0. (22) 

All four of the above differential equations are similar to 
the Abel equation of the second kind and may be solved 
accordingly. With suitable values of integration constants, 
the solutions are 

1]p = - kt 1/3 + m, 

SP = - kt 1/3 + m, 

A = - kt 1/3 - m, p 

Bp = - kt 1/3 - m. 

(23) 

We thus obtain the exact solution of the Dirac equation 
in a Kasner metric. 
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According to Dirac's prescription the generator of gauge transformations for a constrained 
system endowed with primary and secondary first class constraints is constructed as a linear 
combination of all these (first class) constraints. Using the total Hamiltonian to generate the 
dynamics of the system it is shown that the time evolution of the coefficients of the secondary 
constraints in the generator of gauge transformations is not independent but is determined by 
the coefficients of the primary constraints. This result is applied to some physically interesting 
systems. 

I. INTRODUCTION 

Since Dirac! developed his theory for constrained sys
tems there has been considerable progress in the understand
ing of those systems. The interest on his theory is indeed 
justified, not only for the deep insight it provides into the 
conceptual framework but also for the very powerful tech
niques it provides, which can be applied to a very broad class 
of important physical systems. 

One point in Dirac's theory that has been the target of 
criticism by some authors2

-4 is his conjecture that all first 
class constraints are generators of gauge transformations. 
He also introduced the concept of an extended Hamiltonian 
that includes all the first class constraints and generates the 
dynamical evolution ofthe system with full gauge freedom. 
In spite of the lack of a proof of his conjecture (or even a 
proof that it is not correct) we do not know of any physically 
important system to which Dirac's conjecture leads to the 
wrong result. 

In order to obtain all the constraints of a theory, one 
must use Dirac's algorithm, which in some cases is very te
dious. But once all the first class constraints are obtained one 
can construct a generator of gauge transformations as a lin
ear combination of those constraints, the coefficients of 
which are, in principle, arbitrary. Application of this proce
dure5 to the case of Yang-Mills theory requires a by-hand 
adjustment of the coefficients in order to match the result 
with the well known gauge transformation law for the Yang
Mills potentials in the Lagrangian form. 

The example of Yang-Mills theory suggests questioning 
the degree of arbitrariness of the coefficients that appear in 
the generator. Admitting that the evolution of a given dy
namical system is generated by the total Hamiltonian H T 

(we remark that this poses no restriction on the dynamics) 
we compared two trajectories of the system corresponding to 
the same initial data but to different choices of the arbitrary 
functions in H T' Taking into account that the physical states 
of the system cannot depend on the choice of the arbitrary 
functions, the corresponding states along the two trajector
ies must be related by a gauge transformation. The result of 
the procedure is a differential equation relating the coeffi
cients of the primary and secondary first class constraints. 

The generator so obtained has been applied to various sy
tems yielding the correct results. (For different approaches 
to obtaining the generator of gauge transformations, see 
Refs. 6 and 7.) 

The paper is organized as follows. In Sec. II, we discuss 
some aspects of Dirac's theory relevant for the following 
sections. In Sec. III, we present our approach for obtaining 
the generator. Section IV is devoted to applications. 

II. THE GENERATOR OF GAUGE TRANSFORMATIONS 
ACCORDING TO DIRAC'S THEORY 

Let us consider the evolution of a mechanical system in 
phase space with canonical coordinates (qn,Pn)' n = 1, ... ,N. 
We suppose that the system is singular and denote the full set 
of independent constraints (to be specified later on) by 
¢i ;::::0, i = 1, ... ,m, which define a subspace JI in phase 
space, where the motion of the system actually occurs. 

According to Dirac's theory the total Hamiltonian for 
the system is defined as 

HT = He + uk(q,P)rPk' (2.1) 

where He is the canonical Hamiltonian <Pk' k = 1, ... ,K, are 
the primary constraints, and Uk (q,p) are arbitrary func
tions. The constraints rPk constitute a subset of the con
straints Ci • In principle, the primary constraints are known 
once the momenta are calculated and are incorporated in the 
Hamiltonian by the method of Lagrange multi piers. 

The consistency conditions of time preservation of the 
primary constraints, ¢k = {<Pk,HT};::::O, in general lead to 
the existence of new constraints, tP/' which are called second
ary constraints. (During this process some ofthe functions 
Uk can possibly be determined, but whether this happens or 
not is not important in what follows.) The set of constraints 
Cj is then constituted by all the primary and secondary con
straints. For simplicity, we will suppose that this set is first 
class. The important property of this set of constraints is 
that, together with He' it constitutes an algebra (denoted by 
[§) under the Poisson bracket operation. Indeed, one can 
easily show that, for arbitrary linear combinations gj of ele
ments of [§, with arbitrary coefficients depending on 
(qk,Pk), the following relations hold: 
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(2.2) 

(Instead of He we should use Ho = He + An¢Jn' where An 
are the multipliers determined during the consistency proce
dure. But as we said before this is not important for our 
purpose. ) It follows that the set a/,He ) constitutes a basis in 
Y. As generators of infinitesimal transformations the ele
ments of Y map JI on JI. When the coefficients in (2.2) 
are constants, Y is a Lie algebra to which is associated the 
group of infinitesimal transformations on JI. 

Now, given the initial data (q\Pk) ,~ I,,' the physical 
state of the system is well determined at to. However, the 
time evolution of the system generated by the total Hamilto
nian leads to the appearance of the arbitrary functions in the 
solutions of the equations of motion. This implies that at 
later times there are several physically equivalent sets of ca
nonical variables that evolve from the same initial data. In 
other words, for each choice of the arbitrary functions Uk 
there is an extremal curve or trajectory of the system, start
ing at (q\Pk ),~ I,,' 

From the physical point of view the choice of the arbi
trary functions is irrelevant in the sense that the correspond
ing states of the system must be equivalent. Hence one is led 
to say that the terms involving the primary first class con
straints in H T generate transformations that do not change 
the physical states of the system. In order words, they gener
ate gauge transformations. 

What is clear from the above discussion is that not only 
are the primary first class constraints generators of gauge 
transformations but also the secondary (first class) ones; 
Dirac conjectured that they should also be included in the 
Hamiltonian and defined the extended Hamiltonian 

(2.3 ) 

which generates the evolution of the system with full gauge 
freedom. In spite of their completely different physical ori
gins, it is perfectly acceptable from the physical point of view 
that all the first class constraints must be treated on equal 
footing. 

According to Dirac's prescription the generator of 
gauge transformations for the system can be written as 

(2.4) 

where Oi (q,p) are arbitrary functions and (~i) denotes all 
the first class constraints. A straightforward application of 
(2.4) to the important case of Yang-Mills theory requires an 
adjustment of the "arbitrary" functions at the final step in 
order to recover the correct Lagrangian transformation law 
for the gauge potentials, namely /SA ~ = D"wa (x). [An
other procedureS makes use of the equations of motion gen
erated by He so as to eliminate some of the arbitrary func
tions and to identify the remaining ones with A ~ (x). ] 
Guided by these facts we questioned the degree of arbitrari
ness of the functions 0i (q,p) that appear in (2.4), and our 
answer is shown in Sec. III. 
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III. CONSTRUCTING THE GENERATOR OF GAUGE 
TRANSFORMATIONS 

We are going to compare two trajectories of the same 
physical system corresponding to the same initial data, but 
with two different choices of the arbitrary functions, namely, 
Uk and Uk + Uk where Uk is assumed to be a small deviation 
from the original functions Uk . According to the discussion 
of the preceding section the corresponding physical states of 
the system are to be considered as equivalent and so related 
by a gauge transformation with the generator of the form 
(2.4 ). 

Let Q= Q[q,p,Qo,u] be any dynamical variable asso
ciated with the system and Qo its value for the initial data. 
(For simplicity we will assume that Q has no explicit time 
dependence, as this will not change the results.) We suppose 
that its evolution is generated by the total Hamiltonian so 
that, for the choice Uk of the arbitrary functions, we have 

Q = {Q,HT[un = {Q,Hc + Uk¢Jk}. (3.1) 

Denoting Q = Q[q,p;Qo, u + u], we also have 

Q= {Q,HT[u + un = {Q,HT[u] + Uk¢Jk}' (3.2) 

On the other hand, since Q and Q must be related by a gauge 
transformation it follows that 

Q= Q [u] + {Q,G}Q(u] = Q [u] + {Q,Fi(q,p)¢JJQ(U]' 
(3.3 ) 

The time evolution of Q, as given by Eq. (3.3) above, is 

Q = {Q,HT} + Fi(q'P)~i + Fi(q,p){¢Ji,HT[un. 

Thus Q will be a solution of (3.2) if 

Fi(q'P)~i + {Q,Fi(q,p) {¢Ji,HT [un,} = Uk¢Jk' (3.4) 

We now split the set of first class constraints into pri
mary ¢Ji and secondary VI ones, and write the generator Gas 

G = WI(q,p)VI + £n(q,P)¢Jn' (3.5) 

Equation (3.4) is then rewritten as 

~~I VI + WI{VI,Hc} + WIUn{VI,¢Jn} + £n{¢Jn,Hc} = an¢Jn' 

(3.6) 

where in an¢Jn we included all terms proportional to the pri
mary first class constraints. Now, the quantities {VI,Hc} 
and {¢Jk,Hc} in the above equation can be expressed as lin
ear combinations of the secondary constraints. We write 

{VI,Hc} = alnVn' {¢In,Hc} =f3nIVI' (3.7) 

which, when substituted in (3.6), yields 

dw
l 

VI + wnanlVI + £nf3nIVI + WIUn{VI,¢Jn} = an¢Jn' 
dt 

(3.8) 

Taking into account the linear independence ofthe pri
mary and secondary constraints, we see that if the last term 
on the left-hand side contains any linear combination of the 
secondary constraints, the coefficient Wi will depend on the 
arbitrary functions Uk. If this is the case the generator G will 
lose its meaning, as it will not generate transformations 
between admissible trajectories. On the other hand, this term 
is equal to zero for the interesting physical systems known so 
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far; thus we will discard it. Then we are left with the follow
ing differential equation relating the coefficients of the gen
erator (3.5): 

do/ - + a1nWn + /3/iEi = O. 
dt 

(3.9) 

This equation shows that the coefficients Wi, Ei are not inde
pendent of each other, so that given one set the other is deter
mined by (3.9) provided that/3/i and Oil d Idt + ail are glo
bally invertible. [In case one is looking for an explicit 
solution of (3.9) one must remember that the gauge trans
formations cannot change the initial data so that suitable 
initial conditions must be imposed.] We remark that we 
would not have obtained Eq. (3.9) if we had used the ex
tended Hamiltonian as the generator of the dynamical evolu
tion of the system. 

IV. APPLICATIONS 

(i) Let us consider the motion of a mechanical system in 
Euclidean space with coordinates xU), yU), z(t), whose 
Lagrangian is given by 

!f = !(x2 + y) + ~(r + y) 
_ z(xy - yx) - !(x2 + y2), (4.1 ) 

where x = dxldt, etc. It is clear that this Lagrangian is sin
gular since z is not a dynamical variable. By setting z = 0 one 
easily recognizes the remaining Lagrangian as that associat
ed with a two-dimensional harmonic oscillator, invariant 
under time-independent rotations around the z axis. On the 
other hand, the symmetries of the Lagrangian (4.1) are not 
so obvious but can be revealed by the generator of gauge 
transformations. 

With the canonical momenta defined by Px = a!f lax, 
etc., one obtains 

Px =x+xy, Py =y-zx, pz =0, 

so that 

,p = pz;::;O (4.2) 

is the primary constraint. Using the canonical Hamiltonian 

Hc =!(p; +P;) +z(xpy -yPx) +!(x2 +y), (4.3) 

the consistency condition ~ = {,p,Hc};::;O leads to the sec
ondary constraint 

¢=YPx -XPy;::;O. (4.4) 

The constraints (,p,¢) are first class. 
The generator of gauge transformation, Eq. (3.5), is 

simply 

G = wU)¢ + EU)t/J, 

with 
cd + aw + /3E = O. ( 4.5) 

The coefficients a and /3 are given by Eqs. (3.7), and one 
finds a = 0, /3 = 1. Equation (4.5) reduces to w = - E 

and the generator assumes the form 
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G = w¢ - w,p = w(YPx - XPy) - cdpz. 

It follows that 

ox = {x,G} = w(t)y, oy = - wU)x, 

8z = - wU). 

(4.6) 

(4.7) 

The ox and oyas given above represent time-dependent (i.e., 
local) infinitesimal rotation by an angle w(t) around the z 
axis. The transformation law for z is what should be expected 
for a gauge variable. It is easy to check that the Lagrangian 
(4.1) is invariant under (4.7). 

(ii) Let us briefly consider the Yang-Mills field. We use 
the same notation and conventions as in Ref. 5. From the 
Lagrangian 

!f = -! F;vF~V, 
one obtains the primary constraints t/JQ = ~ ;::; O. The consis
tency condition ~o = {t/J°,HJ;::;O, with 

Hc = J dX[+~~ + ~ F~Fij -A~Dt~], 
leads to the secondary constraints ~ = D ktrt ;::;0. The gen
erator now reads 

G = J d 3
x(W

btfJ + E°,p°), 

while Eqs. (3.9) and (3.7) are 

We find A ob = _gCOCbA~, Bcb=ocb, and EO= -Dlpf, 
where Do( )o=ao( )O_gC°bcAg( )c. The generator G 

assumes the form 

G = ~ J dz( tr:,Dl'wO) (4.8) 

and it generates the Lagrangian gauge transformation law 
for the gauge potentials: 

(4.9) 

V. CONCLUSIONS 

We made an analysis of some aspects of gauge transfor
mations in the context of Dirac's theory of constrained sys
tems. Accepting Dirac's conjecture that all first class con
straints associated with a given physical system generate 
gauge transformations but using the total Hamiltonian to 
describe its dynamical evolution, we have been able to con
struct a generator for gauge transformations by comparing 
phase space trajectories with the same initial data but differ
ent choices of the arbitrary functions. The time evolution of 
the coefficients of the secondary constraints in our generator 
is not arbitrary but determined by the coefficients of the pri
mary constraints. We observe that this does not mean any 
distinction between those constraints from the dynamical 
point of view. The generator we obtained obeys a closed alge
bra and leads to correct results when applied to the most 
familiar examples. 
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The generalization of the Fock-Schwinger or "radial" gauge condition x'A i = 0 to the gauge 
theories of the Poincare group, which describe the gravitational field, is treated. It is shown 
that the choice of a radial gauge is equivalent to the use of normal coordinates and of tetrads 
parallel transported along autoparallellines starting at the origin. The formulas that give the 
fields in the radial gauge starting from an arbitrary gauge and the formulas that give the gauge 
potentials in terms of the gauge field strengths are derived. The residual gauge freedom, which 
consists of the arbitrariness in the choice of the origin of the coordinate system and a tetrad of 
orthonormal vectors at this point is discussed in detail. It is the analog of the usual Poincare 
invariance in flat space-time theories. The whole treatment can be extended to gauge theories 
of the affine and Euclidean groups. As an application, some properties of the homogeneous and 
isotropic states with random geometric fields are found. 

I. INTRODUCTION 

In classical gauge field theory it is often useful to impose 
gauge fixing conditions in such a way that the residual gauge 
freedom is reduced to the finite-dimensional group of the 
global gauge transformations, which do not depend on the 
space-time coordinates. A gauge fixing condition with this 
property is called "complete." Of course, one also requires 
that given an arbitrary configuration ofthe fields, there is at 
least one gauge transformation satisfying the gauge fixing 
conditions, which in this case are called "attainable." 

For Yang-Mills or Maxwell fields, a simple condition 
that has both the properties described above is given by 

xiA; (x) = 0, (1.1) 

where Ai (x) are the gauge potentials and the indices of the 
gauge group are understood. This condition, called the 
Fock-Schwinger or coordinate gauge, has been known for a 
long time, 1,2 although it has rarely been used. 3

-6 The condi
tion is clearly invariant under homogeneous Lorentz trans
formations, but not under translations. The gauge potentials 
can be expressed univocally in terms of the field strengths Fik 
by means of 3-8 

A;(x) = f xkFki(AX)A dA. (1.2) 

An important feature of formula (1.2) is that it does not 
involve the behavior of the fields at infinity. 

The aim of the present paper is to study a similar condi
tion for a gauge theory of the Poincare group, which de
scribes the gravitational field.9

•
10 In this case there are two 

kinds of gauge transformations: the general coordinate 
transformations (or the diffeomeorphisms of the space-time 
manifold) and the local Lorentz transformations of the te
trads ea (x) which form an orthonormal basis in the tangent 
space of every point x. We also consider the dual basis given 
by the forms ea(x) in the cotangent space of a point x. 

A tensor can be described by its anholonomic compo
nents with respect to these tetrads (specified by Greek in
dices) or by its holonomic components (specified by Latin 

indices) with respect to the natural basis defined by the coor
dinate system x;. We indicate by e~ and e~ the holonomic 
components of the tetrad vectors, namely we put 

i a a ad i ea =ea -., e =ei x. 
ax' 

(1.3 ) 

The components in (1.3) have the properties 

(1.4 ) 

and can be used to transform the holonomic components of a 
tensor into anholonomic components and vice versa. For 
instance, for the metric tensor we have 

gij = e~e'fgaP (1.5) 

and since the tetrads are assumed to be orthonormal, the 
anholonomic components gaP are the same constants that 
appear in flat space theory. 

The gauge potentials of a theory of this kind are the 
components ef(x) ofthe dual tetrads and the anholonomic 
coefficients r pi (x) of the connection, that appear in the co
variant derivative D; of a vector field given in terms of its 
anholonomic components va by 

Di va = a; va + r pi V p. (1.6) 

The dimension of the space-time and the signature of the 
metric are not relevant for our treatment, which also holds 
for gauge theories of the Euclidean group. Moreover, most 
of the following considerations do not involve the metric 
tensor and maintain their validity in a purely affine theory, 
namely in a gauge theory of the affine group, II where arbi
trary tetrads of linearly independent vectors are admitted 
and the local transformations belong to the linear group. We 
use the term "homogeneous group" for the Lorentz, orthog
onal, or linear group of the local transformations of the te
trads. We shall treat the general case and indicate the few 
points where the metric structure is relevant. For instance, 
for Poincare or Euclidean gauge theories we require that the 
connection is of the metric type, namely that 

( 1.7) 
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but we do not use this condition in the main part of our 
treatment. 

In Sec. II we formulate the gauge fixing conditions, sim
ilar to Eq. (1.1), which define the radial gauge: We discuss 
their geometric meaning and give the equations that deter
mine the coordinates and tetrads in the radial gauge starting 
from an arbitrary gauge. The result is that the coordinates 
are normal12 and the tetrads are parallel transported along 
autoparallellines starting at the origin. The formalism ob
tained in this way can be considered as a special case of the 
path-dependent field theory developed by Mandelstam, 13-15 

in which the paths are the autoparallel lines mentioned 
above. 

The only arbitrariness in the construction of the radial 
gauge is the choice of the origin of the coordinate system and 
the tetrad at this point. This arbitrariness is interpreted as 
the residual gauge freedom. The treatment is local, namely 
the radial gauge is constructed in a suitable neighborhood of 
an arbitrary point. The corresponding global problem is 
much more difficult and cannot be solved in general. From 
this discussion it follows that the proposed gauge conditions 
are complete and attainable in a local sense and with the 
given definition of the residual gauge freedom. 

In Sec. III we treat the analog ofEq. ( 1.2) and in Sec. IV 
we study the residual gauge transformations, which are con
sidered as a generalization of the Poincare transformations 
of Minkowski space-time. We give the formulas for finite 
displacements of the origin and the simpler formulas that 
describe infinitesimal displacements. In Sec. V we use these 
formulas for the description of homogeneous and isotropic 
states, namely states that are invariant under all the residual 
gauge transformations. This approach is useful for the treat
ment of states defined by random fields. 

In the context of relativistic theories of gravitation, the 
results of the present paper can be applied not only to the 
pseudo-Riemannian four-dimensional space-time, but also 
to the three-dimensional spacelike surface which appears in 
the Hamiltonian treatment of general relativity. 16.17 The re
lation between quantum fields on Minkowski space and ran
dom classical fields on Euclidean space lH

•
19 has no well-es

tablished counterpart in the case of a curved space-time. 
However, we think that the study of random geometric and 
matter fields on a Riemannian manifold may provide very 
useful experience for the construction of a quantum theory 
of gravitation. 

II. THE RADIAL GAUGE CONDITION 

The radial gauge conditions we want to study are analo
gous to Eq. (1.1) and have the form 

girpi(g) =0, (2.1) 

(2.2) 

We have indicated by g i the particular coordinate system 
that satisfies the gauge conditions in order to distinguish it 
from the arbitrary coordinate system Xi given initially. Con
dition (2.2) shows that it is consistent to use arbitrarily Lat
in or Greek indices to indicate the coordinates g. 

We assume that all the fields are differentiable. By dif
ferentiation of Eqs. (2.1) and (2.2), we obtain 
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rpi (0) = 0, ef(O) = ~f. (2.3 ) 

Equations (2.3) show that in the gauge we are considering, 
the gauge potentials at the origin take the values they have in 
a flat space. In other words, it is possible to eliminate the 
gravitational field at a given point. This is a formulation of 
the equivalence principle, which is also valid in the presence 
of torsion when it is not possible to eliminate the holonomic 
connection coefficients at a given point. 20 

The holonomic connection coefficients, which appear in 
the covariant derivative of a vector written in terms of hoi on
omic components, are given by 

r k _ k _Bra + k a a ji - ea~j {3i ea i ej 

and condition (2.1) takes the more complicated form 
f;oirk kf;oia a 
~ ji = ea~ i ej . 

From conditions (2.5) and (2.2) we obtain 

f;oif;ojrk. =0 
~ ~ )1 • 

(2.4 ) 

(2.5) 

(2.6) 

Now we show that given a point Po that fixes the origin 
and a tetrad ea (Po)' conditions (2.1) and (2.2) determine 
univocally both the coordinate system g i and the tetrad field 
in a neighborhood of Po. This means that these gauge fixing 
conditions are locally attainable and complete. From the 
geometric point of view, condition (2.1) means that the tet
rad ea (g) is obtained from the given tetrad ea (Po) by paral
lel transport along the line 

(2.7) 

where the coefficients Vi are constant. In fact, if 
U(A) = uaea(S"(A» is a vector with constant anholonomic 
components ua we have 

(2.8) 

The vector V(A) tangent to the curve (2.7) has constant 
holonomic components Vi proportional to g i(A): From Eq. 
(2.2) we see that its anholonomic components with respect 
to the tetrads ea are constant as well since they are given by 

(2.9) 

It follows that the tangent vector V(A) is parallel transported 
along the line (2.7). In conclusion, we have seen that the line 
(2.7) is autoparallel; the same result can be obtained by 
showing that as a consequence of condition (2.6), Eq. (2.7) 
satisfies the well-known differential equation 

d 2g k 
k dg i dg

j 

dA 2 + r ji dA dA = 0. (2.10) 

Remember that if the connection is metric and torsionless 
the autoparallellines coincide with the geodesics. 

As is well known, if the lines defined by Eq. (2.7) are 
autoparallel, the g i are called normal coordinates. 12 Given 
the tetrad ea(po)' the g i are uniquely determined in a neigh
borhood of Po, where they form a chart of the space-time 
manifold. Also, the tetrads ea (g) obtained by parallel trans
port are uniquely determined. 

In order to give explicit formulas for the calculation of 
the normal coordinates and parallel-transported tetrads, we 
consider an arbitrary coordinate system Xi and indicate by x~ 
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the coordinates of the point Po. We assume that the holono-
A. 

mic coefficients of the connection rjk (x) are known. We 
indicate by e~ the components of the tetrads with respect to 
the natural holonomic basis determined by the coordinates 
Xi. The components of the dual tetrads in the natural basis 
determined by the normal coordinates S i can be computed 
by means of 

ea(£-) = axk(s) e'k(S). (2.11) 
, ~ as' 

Remember that the components of the tetrads and dual te
trads are connected by Eq. (1.4). 

Since the tetrads are parallel transported along the line 
(2.7), we have 

de~(A) = _ ri (x(A»em(A)en (A)va (2.12) 
dA mn !3 a 

and the fact that the vector with constant anholonomic com
ponents va is tangent to the line (2.7) is expressed by 

(2.13 ) 

Equations (2.12) and (2.13), with the initial conditions 
xi(O) = xb and e~ (0) = e~ (Po)' determine the quantities Xi 
and e~ as functions of A and va: However, it is easy to see that 
Xi and e~ depend on a particular combination of these vari
ables, namely on the normal coordinates Sa = Ava. Ifwe are 
considering a metric space and a metric connection, we can 
choose an orthonormal initial tetrad ea (0) and all the paral
lel-transported tetrads are automatically orthonormal. 

It is convenient to transform the differential equations 
(2.12) and (2.13) with their initial conditions into the fol
lowing pair of coupled integral equations: 

Xi(S) = xb + Sa f e~ (AS)dA, (2.14) 

e~(s) =e~(O) -Sa f r:"n(x(As»ep(As)e~(AS)dA. 
(2.15 ) 

It is possible to solve Eqs. (2.14) and (2.15) perturbatively 
to any desired order in r by substituting at each step the 
lower order solution in the lhs integrals. 

Note that if we change the initial conditions by perform
ing a Lorentz transformationL of the tetrad ea (0), we find a 
new solution obtained from the old one by means of the same 
Lorentz transformation L applied to all the tetrads and nor
mal coordinates. This is part of the residual global gauge 
transformations; the other part is determined by the arbi
trary choice of the origin Po and affects the normal coordi
nates and parallel-transported tetrads in a more complicated 
way, which we shall discuss in Sec. IV. 

The radial gauge conditions (2.1) and (2.2) can be re
garded in a sense as an operational prescription which per
mits one to locate the measuring instruments in a neighbor
hood of the observer, w~o lies at the origin Po. In fact, a 
simple way to explore this neighborhood is to send from the 
origin many "space probes" carrying clocks, gyroscopes, 
and measuring instruments. A space probe will be launched 
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with four-velocity va with respect to the given tetrad ea (0) 
and, if T is the proper time measured by the clock, sa = TVa 

are the normal coordinates (in the absence of torsion). Of 
course, only the interior of the future cone can be explored in 
this way. This operational interpretation presents some diffi
culties which need a deeper analysis if gravitation and quan
tum theory are taken into account at the same time. In fact, 
the mass of the probe has to be small in order to avoid pertur
bations ofthe gravitational field and has to be large in order 
to minimize the effects of the uncertainty relations. More
over, a probe with a nonvanishing mass must have an exten
sion larger than the Schwarzschild radius and is influenced 
by the average value of the gravitational field in a finite re
gion. A space-time average of this kind is also necessary in 
order to avoid a divergence of the quantum fluctuations of 
the gravitational field. 

Ill. CALCULATION OF THE GAUGE POTENTIALS FROM 
THE CURVATURES 

In this section we derive from the radial gauge condi
tions (2.1) and (2.2) two formulas analogous to Eq. (1.2) 
which give the field potentials r pi (S) and ef(s) in terms of 
the Riemann tensor R Pik (S) and the torsion tensor S':,.; (S). 
We remember that these tensors are given by 

RPik =ai rpk -ak r pi + r~ir~k - r~kr~i' (3.1) 

S':,.; = ai e'k - ak ef + e,:rpi - efrpk . (3.2) 

LetusmultiplyEq. (3.1) bYSi; from condition (2.1) we 
have 

SiR Pids) = Si ai rpk (S) + rpk (S). 

If we now put S -> As we obtain 

~ (Arpk (As» = As iR Pik (As); 

integrating, we finally have 

rpk (s) = Si f R Pik (As)A dA. 

(3.3 ) 

(3.4) 

(3.5) 

In a similar way, by multiplying Eq. (3.2) by s i and 
taking into account condition (2.2) we obtain 

SiS':,.;(S) =siaie'k(s) +e'k(s) -8'k -s!3rpk (s); (3.6) 

by the same procedure we obtain 

~(A(e'k (AS) - 15k» = As!3rpk (AS) + AS is':,.; (AS) 
dA 

and 

(3.7) 

e'k(S) = 15k + f [s!3rpk (AS) + SiS':,.; (AS)]A dA. (3.8) 

By substituting Eq. (3.5) into Eq. (3.8) we have 

e'k(s) =8'k +SiS!3 f R pid As)(1-A)AdA 

+ Si f S':,.; (As)A dA. (3.9) 

Equations (3.5) and (3.9) are the analogs ofEq. (1.2): 
The gauge potentials they give satisfy the gauge conditions 
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(2.1) and (2.2) as a consequence of the antisymmetry of 
R Pik and Sf;, with respect to the indices i, k. However, Eqs. 
(3.5) and (3.9) solve (3.1) and (3.2) only if the functions 
R Pik (t) and Sf;, (t) satisfy some conditions. These condi
tions have been derived and used in the Yang-Mills case5

•
7 

and a similar treatment can be given in the case we are con
sidering. If we substitute Eqs. (3.5) and (3.9) into Eqs. 
(3.1) and (3.2), after a long calculation we find thatthey are 
equivalent to the following projected Bianchi identities: 

(3.10) 

(3.11) 

in which the potentials elf and r~ are replaced by the inte
gral expressions (3.5) and (3.9). We have indicated by l:{ijk} 

the sum over the cyclic permutations of the indices i, j, k. 
These conditions have a nonlocal character since they are 
expressed by integrodifferential equations. 

The metricity condition (1.7) is satisfied by expression 
(3.5) if the curvature satisfies the analogous local condition 

gayR~ik = -gpyR~ik. (3.12) 

The Einstein field equations e~R Pik = 0 contain the poten
tial e~ and therefore take a nonlocal character if we want to 
express them in terms of the curvature alone. In conclusion, 
if we try to use Eqs. (3.5) and (3.9) to eliminate the gauge 
potentials from the theory, we get very complicated nonlocal 
field equations. 

The situation is not much better if we use the holonomic 
components R :::k (t) and S'!l. (t) or the completely anho
lonomic components R PY8 (t) and S~8 (t). We have to 
modify Eqs. (3.5) and (3.9), introducing in the rhs some 
tetrads with suitable indices. As a result we obtain formulas 
which, unlike Eqs. (3.5) and (3.9), are not simple integral 
expressions, but integral equations of the Volterra kind. 

If the components of curvature and torsion can be ex
panded in power series of the normal coordinates, Eqs. (3.5) 
and (3.9) can be integrated term by term and give power 
expansions of the potentials with coefficients expressed in 
terms of curvature, torsion, and their covariant derivatives 
at the origin t = o. 

IV. RESIDUAL GAUGE TRANSFORMATIONS 

If we adopt the radial gauge, the geometry of the space
time manifold in a neighborhood of Po is completely de
scribed by the functions e~ (t), rpk (t), which have to satis
fy the gauge conditions (2.1) and (2.2), possibly the 
metricity condition (1.7), and the field equations of the the
ory we are considering. In a similar way, the matter fields are 
completely described by their components with respect to 
the tetrads, expressed as functions of the normal coordinates 
t. The only arbitrary elements in this description are the 
choice of the origin Po and tetrad ea (Po). This is the residual 
gauge freedom, which remains when we impose the radial 
gauge conditions. 

Since only gauge-invariant quantities are observable 
and the changes of the origin Po and tetrad ea (Po) are con-
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sidered as gauge transformations, we may ask if the fields in 
the radial gauge can be considered as observable quantities: 
The answer is that they are as observable as the fields in 
Minkowski space-time described by their components with 
respect to a given inertial coordinate frame. In fact, in this 
case as well the values of the field components depend on the 
choice of the origin and the directions of the coordinate axes. 
The transformation properties of the fields with respect to 
the Poincare group permit us to compute the components in 
the new reference frame in terms of the old components. For 
instance, if va is a vector field, we have 

v,a(x') = [L-']pVP(x), x=Lx'+xo. (4.1) 

In the following we generalize formula ( 4.1) to a curved 
space-time with radial gauge, namely we derive the explicit 
form of the residual gauge transformations. We consider a 
radial gauge with origin at the point Po, coordinates t i, and 
tetrads ea (t) and we start from the point P, with coordi
nates t; and the tetrad 

e~(O) =L~ep(t,) (4.2) 

to build a new radial gauge with coordinates t,i and tetrads 
e~ (t '). If, for simplicity, we take L = 1, the coordinates and 
tetrads are connected by 

t i = Ei(t"t'), e~ (t') = n! (t"t')ep(t). (4.3) 

It is easy to see that for general values of L relations (4.3) are 
modified as follows: 

t i = Ei(t"Lt'), e~ (t') = L ~n~(t"Lt')ey(t). (4.4) 

The transformation property of a vector field is 

v,a(t') = [n-'(t"Lt')L -']pVP(t); (4.5) 

tensors of arbitrary order transform in a similar way. In 
Poincare or Euclidean gauge theories it is also easy to write 
the transformation properties of spin or fields. In a flat space
time we have 

Ei(t"t') = t; + t'i, n~ (t"t') = 8~ (4.6) 

and the transformation property (4.5) takes the form (4.1). 
It follows from the definitions that Eq. (4.6) holds for gen
eral spaces when t, and t' are proportional. 

The gauge potentials, which describe the geometry, 
transform in the following way (for L = 1): 

e:a(t') = aEk~:~:t') [n-'(t"t')]p~(t), (4.7) 

rp~(t') = [n-'(t"t')]~ [n~(t"t') aEk~:~:t') 

Xrr (t) + an~(t"t')] . 
8k at,i (4.8) 

Note that the residual gauge transformations do not 
form a group because the quantities Ei(t"t') and 
n! (t"t') and also depend on the initial point Po: They can 
be computed by means of the method given in Sec. II. We 
remark that the quantities n~ are the components of the 
tetrads e~ in the anholonomic basis defined by ep and that 
the vectors e~ are parallel transported along the line 

(4.9) 
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Therefore, we have 

DO~ = dO~ + dE
k rP or = o. 

dA dA dA rk a 
(4.10) 

The vectors tangent to the line (4.9) have constant com
ponents va with respect to the tetrads e~, namely 

dEk anP k 
dA = v uaep . (4.11 ) 

From Eqs. (4.10) and (4.11), we obtain 

dO~ _ linE krP nr 
-- - - V ~£lieE rk~£a' 

dA 
(4.12) 

The differential equations (4.11) and (4.12) with suit
able initial conditions determine the quantities E and 0: It is 
convenient to transform them into the following integral 
equations: 

Ek(sl's') = s~ + s,a f O~(sl,).s')e~(E(sl,As'»dA, 
(4.13) 

O~(SI'S') =d,! -S'li f O~(sl,).s')e~(E(sl,).s'» 
X r~k(E (51,).5') )O~ (51,).5 ')dA. (4.14) 

It is useful to consider an infinitesimal displacement 51 
of the origin and put 

Ek(sl's') = s~ + S,k + s~A 7(5') + O(si), (4.15) 

O~(SI'S') = d,! + S;B~i(S') + O(si)· (4.16) 

FromEq. (4.6), which holds when 51 ands' are proportion
aI, we obtain the conditions 

SiA 7(5) = 0, siB~i(S) = O. 

Formulas (4.5), (4.7), and (4.8) take the form 

v,a(s) - Va(s) = 5 ~ ~j va + 0(5 ~), 

e;a(s) - ef(s) = s{ ~jef + O(s~), 
r'p;(s) - rp;(s) = s{~jrp; + O(sD, 

where we have introduced the definitions 

~jva= -BpjVP+ (~;+A;)av:, 
as 

( 4.17) 

( 4.18) 

(4.19) 

(4.21) 

Note that in expressions (4.19)-(4.21) one can recognize 
terms related to the anholonomic indices, terms related to 
the holonomic indices, and terms with the partial derivatives 
of the field. One can easily imagine analogous formulas for 
other tensor fields. Equation (4.21) has one more term, 
which results from the non tensor character of the connec
tion coefficients. 

If we substitue expressions (4.15) and (4.16) into Eqs. 
( 4.13 ) and (4.14) and disregard second-order terms, we ob-
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tain the following integral equations for the quantities A and 
B: 

A 7(5) = f(A{(AS) + ~~J(~~ - e~(As»). -I dA 

+ 5 r f B ~i (As)e~ (As)dA, (4.22) 

B~i(S) = f(A{(AS) + ~)~Je~(As)r~dAs)A -I dA 

(4.23) 

We have used the following consequences of the gauge con
ditions (2.1) and (2.2): 

5 a aje! (5) = ~; - ~je! (5), 

(4.24) 

Sli aj(e~(S)r~k(S» = - ~Je~(S)r~k (5)' 

For small values of e~ - ~~ and r~i' we obtain the first
order perturbative solution 

A ~(s) ~~r f (~~ -e~ (AS»). -I dA 

+ ~~s r f r~i (AS) (A -I - 1 )dA 

=~~sjf SJ;(As)(I-A)dA 

+~~sPsj fR~ji(AS)(I-A)2dA' (4.25) 

B~i(S) ~f r~i(As)A -I dA =Sk fR ~ki(AS)( 1 - A)dA. 

(4.26) 

The last equalities in Eqs. (4.25) and (4.26) have been ob
tained by means ofEqs. (3.5) and (3.9). 

V. HOMOGENEOUS AND ISOTROPIC RANDOM FIELDS 

We have seen in Sec. IV how the physical observables 
are affected by the residual gauge transformations, which 
playa role analogous to the Poincare transformations in flat 
space-time theories. It is interesting to consider states in 
which all the observables are invariant under residual gauge 
transformations: They are the analog of the vacuum state of 
flat space-time theories and are isotropic and homogeneous 
(in space-time) since their description does not depend on 
the position, time, orientation, and velocity of the observer. 
Similar considerations are relevant for the gauge theories of 
the affine or Euclidean groups in arbitrary dimension. 

In classical field theory, as we shall see, the homoge
neous isotropic "pure" state are given by flat or constant 
curvature manifolds whose properties are known from ele
mentary geometry. On the other hand, the results of the pre
ceding sections cannot be applied directly to a quantum field 
theory for at least two reasons: First, we have no argument to 
determine the order of the noncommuting factors; more
over, quantum fields are distributions and require a more 
careful treatment. 

An interesting application of our results concerns classi-
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cal "mixed" states, namely classical random fields; they can 
describe a random superposition of gravitational waves. 
However, we shall see that in a Poincare gauge theory, the 
only homogeneous and isotropic nonsingular states of this 
kind are nonfluctuating "pure" states. A random field could 
also describe the vacuum fluctuations in a hypothetical Eu
clidean counterpart of a quantum theory of gravitation or 
the quantum fluctuations of a set of quantum fields which 
commute on a spacelike surface. However, the last two ap
plications should take into account the singular nature of the 
fields; as a consequence, the following considerations can be 
considered only as a preliminary exercise with respect to 
these physically relevant problems. 

We indicate by ~1 (SI )""'~n (Sn ) a set of fields, possibly 
including the gauge potentials ef and rpi ' The indices, ho
lonomic or anholonomic, are understood. A random state 
can be described by means of the averages 

(5.1 ) 

We assume that these expressions are differentiable func
tions of the variables SI, ... ,Sn; this is our definition of nons in
gular random fields. The invariance of these quantities with 
respect to the homogeneous (Lorentz, linear, or orthogo
nal) transformations of the tetrad ea (Po) is imposed as in a 
flat theory; the quantities do not change when one operates 
on all the holonomic and anholonomic field indices and the 
coordinates S i with a matrix L of the homogeneous group. 

The simplest consequence is that the average (~(O» is 
an invariant tensor which has the same components in all the 
allowed reference frames. This holds in particular for the 
curvature and torsion tensors: Their average at the origin 
must vanish in an affine theory; in a gauge theory of the 
Poincare or the Euclidean groups we must have 

(S~ (0» = 0, (R ft<O» = r(~f8'f - ~~M). (5.2) 

In the three-dimensional case we also have to consider the 
possibility 

(S~(O» =r'€'ik' (5.3) 

where €,f3r is the unit antisymmetric tensor. 
The invariance with respect to infinitesimal transla

tions, namely the infinitesimal parallel displacements of the 
tetrad ea (Po), has the more complicated form 

~j(~I(SI)"'~n(Sn» = (~j~I(SI)"'~n(Sn» 
+ ... + (~I(SI)"'~j~n(Sn» =0, 

(5.4) 

where the differential operator ~j is defined by Eqs. (4.19)
(4.21). Condition (5.4) should be considered as important 
as the translational invariance in flat space-time theories. In 
the following we clarify its meaning by means of some appli
cations. 

The simplest consequence of Eq. (5.4) is 

sj(~jva(s» =0. (5.5) 

From Eqs. (4.19) and (4.17) we obtain 

sjaj(Va(s» =0, (5.6) 

which gives 

(5.7) 
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The same conclusion holds for all the tensor fields which 
have only anholonomic indices: Their average is a constant 
tensor invariant under the homogeneous group. In particu
lar, from Eqs. (5.2) we have 

(Spr(S» = 0, (R '$(s» = r(~~81- ~6~)' (5.8) 

For the gauge potentials from Eqs. (4.20), (4.21), and 
( 4.17) we obtain, in a similar way, the conditions 

sj aj(ef) = (A 7ek), (5.9) 

sjaj(rpi ) = (A7rpk) + (Bpi)' (5.10) 

which show that the averages of fields with holonomic in
dices have more complicated properties. 

Ifwe consider two vector fields at two points that lie on 
the same ray, from the condition 

sj(~j Va(s) U f3 (AS» + sj( va(s)~j Uf3(AS» = 0 (5.11) 

we obtain 

(5.12) 

In general, one can see that the average of a product of tensor 
fields with anholonomic indices on the same ray is invariant 
under translations along the ray. 

In the absence of fluctuations from Eqs. (5.8) we obtain 

S~ (s) = 0, R ft(s) = r(ef(s)t{ (s) - e~ (s)ef(s»· 
(5.13) 

Ifwe substitute expressions (5.13) into Eqs. (3.4) and (3.7) 
we obtain a system of differential equations which can easily 
be solved and give the following explicit expressions for the 
gauge potentials of a space-time with constant curvature: 

(5.14) 

e~(s) = ~~ + (sin,frS/,frS - 1) (~~ - s-IS aSf38'f), 
(5.15) 

where s = S aSa ' Note that the singularities at rs = 0 com
pensate and a simple analytic continuation is necessary for 
rs<O. 

Now we want to show that in a classical Poincare gauge 
theory with nonsingular random fields, vacuum fluctuations 
are not permitted and the nonfluctuating constant curvature 
spaces described above are the only possible vacuum states. 
More precisely, we shall show that in a homogeneous iso
tropic state all the irreducible tensor fields vanish and the 
scalar fields are constant. A similar result does not hold in 
the Euclidean gauge theories, to which the results given 
above can be applied in a nontrivial way. 

As a first example, we consider a vector field Va(s) and 
the tensor 

(5.16) 

Since the only invariant tensor of second order is the metric 
tensor, from the results obtained above we have 

(5.17) 

namely 

«VO(S»2) = c, «va(s»2) = - c, a = 1,2,3. (5.18) 

It follows that C = 0 and all the components of the vector 
field (not just their averages) vanish. Note that the negative 
values of Ft'f3 are essential in order to obtain this result. Note, 
also, that we have assumed neither conservation laws nor 
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field equations. The only assumption on the field is its trans
formation property and the existence of the averages (5.18). 
The last assumption is essential since it is easy to find Poin
care invariant singular random fields in Minkowski space
time. 

By considering its gradient, we see that a scalar field 
must be a possibly fluctuating constant. If we assume tlutt 
correlations decrease at large distances, this constant field 
cannot fluctuate. In order to complete our argument, we 
decompose an arbitrary tensor field into irreducible, possi
bly complex, fields cl>A (t), where A indicates a set of anho
lonomic indices. If we exclude the scalar fields, which have 
already been considered, one of these fields transforms ac
cording to an irreducible faithful finite-dimensional repre
sentation D; (L) of the Lorentz group. According to our 
previous discussion, the matrix 

G AB = (<i>A(t)cI>B(t» (5.19) 

is constant, positive semidefinite, and invariant with respect 
to the representation D. If GAB does not vanish, it defines a 
scalar product, which makes D a unitary representation. 
Since the Lorentz group has no faithful finite-dimensional 
unitary representations, expression (5.19) vanishes and we 
have (lcI>A(t) 12) = O. 
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It is shown that supersymmetry can weaken integrability: A supersymmetric extension of the 
quasiclassicallimit of the KP hierarchy has flows that no longer commute between themselves 
but still have an infinite common set of conserved densities. This extension has, thus, no 
Hamiltonian structure. 

I. INTRODUCTION 

The basic two-dimensional integrable system, the Ben
ney system,1 has the following moment representation: 

(1.1 ) 

where Ai = Ai (x,t) and ( .. ).(-): = a(·· )/a(·). The Ben
ney system (1.1) possesses many remarkable properties, in 
particular: 

(i) There exists an infinite number of polynomial con
served densities 1 

Hi EAi + Z[ Ao,"" A i_ 2]' i El..+, 

starting with 

Ho=Ao, 

H,=A" 

H2 =A2 +A~, 

H3 =A3 + 3AoA" 

H4 = A4 + 4AoA2 + 2A i + 2A~, 
Hs =As + SAoA3 + SA 1A 2 + lOA ~Al"'" 

( 1.2) 

(1.3 ) 

(ii) There exists an infinite number of "higher" Benney 
equations having the same infinite set (1.3) of polynomial 
conserved densities.2

,3 In particular, the next flow has the 
form3 

Ai,t =Ai+2,x + AoAi,x + (i+ l)AiAo,x +iAi_1A1,x, 

iEl..+. (1.4) 

(iii) All these flows commute between themselves,3 
(iv) All these flows are Hamiltonian, with the Hamilto

nian structure3 

Bij =iAi+j_Ia+ajAi+j_l, i,jEl..+, (1.5) 

a: = a/ax, 

so that the flow # m can be written as 

Ai,t =IBij - , H:=-Hm' mEN. ( 
aH) 1 -

j aAj m 
( 1.6) 

(v) All these flows have a common Poisson representa
tion4

: 

L,t = {p +,L} = {L,P _}, 

where 
00 

L=5'+ I Ais- i
-

1
, 

;=0 

( 1.7) 

( 1.8) 

Here Pis an element of the Poisson centralizer Z(L) of Lin 
the ring d: = d«s -I», d being the minimal differential 
Q-algebra generated by a and the Ai'S: 

::;. - Q [A (j)] .. _'7 
.J<l( - i' l,j 1:Lo+, ( 1.9) 

with a derivation a acting on the polynomial generators of d 
by the standard rules 

a(Ap»=Aij+i). (1.10) 

Thus, Z(L) is generated over Q by {L (I t'EZ}; for an element 

Ipls/E&, 
I 

we define 

( 1.11) 

finally, the Poisson bracket {,} figuring in formula (1.7) is 
the standard one on T * (R I): 

{F,G}: = ;:sG,x - ;:xG,s' (1.12) 

In particular, the flow #m (1.6) has the Poisson representa
tion (1.7) with P = (l/m)L m; the flows (1.1) and (1.4) are 
the flows #2 and #3, respectively. 

The properties (i)-(v) are not logically independent. 
For example, the flows commute (iii) since they are Hamil
tonian (iv) and all the Hamiltonians are in involution (ii). 
But more importantly, the properties (i)-(iv), and many 
others, all follow from the single Poisson representation 
property (v), even when L in (1.8) is taken to be of the 
general form (Remark 2.28 in Ref. 6): 

M-2 

2'=SM+ I UIS /, MEN, 
I=Q 

Q = 0 or Q = - 00. 

(1.13 ) 

(1.14 ) 

The purpose of this paper is to examine what happens 
with the flows ( 1. 7) when one extends the plane 
T*(R' ) = R2 into the superplane ]R21N equipped with the 
(super)-Poisson bracket 

1 N 
{F,G}: =;:5G,X -;:xG,s +2f '~I IP,(F)IP,(G), 

( US) 

F and G are even, where 
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a a 
~r:=-+or-' 1 <r<N, 

aOr ax 

are odd supercommuting derivations satisfying 

[~r'~r]: = ~ r~r + ~r~r = 28rra, 

(1.16) 

( 1.17) 

OI, ... ,ON being the generators of the Grassmann algebra 
A(N). Briefly summarizing the results ofthis examination, 
supersymmetry destroys integrability, but not entirely. 
Namely, we shall prove that the superextended flows do not 
commute between themselves, but nevertheless, all these 
flows do have a common infinite set of polynomial conserved 
densities. It follows that the new hierarchy of flows is not 
Hamiltonian (if it were, the flows would have commuted 
between themselves which they do not), despite having a 
common infinite set of conserved densities. This type of situ
ation has been unknown so far in the theories of integrable 
and superintegrable systems; the term semi-integrable de
scribes a system of noncommuting flows with a common set 
of conserved densities (or integrals, in the zero-dimensional 
case of classical mechanics). 

At the moment, let me explain what the sources oftrou
bles are. Firstly, the commutativity of the flows ( 1.7) can be 
traced by Wilson's 7 type of arguments, to the relation 

{& +,& +} C& +, (1.18) 

where 

( 1.19) 

For the super-Poisson bracket (1.15), the relation ( 1.18) is 
no longer true. Secondly, in the classical even case, the exis
tence of the conserved densities (1.3) for the flows (1. 7) is 
predicated upon the existence of a residue for the Poissson 
bracket (1.12): 

Res (LPIS'): = reLI (LPIS
/
), (1.20) 

where 

resy (LPIS
/
} =PY ' rEZ, ( 1.21) 

with the characteristic property 

Res({&,&}) -0; ( 1.22) 

here a l -a2 means: (a l - a2 ) Elm a in the even case 
a l ,a2E:;;j, and (a l - a2 ) Elm a + 1:r 1m ~ r in the super
case a l ,a2 Ed, where d is the minimal differential commu
tative superalgebra over Q generated by the a, ~ r's, and 
A/s. However, for the super-Poisson bracket (1.15), such a 
residue does not exist when N is an odd integer. This can be 
seen from the following calculation: for even a,b Ed, 

{as/,bs Y} [by (1.15)] 

= S/+ y-I [laa(b) - ra(a)b +! ~ r(a)~ r(b)] 

(the repeated index r is always summed between 1 and N), 
so that 

res/+ y_1 ({as I,bs y}) 

= laa(b) - ra(a)b +! ~ r(a)~ reb). 

But, a(a)b- - aa(b) and 
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! ~ r(a)~ reb) 

=~~r[a~r(b)] -~a~r~r(b) [by(1.l7)] 

- - (N 12)aa(b), 

so that 

res ({as f,bs y}) - (1'+ r - N 12)aa(b). 

( 1.23) 

(1.24 ) 

Hence, for tJ: = {1: PIS II PI Ed}, res? ({& ,&}) -0 iff 

?+ l-N12 =0, 

i.e., 

Res: = res(N (2) - I , (1.25 ) 

which makes sense only when N 12 EZ+. Thus, for 
N El + 2.'l+, there is no reason why anyone of the flows 
should have an infinity of conserved densities, and even less 
why this infinity of conserved densities should be the same 
for each of the flows. No doubt such a reason exists, but I was 
unable to find it. For a nonexpert reader, here is a quick 
construction of an infinity of conserved densities for the case 
N E2.'l+, when a residue does exist: From the equation 

.Y,r = {.9' +,.Y}, V.9' EZ(.Y), 

we get, since { . , .. } is a derivation with respect to each argu
ment, 

('ymIM),r = {.9' +,'ymlM}, V mEN, 

so that 

[Res('y mIM) L = Res [ ('ymIM)r] 

= Res( {.9' +,'ymlM}) -0. ( 1.26) 

The paper is organized as follows. In the next section we 
prove the noncommutativity of the flows. Section III is de
voted to combinatorial properties of the polynomials Hi'S 
(1.3); these properties are an ingredient in the proof of ex is
tence of an infinity of conserved densities for the case of 
arbitrary N, Sec. IV. 

I conclude this Introduction with a few remarks on the 
formula (1.15) for the super-Poisson bracket. One can di
rectly check the Jacobi identity for this bracket; to avoid the 
lengthy check, one can notice instead that the bracket ( 1.15) 
is associated in the standard way with the nondegenerate 
differential two-form 

(J) = (dx - Or dOr ) /\ ds + s dOr /\ dOr, 

so that 

X F J (J) = d(F), VF, 

for 

and 

( 1.27) 

(1.28 ) 

( 1.29) 

Obviously, the two-form (J) is closed, and even exact: (J) 

= - d [s(dx - Or dOr )]. [In addition, the ~e derivative 
of (J) vanishes along the derivations ~ r: = a lao r 
-Or(alax), since ~rJ{J)=d(2SdOr)'] It follows that 

one has a multidimensional analog of the Poisson bracket 
(1.15): 
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( 1.30) 

where 

a a 
IiJ 'Ix: = --+ O'ix --; 

aO'lx axx 
the associated symplectic form is simply 

w = I [(dx" - O'ix dO'lx) A. dSx + S" dO'lx A. dO'lx]' 
x 

( 1.31) 

Changing S in (1.15) into S A and then factoring S A out of F 
and G results in the Poisson bracket 

{F,G} = FG,x - F'.xG +! IiJ ,(F)IiJ ,(G) 

+ (l/A)S(F'.sG,x - F'.xG,s)' 

( 1.32a) 

( 1.32b) 

Since A is an arbitrary constant, an arbitrary linear combina
tion of the expressions (1.32a) and (1.32b) with constant 
coefficients is also a Poisson bracket: 

{F,G} = P [FG,x - F,xG +! IiJ ,(F)IiJ ,(G)] 

(1.33 ) 

If we consider F and G polynomial in S, the Poisson bracket 
( 1.33) induces the Lie algebra structure on the space of infi
nite columns whose entries are functions of (x,O): 

[X, Y] n = I {[ (ai + P)X;lj,x - (aj + P)Xi,x ~ 
i+j=n 

+ ( P 12)IiJ, (Xi)IiJ, (~)]}, i,j,n eZ+. 

( 1.34) 

The associated Hamiltonian matrix B, computed from the 
defining relation8 

is 

B(X)ty_ - IAn [X'Y]n' 
n 

Bij = (ai+p)Ai+ja+a(aj+P)Ai+j 

- (P 12)IiJ ,Ai+jIiJ " 

(1.35 ) 

( 1.36) 

It can be shown by a direct calculation that the Hamiltonian 
matrix (1.36) is the only Hamiltonian matrix of the form 

Bij = (ai + p>Ai+ja + a(aj + p>Ai+j 

- EIiJ ,Ai + jIiJ " (1.37) 

in addition to the purely even solution {E = 0},9 Notice that 
when Fand G are S-independent, the Poisson bracket (1.32) 
reduces to the Poisson bracket (1.32a) that defines the Lie 
algebra of functions on a N- (super) circle; the same bracket 
arises out of the bracket ( 1.15) when F and G are linear in S. 

II. SUPERFLOWS 

Let 
M-2 

!£' = SM + I uis/, MEN, 
1= - 00 
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U/ = U/ (x,O,t) is even V I, 

and let 

(2.1) 

f!lJ = !£,mlM = S + ... , mEN, (2.2) 

be a Q-generator of positive s-degree of the Poisson centra
lizer Z(L) of L in the ring &: = d( (S -\», where now d is 
generated over Q by the a, IiJ /s, and u/s. We consider an 
evolutionary derivation a:9' of d (i.e., commuting with the 
actions ofQ, a, and IiJ /s), defined by the rule 

a:9' (!£') = {f!lJ +,!£'} 

= {!£',f!lJ _}, 

(2.3a) 

(2.3b) 

with the Poisson bracket {,} defined by formula (1.15), and 
with the usual understanding that a:9' (like other derivations 
at' a, IiJ ,'s) acts trivially on S. Thus, the action of a:7 , on d 
can be read off formula (2.3): 

a:9' (u/) = rest[ a:9' (!£')] 

= res/({f!lJ +,!£,}) 

= res/({!£',f!lJ -}). (2.4) 

Note that the expressions (2.3a) and (2.3b) agree between 
themselves since 

0= {f!lJ ,!£'} 

= {f!lJ + + f!lJ _,!£'} 

= {f!lJ +,!£,} - {!£',f!lJ _}. (2.5) 

It remains to verify that the derivation a:9' is correctly de
fined: from the form of !£' (2.1) we see that a:9' (!£') must 
belong to & <M _ 2' where 

&<y:= {Ipts/lptEd}. (2.6) 
I<y 

But, by formula (1.15), 

{& <y,& <I} C tJ <y+ 1- \. (2.7) 

Hence, by formula (2.3b) 

a:9' (!£') = {!£',f!lJ _} d& <M'& < _\} C & <M-2' 
(2.8) 

as desired. In case the reader is wondering why f!lJ has been 
taken of positive S -degree, formula (2.3a) shows that a nega
tive S-degree f!lJ yields a:9' = 0, and the same happens when 
the S-degree of f!lJ is zero: in this case f!lJ = !£,O = 1. 

Suppose now that f/t is another element of Z(!£') of 
positive S-degree: 

f/t = !£,mIM, mEN, m#m, (2.9) 

and let a.;t( be the corresponding evolutionary derivation of 
d, given by the formulas 

a:?l (!£') = {f/t +,!£'} 

= {!£',f/t _}. 

(2.1Oa) 

(2,1Ob) 

We are going to show that, in contrast to the purely even case 
(when the IiJ /s are absent), the derivations a:9' and a:;t( do 
not commute. 

Theorem 2.11: 
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[a,,;> ,a.~] (2') 

= {(2s) -I fP r [reso(~)] fP r [reso( 9) ],2'}. 

(2.12) 

Proof Since the Poisson bracket (1.15) is a derivation 
with respect to each argument, formulas (2.3) imply that 

a,,;> (~) = {9 +,~} (2.13a) 

= {~,9 _}. (2.13b) 

In particular, 

a,,;> (~+) = [a,,;> (~)] + [by (2.13b)] = {~,9 _} +. 

(2.14) 

Hence, 

a,,!, a.~ (2') [by (2.lOa)] 

= a,,!, ({~ +,2'}) 

[ since a,y, commutes with the a, fP r's,S ] 

= {a,,;> (~+),2'} + {~+,a,,!, (2')} 

[by (2.14),(2.3a)] 

= {{~,9 _} +,2'} + {~+,{9 +,2'}}. (2.15 ) 

Interchanging 9 and ~ in formula (2.15), we obtain 

a,?la,,,, (2') = {{9,~ _} +,2'} + {9 +,{~ +,2'}}. 

(2.16) 

Subtracting formula (2.16) from formula (2.15) and using 
the Jacobi identity, we get 

[a,,,,,a:?l] (2') = {A,2'}, (2.17) 

where 

A: = {~,9 _} + + {~_,9} + + {~+,9 +}. 

Now, by formula (1.15), 

{& <0'& <o} + = {o}, 

so that 

(2.18 ) 

(2.19) 

A = {~ +,9 _} + + {~ _,9 +} + + {~ +,9 +} + (2.20a) 

+ {~+,9 +} - {~+,9 +} +. (2.20b) 

But, by formulas (2.2) and (2.9), 

{~,9}=0. 

Hence 

(2.21) 

0= {~,&'}+ = {~+ +~ _,&' + + 9 _}+ [by (2.19)] 

= {~ +,&' -} + + {~ -,&' +} + 

+ {~+,9 +}+' 

and formula (2.20) becomes 

A = {~ +,&' +} - {~ +,&' +} + 

={~+,&'+L [by (1.15)] 

[by definition of & _] 

(2.22a) 

(2.22b) 

Substituting formula (2.22b) into formula (2.17), we get 
the desired formula (2.12). • 

Since, for m=/:iii, reso(~) andreso( &') are two polyno
mials in the entries u/s not all of which are the same, the 
expression (2.22b) does not vanish unless one of the 

462 J. Math. Phys., Vol. 31, No.2, February 1990 

reso(~) and reso( 9) does, which happens precisely when 
either m or iii equals one. In such a case, say for m = 1, 

a,,!, = a, (2.23) 

which obviously commutes with all the a,?l 'so In the general 
case, when neither m nor iii equals one, 

[a,,!, ,a.:) ] =/:0. (2.24) 

Remark 2.25: The map 
00 

2't---+L=2'IIM=S+,L A;S-;-I (2.26) 
;=0 

takes the derivation ag> (2.3) into the derivation ap (1.7); 
the inverse of this map, L t---+ 2' = L M, takes ap into ag>. 
This map is, thus, an isomorphism. From now on, therefore, 
we can and shall work with L only. 

Remark 2.27: The classical Poisson bracket (1.12) on 
T*(R1

) is the quasiclassical ( = zero dispersion) limit of the 
commutator 

[F,G] =Fo G - Go F, (2.28) 

where 0 is the multiplication in the associative ring of pseu
dodifferential operators,5 

(2.29) 

Consequently, the Benney hierarchy is the quasiclassical 
limit of the KP hierarchy. Since the N = 1 supersymmetric 
KP hierarchy of Man in and Radul lO does not have the quasi
classical limit, the question arises whether the super-Poisson 
bracket ( 1.15) is the first nontrivial term of the commutator 
resulting from an associative product that extends by the 
fP r's the usual multiplication (2.29). If such an extension 
exists, it would provide a new supersymmetric extension of 
the KP hierarchy, and for arbitrary N. 

III. COMBINATORIAL FORMULAS 

In this section we derive various explicit formulas con
cerning the Benney hierarchy and its superextensions. 

We start with the grading 

rk(A;) = i + 2, rk(s) = 1, rk(a) = 1, 

rk(Q) = O. 

In this grading, 

rk(L) = 1, 

so that 

rk(reLI (L m» = m + 1. 

Let 

Hm:=reL1(Lm+I)/(m+ 1), 

so that, by (3.3), 

rk(Hm) =m+2. 

rk(fP r) =~, 

(3.1) 

(3.2) 

(3.3 ) 

(3.4) 

(3.5) 

Theorem 3.6: The homogeneous polynomials H m of 
rank m + 2 are uniquely defined by the formulas 

akHm I m! ( .) = {j m+2,,LUs + 2 ) , 
aA;, .. ·aA;k A=O (m-k+ 1)! s 

(3.7) 
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where 

c5(.,".):=c5 .... (3.8) 

Proof: The uniqueness is obvious. To prove formula 
(3.7), we note that, by (1.8), 

a~. (L m+ I)=(m+1)Lm5 -u,+I), 
'I 

so that 

~"'~(Lm+l) 
aA j, aA jk 

= (m + 1)"'(m + l-k+ I)Lm+l-k5 -l:(i,+I), 

(3.9) 

whence 

aA:~~~A;.IA=O [by (3.4)] 

=_1 res_I ([~"'~(Lm+I)]1 ) 
m + 1 aA j, aA jk A=O 

[by (3.9)] 

1 (m+l)! f;-m+l-k-l:U,+ll) =--res_ 1 ~ 

m + 1 (m + 1 - k)! 

= m! c5( m + 1 - L (is + 2), - 1), 
(m + 1 - k)! 

which is the same as (3.7). 
The same proof as above shows that 

Hence, fixing t'EZ+ U{ - 1}, and defining 

Hm (i): = res[(L m+ [+2)/(m + 1 + 2), 

so that 

Hm( -1) =Hm, 

and 

(3.10) 

(3.11 ) 

(3.12) 

rk(Hm (i» = m + 2, (3.13) 

we get 

akHm(i) I 
aA i, ' ··aAik A=O 

=[ ~~ (reS[(L
m

+[+2»)] I 
aA i, aA ik m+I+2 A=O 

[by (3.10)] 

= (m+l+l)! c5(m+2,L(is+2»). 
(m + 1+ 2 - k)! 

(3.14) 

[ ~.~ (Hm(N /2 -1)] I 
aA i, aA ik A=O 

= (m+N/2)! c5(m+2'L(i +2») 
(m + N /2 - k + I)! s 

(3.15a) 

1 (m + N /2)'" 
m+N/2-k+ 1 

(m + N /2 - k + 1)c5 ( m + 2, L (is + 2»). 

(3.15b) 
Thus, for even N, formula (3.15a) provides us with an ex
plicit formula for the infinity of polynomial conserved densi
ties for the superextended hierarchy (1.7), (1.15); however, 
formula (3.15b) makes sense even when Nis odd, and it is 
natural to suppose that this formula provides the desired 
conserved densities for all values of N. Even if this supposi
tion is true (it is), it is difficult to verify directly. Let us see 
why. 

For m = 2 and P = L 2/2, we have 

~(L 2) + = !(5 2 + 2Ao) = 52/2 + Ao, (3.16) 

so that the motion equations ( 1.7) with the Poisson bracket 
(1.15) are 

A i.t = Ai+ I.x + iA i_ I Ao,x +!iP ,(Ao)iP ,(Ai_I), 

(3.17) 

cf. (1.1). Similarly, for m = 3 and P= L 3/3, we get 

!(L 3) + = !(c + 3Ao5 + 3A I) = 53/3 + A 05" +A I, 

(3.18 ) 

so that the corresponding motion equations (1.7) are 

Ai.t =Ai+2.x + AoAi.x + U+ I)AiAo.x 

(3.19a) 

+ !iP, (Ao)iP, (Ai) + ~iP, (AI)iP, (A i_ I)' 

(3.19b) 

cf. (1.4). The super-Benney system (3.17) can be directly 
checked to have the following conserved densities: 

Ho=Ao, 

HI=AI' 

H2 = A2 + (2 + N /2)(A ~/2), 

H3 = A3 + (3 + N /2)AoAl' (3.20) 

H4 = A4 + ( 4 + ~) (AoA2 + A2 i) 
+ ( 4 + ~) ( 3 + ~) A6~ , 

Hs =As + ( 5 + ~) (AoA3 +AIA2) 

( N) ( N) A~Al 
+ 5+2" 4+2" -2-'"'' 

cf. (1.3). We see that formulas (3.20) agree with the formu-
In particular, whenNE2Z+ and 1 = N /2 - 1 (1.24), weob- la (3.I5b). To show that the list (3.20) can be continued 
tain indefinitely, define the polynomials 
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HmEQ[Ao, ... ,Am], mEZ+, (3.21) 

by the formulas 

a ~~m 1 = {) (m + 2, L (is + 2») cmlk ' 
aAi, aA ik A = 0 

(3.22) 

where the constants Cmlk' appearing in formula (3.15b), are 
defined by the rule 

Cmll = 1, cmlk+ I = Cmlk (m + N /2 - k + 1). (3.23) 

Theorem 3.24: Define the homogeneous polynomials 

FmEQ[Ao, ... ,Am+d, rk(Fm)=m+3, (3.25) 

Fm EQ[Ao, ... ,Am_I]' Fo = 0, rk(Fm) = m + 1, 

by the formulas 

a.k~m .1 = {) (m + 3, L (is + 2») Cmlk' 
aAi, aA ik A = 0 

Then the motion equations (3.17) imply 

Hm.1 = Fm.x + 9 r [Fm 9 r(Ao)]· 

(3.26) 

(3.27) 

(3.29) 

(Thus, the H m 's are conserved densities of the system (3.17) 
foranyN.) 

Proof: Denote 

(.),.: = a(·) . 
I aA

i 

Then, for the lhs of (3.29) we get 

H m•1 [by (3.17)] 

+ ~ 9 r(Ao)9 r(Ai_ I )], 

while for the rhs of (3.29) we obtain 

Fm.x + 9 r [Fm 9 r(Ao)] 

= Fm.iA i.x +NFmAo.x +Fm.i9 r(Ai)9 r(Ao). 

(3.30) 

(3.31a) 

(3.31b) 

Comparing (3.31a) with (3.31b) we see that they are equaf 
provided they have the same coefficients in front of Ai+ I.x' 

Ao.x' and 9 r(Ao)9 r(Ai+ I)' i.e., when 

Hm.i =Fm,i+I' 

iAi_IHm.i = Fm.o +NFm' 

~Hm.i+2 = - Fm.i+ I' 

(3.32) 

(3.33 ) 

(3.34) 

To prove formulas (3.32)-(3.34) we apply to each one of 
them the operator ak/(aAi, .. ·aAi)IA=O' Then formulas 
(3.32) and (3.34), in view offormu1as (3.22), (3.27), and 
(3.28), tum at once into identities, while the constant terms 
are 1 for i = m and ~ for i = m - 2 in (3.32) and (3.34), 
respectively. With the formula (3.33) we need a bit of extra 
work. We have, for the lhs: 
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ak 

aA . .. . aA. (iA i_ I Hm.;) I A =0 
'I 'I.. 

= L (Is + 1) >< --
k . a k - I ( aH m ) I 

s=1 aAi, .. ·aAi, .. ·aAik aAi,+1 A=O 

[by (3.22)] 

= L (is + 1)cml k {) ( m + 2, L (is + 2) + 1) 
= (m + 1 - k)Cmlk{) ( m + 1, L (is + 2»), (3.35a) 

and for the rhs: 

a k (F NP-) I [b 3 27 3 ] aA . .. . aA. m.O + m A=O Y (. ),( .28) 
'I 'I.. 

= {) ( m + 3, L (is + 2) + 2) Cmlk+ I 

+ N( - D{)( m + 1, L (is + 2») Cml k 

= {) ( m + 1, L (is + 2») (Cmlk+ I - (N /2)Cmlk)' 

(3.35b) 

Comparing expressions (3.35a) and (3.35b) we find that 
they are equal in view of formula (3.23). • 

If we now consider the time derivative of the polynomi
als Hm's along the flow #3 (3.19), we get 

AO.1 = (A 2 + A ~ ).x, 

AI.1 = (A3 + 2AoAI).x, 

[A2 + (2 + N /2)(A ~/2)].1 (3.36) 

= [A4 + (3 + N /2 )AoA2 + Ai] .x 

+ 9 r [ - ! A29 r (Ao)] . 

Clearly, it is quite difficult to guess the structure of the fluxes 
here; so we cannot rely on the exact formulas of the type 
(3.29). We shall use a different procedure in the next sec
tion. 

Remark 3.3 7.' The flow (3.19) has an invariant subman
ifold 

{A I =A3 =A5 ='" =O}, (3.38) 

on which the remaining variables 

Rn: =A2n 
satisfy the equation 

R n.1 = Rn + I.x + RoRn.x + (2n + 1 )RnRo.x 

+ ~ 9 r(Ro)9 r(Rn). 

(3.39) 

(3.40) 

Similar to the purely even case,9 one can show that the fol
lowing more general system: 

R n.1 = Rn+ I.x + RoRn.x + (an + {3)Rn Ro.x 

(3.41) 

where a, {3, and E are arbitrary (even) constants, has an 
infinite number of polynomial conserved densities 
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hm EQ[ R o, ... , Rm;a,p,E], (3.42) 

defined by the formulas 

a.k~.m I = 8 (m + 1, L (is + 1») dm1k , 
aRi) aR ik R = 0 

where 

dmll = 1, 

(3.43) 

(3.44) 
dm1k + 1 =dm1k[(m-k+ l)a+Kp-l +NE]. 

IV. CONSERVED DENSITIES 

In this section we construct an infinity of polynomial 
conserved densities for the hierarchy ( 1.7), ( 1.15), and then 
show that these conserved densities are given by the explicit 
formulas (3.22), (3.23). 

First we rewrite in components the motion equations 
(1.7), (1.15). Set 

L r = LPI(Y)S/, VyEZ. (4.1) 
I 

Then 

d(lim ) [by (3.4)] =res_I[Lmd(L)] [by (4.1)] 

=reLI (~PI(m)s/~dAiS -i-I) 
= LPi(m)dAi. (4.2) 

i 

Hence, 

(4.3) 

Now, sinceL.t EtJ _, the motion equations (1.7) can be writ
ten in the form 

L,t = {p +,L} _, (4.4) 

so that, for P = L m, we obtain 

L =~A. e-- i - I 
,1 L.- l.t~ 

= {~Pn(m)sn,s+ LAiS -i-I} _ [by (1.15)] 

= { L Pn(m)Sn, LAiS -i-I} 
n>O -

[by (1.15), and suppressing index m frompn (m)] 

= ( L sn-i-2[nPnA i,x + (i + l)Pn,xA i 
n,i>O 

+!~r(Pn)~r(Ai)])_ . 
Hence, for P = L m, the motion equations ( 1.7), (1.15) are: 

Ai,t = L [nAn+i_I,xPn + (n+i)An+i_IPn,x 
n>O 

465 J. Math. Phys .• Vol. 31. No.2. February 1990 

(4.5) 

where we remember that 

aRm 
Pn:=Pn(m)=--, nEZ+. 

aAn 

Let us now introduce the generating function 
co 

/=/(z): = L Ait , i=O 

(4.6) 

(4.7) 

and let us convert the infinite system of motion equations 
(4.5) into a single motion equation for f We have 

!t [by (4.7)] = LAi,tt [by (4.5)] 
i 

= L t[nAn+i_I,x Pn + (n + i)A n+i_ 1 Pn,x 
i,n 

(4.8) 

We transform separately each of the three summands in the 
expression (4.8). We have, 

L tnAn + i-I,x Pn 
itn 

= ~ nn Zl - n ( ~ A . zn + i-I) 
~ 1'n ~ n+l-l 

n ; x 

(4.9a) 

Lzi(n + i)An+i-1 Pn,x 
n.; 

= LPn,xzl - n L A n+i_ 1 (n + i)~+i-I 
n i 

= ~Pn,xzl-n [itO Ai(i+ l)zi- ;t: Aj(j+ l)zj] 

= LPn,xzl-n[/+Z!z - ni
2 
Aj(j+ l)zj]; 

n J=O 

= ~ ~ ~ (p )Zl - n ~ ~ (A . )zn + i-I 
2 ~ r n ~ r n+I-1 

n , 

1 n - 2 

-- L L ~r(Pn)~r(Aj)zHI-n. 
2 n j=O 

The expression (4. 9c') can be simplified: 

Lemma 4.10: 

L ~ r( Pn)~ r(Aj)zH I-n = O. 
j<n- 2 

Proot Denoting temporarily 

( ) 'TTIZI) : = L 'TTIZI, 'TTl Ed for all I, 
~ - 1<0 

and noticing that 
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(4.9c) 

(4.9c') 

(4.11) 

(4.12) 
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~,(Pn) = LPn,i~,(Ai)' (4.13) 
i 

we get 

L ~ ,( Pn)~ ,(Aj)zH I-n 
j<n- 2 

= ( ~ ~ , ( P n ) ~ ,(A j )zH 1 - n) 
l,n -

= [ ~ ~ ,(Ai)~ ,(Aj ) LPn,iZH I-n] . 
IJ n -

(4.14) 

We will show that the expression l',n Pn,izj + 1 - n is symmet
ric in (i,j). Since 

~ ,(Ai)~ ,(Aj ) = - ~ ,(Aj)~ ,(Ai)' 

the expression inside the curly bracket in (4.14) will then 
vanish. Now, 

= L zj + I-n m! 
n (m - k - I)! 

X8 ( m + 2, L (is + 2) + i + 2 + n + 2) 

= m! zj+I+l:(i,+2l -m+i+2, 
(m-k-1)! 

which is indeed symmetric in (i,j). It remains to consider 
the case whenPn,i is a constant. By formulas (4.3), (3.7), it 
happens when n + i = m, in which case Pn,i = m, so that 

Pn,izj + 1 - n = mzj + 1 + i - m 

is again symmetric in (i,j). • 
Collecting together the expressions (4.9a)-(4.9c), we 

finally get 

n n 

_1. ~ ,( j) L ~,( Pn )Zl - n 

2 n 

( 4.15a) 

- L zH I-n [nPnAj,x + Pn,xAj(j + 1)]. 
j<n -2 

(4.15b) 

Before proceeding further, we show that the expression 
(4.15b) is trivial: 

Lemma 4.16: Denote 

s= L zHI-n[nPnAj.x +Pn,xAj(j+ 1)]. 
j<n- 2 

Then 

s-o. 
Proof: We have, 

s- L zj+l-n(n-j-l)PnAj.x 
j<n-2 
m-2 m 

= L Aj,x L zHI-n(n-j-1)Pn· 
j=O n=j+2 

Hence, S - 0 iff 

a [ m . ] - L zHI-n(n-j-1)Pn 
aAi n=j+2 

a [ ~ z"+I-n( . 1) ] = - £,.- n - I - Pn , 
aAj n=i+2 

( 4.17) 

( 4.18) 

(4.19) 

(4.20) 

for all i,j<m - 2. This can be rewritten with the help of the 
notation (4.12) as 

[ ~ zH 1 - n(n - j - 1) Pn.i] _ 

= [~t+l-n(n-i-1)Pn.j]_' (4.21) 

To show that formula (4.21) is true, we first apply the opera
tor (akl(aA i, .. ·aAi.»!A=O to the lhs of (4.21) and verify 
that the result is symmetricin (i,j). By (4.6), we get 

{[
LzHI-n(n-j-1) ak ~alim]1 } [by(3.7)] 
n aA i, .. ·aAik aAi aAn A = 0 _ 

= { L zH 1 - n(n - j - 1)8( m + 2, L (is + 2) + i + 2 + n + 2) m! } 
n (m - k- I)! _ 

={ m! zj+I+l:(i'+2l+2-m+i[m_2_L(is+2)_i_j_l]} , 
(m-k-l)! _ 

and this expression is indeed symmetric in (i, j). Finally, the 
constant terms in the lhs of (4.21) occur when n + i = m, in 
which casepm _ i.i = m by formulas (4.6) and (3.7), and the 
constant term becomes 

We now are ready to construct the desired infinity of 
conserved densities of the equation (4.15). 

Theorem 4.22: Let the sequence of operators 

{zH I-m+i(j + 1- m + i)m}_, Ei EQ[Z' !], ieZ+, (4.23) 

which is again symmetric in (i,j). • be given by the formulas 

466 J. Math. Phys., Vol. 31, No.2, February 1990 B. A. Kupershmidt 466 



                                                                                                                                    

Ei = Eo(z2az + (N /2)Z)i,t+ I, 

where Eo is arbitrary. Then 

[ LEi( !i+1 )] =LEi(P I1 ) [by (4.15)] 
i (I + 1)!.1 i 11 

(4.24) 

(4.25) 

Remark 4.26: Since Eo commutes with a, by formula 
(4.18) Eo(S) -0. Thus, formula (4.25) implies that all the 
coefficients in the generating series 

00 (P+ 1 ) L E. , 
i=O ' (i+ 1)! 

(4.27) 

are conserved densities for the system (4.5). (Obviously, all 
the series in formula (4.25) converge z-adically.) 

ProofofTheorem 4.22: We have, 

= ~ Ei {~i [Ix L nPnzl- n + (f+zlz) LPn,xzl- n -! ~ ref) L ~ r( Pn )zl-n]} 
I I. n n n -

( 4.28a) 

First, we transform each of the three summands in the sum 
(4.28a). We have, 

~ E; (~; Ix L npnzl-n) 
I I. n 

- n E zl-n [ ( 
f i+ 1 )] 

- ~ Pn ~ i (i + I)! ,x 
(4.29) 

( 4.30) 

[f
i
+

1 
( fi+1 )] =LP LE. _zl-n+zl-nza . 

n n.x; , ,1 z (i + I)! ' 

(4.31 ) 

':""!LEi [P ~r(f)~r(Pn)ZI-n] 
i 11 

= -!~r {~Ei [ /~+:)! ~~r(Pn)ZI-n]} 
(4.32) 

. N. E. ' zl-n ( f '+1 ) 
+ 2 ~Pn.x ~ , (i + I)! . (4.33) 

Second, the expression (4.28b) can be transformed as 
- Eo(S) 

(4.34) 

( 
f i+1 ) X zj+ I-n • 

(i + 1)! 
(4.35) 

Theexpressions (4.29), (4.32), and (4.34) combine into the 
desired formula (4.25). We are going to show that the re
maining expressions, (4.30), (4.31), (4.33), and (4.35), 
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(4.28b) 

add up to zero. Now, each of these expressions is linear in 
Aq•x ' O<q<m - 2. Hence, for each q, picking out the ceoffi
cients in front of Aq.x and then considering this coefficient as 
an operator actingonp+ I/(i + 1 )!foreach fixed i, it will be 
enough to check the following operator identity: 

- LnPn.qEizl-n+ LPn.qEizl-n[(i+ 1) +zaz ] 
n n 

+ N ~ E I-n "2 ~Pn.q iZ 

~ E ..4+I-n 
"'" nPn ;+1'" 

n>q+ 2 

- L Pn.qAj(j+ 1)Ei+ IZHI-n=o. 
j<.n- 2 

Lemma 4.37: 

Ei+ 1 = E;(N /2 + i + zaz )z2. 

(4.36a) 

(4.36b) 

(4.38) 

Granted the Lemma, which we shall prove later on, the 
expression (4.36b) can be transformed into 

- L nPn Ei(N/2+i+zaz )z9+ 3- n 
n>q+ 2 

- L {Pn.qAj (j+1)Ei (N +i+zaz )zj+3-n. 
j<.n-2 2 

(4.39) 

The last transformation we perform on the second of the 
three summands in the expression (4.36a): 

LPn.qEizl - n[ (i + 1) +zaz ] 
n 

(4.40) 
n 

Now, collecting together terms of the form Eizaz from 
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(4.39) and (4.40), we arrive at the following identity to be 
verified: 

LPn,qZI-n= L nPn zq +3- n 
n n>q+ 2 

+ L {Pn,qAj(j+ 1)z H 3-n}; (4.41) 
j<n - 2 

termsproportionalto (N 12)Ei in (4.36a) and (4,39) lead to 
the same identity (4.41); finally, after adding the first sum
mand in (4. 36a) to (4.40), the remaining terms, all propor
tional to EJ, amount again to the same identity (4,41). 

Denoting 

{ [ 
L Zl - n a k ~ ( alim )] 1 } 

n aAi\ .. ·aAi, aAq aAn A = 0 < 1 

( L 1TIZI) : = L 1TI Z
I
, 1TI Ed for all t, 

I <y I<y 

(4.42) 

the identity (4.41) can be rewritten in the form 

( 4.43) 

To prove formula (4.43), we first apply the operator 
«a k laAi\ .. ·aAi»IA =0 to each of the three terms in it. Us
ing formulas (4.6) and (3.7) we get: 

= [ L zl- n m! D( m + 2, L (is + 2) + q + 2 + n + 2)] 
n (m - k - 1)! <I 

m! (zl-m+1:(i,+2)+q+2) 
(m-k-l)! <I' 

(4.44L) 

{ [ 
L q + 3 - n a k ( ali m )] 1 } 
n nz aAi\ .. ·aA ik aAn A =0 <I 

= [ L nz q+ 3 - n m! D (m + 2, L (is + 2) + n + 2)] 
n (m - k)! "I 

= m! [m _ '" (i + 2)] ~ zq+3-m+1:(i,+2» 
(m _ k)! £.. s <I' 

(4.44Ra) 

{[
L(j+1)z H 3-n ak (Aj a

2
lim )]1 } 

n,j aA i\ ' . ·aAi, aAn aAq A = 0 "I 

= { [ ± (is + 1) L /' + 3 - n a k - 1 a (ali m )] } 
s=1 n aAi\ .. ·lA'i,. .. aA ik aAn aAq A=O <I 

= [ L (is + 1) L Zi;+ 3 - n m! D (m + 2, L (is + 2) - (is + 2) + n + 2 + q + 2)] 
s n (m - k)! "I 

= m! '" (i + l)(i + 1:(i, + 2) - m + q) 
(m - k)! t s <I 

= m! ['" (i +2) _k](i+1:(i,+2)-m+ q) . 
(m - k)! £.. S <I 

Adding up the expressions (4.44Ra) and (4.44Rb) we ob
tain the expression (4,44L). 

Second, to compare the constant terms in formula 
( 4.43), we apply the operation" I A = 0 " to it. From the lhs we 
obtain 

( 
L a

2

lim I zl-n) = m(zl- (m- q-2»<I' 
n aAqaAn A=O <I 

(4.45L) 

and from the rhs we get 

( Ln alim I zq+3-n) =m(~+3-m)<I' 
n aAn A=O <I 

(4.45R) 
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(4.44Rb) 

which is the same as ( 4.45L). Theorem 4.22 proved, modulo 
Lemma 4.37. • 

Proof of Lemma 4.37: Take the obvious identity 

raz + (N 12)z = t+ I(N 12 + j + zaz )z- i, (4.46b) 

and multiply it by Eo(raz + (N 12)z)i from the left, and by 
Zi + 2 from the right, resulting in 

Eo(raz + (N /2)Z)i+ 1 = Eo(raz + (N /2)Z)iZi+ 1 

X«N/2) +i+zaz»r, 

which is the desired formula (4.38) in view of the definition 
(4.24). • 

Thus, we have two constructions for the infinity of con
served densities: the explicit formula (3.22) which has been 
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proven only for the flow #2, and the generating series for
mula (4.27) which applies to every flow. We now establish 
the connection between these two constructions. 

Theorem 4.47: 

f E.( p+1 )=E (f H.i+ I). 
;=0 I U+ I)! 0 ;=0 I 

(4.48) 

Proof" Since Eo is arbitrary, we can use formula (4.24) 
to transform formula (4.48) into the equivalent form: 

00 ( N ); ( i + 1 II + I) 00 I zZa +-z = I H.z;+I. 
;=0 z 2 U+ I)! ;=0 I 

Denote 

E: = zZaz + (N 12)z, 
00 

¢:=zl= I A;i+ l
• 

;=0 

Then the identity (4.49) takes the form 

( 

,/,;+1 ) 
IE; '; = IH;i+ l

• 

I (1+1)! ; 

( 4.49) 

(4.50) 

(4.51) 

(4.52) 

To verify formula (4.52), we check that both of its sides 
yield the same results when we apply the operations: first, 
IA = 0; second, (a laAj ) IA = 0; and third, 
«aklaAh ···aAj»IA=O' k~2. We have: (1) When A =0, 
both ¢ and H vanish, so we get 0 = o. 

(2) Further, 

a E; ¢ - E; ¢ zj + 1 
[ (

;+ 1 )] (;) 

aAj ~ U + 1)! - ~ it ' 

so the lhs becomes zj + I, which is the same as 

But 

E(zP) [by (4.50)] = (p+N/2)zP+t, 

so that 
71 

(4.53 ) 

(4.54) 

E71(ZP) = IT (p+NI2+s-1)zP+71, 'tI1JEN. 
s= 1 

(4.55) 

Hence, denoting 
k k 

p: = I (js + 1) = I (js + 2) - k, (4.56) 
s= I s= 1 
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the expression (4.54) becomes 

k-I (N ) Zp+k-I II p+-+s-l . 
s= 1 2 

(4.57) 

On the other hand, 

.. [ a
k 

(IH;i+I)]1 [by (3.22)] 
aAj," ·aAh ; A=O 

= ~ i+ ICilkO (i + 2, I (js + 2») 
.+ 1 I [ ] =z' C;lki=l:(j,+2)-2 by (4.56) 
p+k-2+1 

=Z Cp + k _ 2Ik ' ( 4.58) 

Denoting 

m:=p+k-2, 

and comparing expressions (4.57) and (4.58), we see that 
they are equal provided the identity 

k-I ( N) cm1k = II m - k + 2 + - + s - 1 , k~2, 
s=1 2 

(4.59) 

holds. To show that it does, we transform the product as: 

k-I [ N] IT m - (k-l-s) +-
s=1 2 

k-2 ( N) 
= IT m-s+-

s=O 2 

k>2, 

and this is equivalent to formula (3.23). 
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The constrained variational cal9ulus proposed in previous papers [Yo Zheng. Y. Li. and D. 
Chen. Sci. Sinica A 24. 138 (1986); O. Tu. Kexue Tangbao 29. 1227 (1984)] is generalized to 
the supersymmetric case. Utilizing this method to some super AKNS system. which has 
soliton solutions and conserved quantities. their equations of motion with the Hamiltonian 
structure can be written as a 4 X 4 matrix. This is the supersymmetric symplectic matrix and h" 
are Hamiltonians of the system. The conserved quantities worked out in recent literature are 
just the first few terms of our analytic expression. 

I. INTRODUCTION Associated with (2.1) is a temporal evolution equation 

Soliton theory has achieved great success during the last 
two decades. and its recent development is still quite ex~it
ing. Now. the supersymmetric extension of this theory has 
become more and more fashionable and has attracted much 
attention among mathematicians as well as theoretical phy
sicists. I

-
3 The algebraic structure of the soliton equations 

and their supersymmetric generalization. undoubtedly. 
plays a special important role. 

Recently. Choudhury and Roy4 considered the Hamil
tonian structure as well as Backlund transformation of the 
superevolution equation for a super AKNS system. but it is 
much regretted that their work does not contain a complete 
Hamiltonian formulation of the super AKNS scheme. Fur
thermore. the consistency between their assumption /3 = 0 
and the three-component equations has to be checked. In 
this paper. we consider the super AKNS scheme and give the 
Hamiltonian formulation completely. by using the method 
that we called constrained variational calculus in our pre
vious papers.5•6 

We believe our method is also valid for other integrable 
supersymmetric systems as well. In addition. we have stud
ied the Lie-Backlund symmetries, as well as other symme
tries with fruitful structures and their algebraic property. 
We shall publish these results in a forthcoming paper. 

II. FORMULATION OF THE SUPER AKNS SCHEME 

In our previous paper.7 we have considered the eigenval
ueproblem 

where S. q, r are even: pes) = p( q) = per) = 0; a, /3 are 
odd:p(a) = p( /3) = 0, and sis a constant eigenparameter; 
q, r, a, /3 are functions of x,t. 

q, =Nq, N=( ~ 
-6 

B P) 
-A 6. 
P 0 

(2.2) 

where p(A) = p(B) = p( C) = 0, p( p) = p(6) = 1. From 
the compatibility condition q; x, = q; 'x' we obtain 

M, -Nx +MN-NM=O. 

We can write (2.3) as follows: 

-Ax +qC- rB-a6 -/3p=O, 

q, -Bx - 2Bs- 2qA + 2ap =0. 

r, - Cx + 2Cs + 2rA - 2{:Jlj = O. 

a, -Px -ps-aA +q6-/3B=0, 

/3, - 6x + 65 + /3A + rp - aC = O. 

We put A. B. C, p, 6 to be polynomial of 5 of order n 

" " " 

(2.3) 

(2.4) 

A = L OjS n - j, B = L bjs n - j, C = L CjS n - j, 
j=o j=\ j=\ 

(2.5) 
" n 

p = L PjS,,-j, 6 = L 6js ,,-j. 
j=\ j=1 

SubstitutingEq. (2.5) intoEq. (2.4) and equating thecoeffi
cients of 5 n to be zero, we get equations for OJ, b j , Cj , aj' /3). 
Solving them with 0 0 = - 1. and OJ = O(j> 1) we obtain a 
super AKNS hierarchy. We denote the special solution 
(A.v) as (A,v). Then we have 

U, =2LnUo =2V,,+\, n=0,1.2, .... 

where 

(2.6) 
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( 
r ) (r)1I2 

U~ ~. UO~ ~ 

L- 1 _2qD- 1q 

( 

D- 2rD- 1q 

-"2 - 2{3D -lq+ 2a 
- 2aD- 1q 

When n = 0,1,2, Eq. (2.6) reads: 

n=Ocase 

since 

n=lcase 

since 

and n = 2 case 

2rD- lr 
-D+2qD- lr 

2{3D -lq 

2aD- 1r-2{3 

2rD- 1a+ 2{3 

2qD- la 
2D+2{3D- la 
2aD- I a+ 2q 

2rD-
1
/3 ) 

2qD- l/3+ 2a 
2{3D -1/3 - 2r . 

-W+2aD- 1/3 

(2.7) 

(2.8) 

(2.9) 

(2.10) 

(2.11 ) 

III. FUNDAMENTAL EQUATION 

In this section, we follow the notations of Ref. 7 and 
assumethatdo = + l,di =O,j= 1,2, ... , n, thenEqs. (2.6), 
(2.9), and (2.13) read . 

U, =2LiUo, 

and 

(3.1 ) 

VI = Uo, ~ = L i-IUO' (3.2) 

respectively. 
The special solution (A,v) has an alternative expression 

in Ref. 4; we have proved that 

(3.3a) 

Then A and V will satisfy the following equations: 

-Ax +qC- rE-a~ -pP = 0, 

- Ex - 2Et - 2qA + 2ap = 0, 

- Cx + 2Ct + 2rA - 2{3~ = 0, (3.4) 

- Px - pt + q~ - aA - /3E = 0, 

-~x +~t+ rp +PA -aC=O. 

From Eq. (3.4) we obtain 

- (A 2 + BC)x + 2( p~)x = 0. 

Integrating with respect to x, we have 

( 

r) (! r~x - qr + 2ra/3 + 2f3/3x ) 
q - ! qxx + ir - 2qa/3 + 2aax 
/3 = /3xx-!/3qr+rax +!arx ' (2.12) 

- A 2 - BC + 2P~ = 1. 

Substituting Eq. (3.3) into Eq. (3.5), we obtain 

(3.5) 

a , - a xx +! aqr- q/3x - !/3qx 

since 
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_ _ 1 i-I _ _ 1 i-I _ _ i-I __ 

01 =O'Oi =- L blCi _ 1 +- L °IOj_1 - L PI8j_ 1 • 
2 1=1 2 1=1 1=1 

(3.6) 

IV. FUNDAMENTAL EQUATION-AN ALTERNATIVE 
FORM 

For the sake of convenience to compare with the Hamil
tonian form, we need to reformulate Eq. (3.7) in an alterna
tive form, where we use a new matrix 
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as well as 

U~@ 

-2qD- Iq 

D- 2rD- Iq 
-4aD- Iq 

4{3D- Iq-4a 

qD-IP +a 
rD-lp 

-2D+2aD- lp 
-2PD- Ip+2r 

-qD-la ) 
-rD-Ia-p 
-2aD- Ia-2q , 

2D+ 2{3D- Ia 

( 

- !qxx + !q2r - !qap + !aax) 
_ - !r xx + !qr - ~rap -lj3Px 

LiUo = . 
- a xx + !qra - qpx - !qxP 

Pxx - !qrp + rax + !rxa 

(4.1 ) 

(4.6) 

~ - !SV~~ 
0 0 

l)C~)' -2 0 
0 
0 0 

Therefore, the fundamental equation (3.7) can be rewritten 
as 

u.~( ~g~J-,gU~J-'~). 

J~(~ 
-4 0 

V' 
0 0 
0 0 
0 1 

g~U 
0 0 

~, -2 0 
0 
0 0 -1 

J-~(-~ 
-! 0 

0 0 

0 0 
0 

It is easy to get 

LI =J-IgLg-IL, 

and hence 

L ~ = J-IgL ng-IL. 

Then the equation (2.6), U, = 2L nuo, becomes 

(

- ~bn+l) 
- - - ~cn+ I 
U, =JL~Uo=J _ . 

Pn+1 

8n + 1 

(4.2) 

(4.3) 

(4.4) 

(4.5) 

This is another form of the fundamental equation, where 
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v. CONNECTION BETWEEN CONSTANTS OF MOTION 
AND EQUATION OF MOTION 

In Ref. 7 it has been proved that the equation 
U, = 2L n Uo, or Ut = JL ~ Uo, have an infinite number of 
constants of motion as follows: 

hn - I = f: "" (q In + agn )dx, n = 1,2,3, ... , (5.1) 

where 

II = -!r, gl =p, 

In + I =!( - r8n,o + In,x - Pgn + gn + q ~tll IJ,,-I 

+a ~t:ftgn-)' 
gn+1 = [P8n.o +gn.x -aln +q ni~gn_/]' 

1=1 

The first few h n read 

ho = f: "" ( - ~ qr + ap )dx, 

hi = f: "" ( -! qrx + aPx )dX, 

h2 = f"" {..!...( - qrxx + q2r - 4qPPx) + aPxx 
- "" 8 

+-aaxr-~rap dx. 1 I} 
2 2 

It is easy to verify that 

8 
ho 

8r 

8 
ho 

8q 

8 
ho 

8P 
8 

ho 
8a 
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I) 
hi 

I)r 
I) 

hi ( D C~J I)q -1rx -¥2 - (5.5) 
I) = = =LIUo, 

- hi ax -P2 
1)/3 /3x I) 
I) 

hi 
I)a 

I) 
h2 

I)r 
I) (-jq- + Iq'r + jaa, -ll 

I)q 
h2 - ir xx + !qr - !J3/3x - !ra/3 

I) 
h2 

- - q/3x - !qx/3 - a xx + !qra 
-
1)/3 /3xx + axr + !arx - !qr/3 
I) 

h2 
I)a 

Clh

') 
- !C3 2- (5.6) = =LIUo' 
-P3 

1)3 
Therefore, we connect our evolution equations 

fit = JL ~ flo, n = 0,1,2, 

with the constants of motion ho, hI' h2 as follows: 

I) 
hn I)r 

I) 
hn 

fit = J(L ~ flo) = J 
I)q 

for n = 0,1,2. I) , 
- hn 
1)/3 

(5.7) 

I) 
hn I)a 

This inspires us to prove that the above equations are also 
valid for all n, and are not limited to the first three, i.e., 

I) 
hn_ 1 I)r 

u,~@, ~J 
I) 

hn_ 1 I)q 
I) 

hn_ 1 -
1)/3 
I) 

hn_ 1 I)a 

= ( ~,n ~ 0,1.2,3 •.... 

-~) 
Here, 

hn_ 1 = qln + agn· 
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(5.8) 

(5.9) 

VI. CONSTRAINED VARIATION AND HAMILTONIAN 
STRUCTURE 

We shall prove the Hamiltonian structure of the super 
AKNS scheme by using the constrained variational calcu
lU8.5,6,8 First of all let us introduce the functional 

H = h + IlIXI + 1l~2 + 1l~3' 
where 

h h 00 h· h = qF+ aG=....Q +_1 + ... = ,,_i_ 
S 52 j~osj+ I' 

(6.1 ) 

and for Lagrangian multipliers, Ill' 112 are even numbers and 
113 is odd, and 

XI = h - (qF+ aG), 

X2 = - Fx + (2SF + r - qF2 + /3G - aFG) , (6.2) 

X3= -Gx +(SG-/3+aF-qFG). 

Here, as in Eq. (5.2) of Ref. 4, 

Fx = 2SF + r - qF2 + /3G - aFG, 

Gx =SG-/3+aF-qFG. (6.3) 

Using the constrained calculus for the super system, we 
get 

lJH 
-= 1 +Ill =0, 
lJh 
lJH - = 1l2x + 2SIl2 - 2qFIl2 - aGIl2 + 1l3a 
lJF 

( 6.4a) 

-1l3qG -Illq = 0, (6.4b) 

lJH 
- = - /31l2 + aFIl2 -1l3x -1l3S + qFIl3 + ilIa = 0, 
lJG 

(6.4c) 

and 

(6.5a) 

(6.5b) 

(6.5c) 

(6.5d) 

We define 

E==.E.-h, C==.E.-h, 8==~~h P-== 21 :1-1 h, 
I)r lJq 2 lJa ' Up 

(6.6) 

and introduce 

A == - EF + ! - pG. 
Then we would like to prove that A, E, C, p, and 8 also 

satisfy Eq. (3.4), as A, B, C, p, lJ do. 
From Eq. (6.4a), we obtain 

III = - 1. (6.7) 

From Eq. (6.5b) and E = lJh / lJr, we have 

(6.8) 
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A. Calculation of Bx 
From Eq. (6.4b) it follows that 

FromEq. (6.5d) and 2p=6h 16P, we get 

113 = 2p - BG. (6.9) 

On the other hand, from the definitions C = 6h l&j, 
- U = 6h l&z, and Eqs. (6.5a) and (6.5b) we get 

q + Bx + B(2s - 2qF - aG) + (2p - BG)(a - qG) 

= Bx + 2sB + 2qA + 2pa 

and hence 

C = F(1 - BF) - 2pFG (6.10) ( 6.12) 

and 
B. Calculation of fix 

(6.11 ) From Eq. (6.4c) it follows that 

respectively. Then, we must estimate the corresponding de
rivatives Ax, Bx, Cx,Px' "x, and show that they satisfy the 
same equations as A, B, C, p, ;5 do. 

6H . 
6G = ilIa - 1l2(P - aF) - (1l3x + Il~ - 1l3qF) = 0, 

and we have 

- a - B(P - aF) - (2p - BG)x - (2p - BG)s + (2p - BG)qF 

= - PB + aFB - 2px + B(sG - P + aF - qFG) + ( - 2SB + 2qFB 

- 2jJa + 2pqG - q)G - 2ps + BGs + 2qFjJ - qFBG - a = O. 

Notice" = pF - ! G, we get 

- Px - Ps + q" - PB + aFB - paG - ! a, 

i.e., 

C. Calculation of 6x 

From Eq. (6.11), we have 

"x =PxF+pFx -!Gx 

(6.13) 

= ( -ps + q" -PB + aFB -paG -! a)F+ 2p(2sF + r - qF2 + pG - aGF) - ( - sG +P - aF+ qFG) 

= s" - PA + rp - aC. (6.14) 

D. Calculation of Ax 

Ax = (-BF+! -pG)x = - (Bx F+BFx +Px G+pGx )' 

UsingFx, Gx in (6.3), Bx,Px in (6.12), (6.13), and after tedious recapitulation ofthe terms, we get 

Ax = qC - rB - a" - pp. 

E. Calculation of ex 
- - - 2 -ex = Fx - 2BFFx - BxF - 2( pFG) x 

= [2sF(1 - BF - 2pG) - 2r(BF + pG) + r] + ( - qF2 + PG - aGF - 4SBF2 + 2BqF3 + 2BF2aG 

+ 2qAF2 + 2paF2 + 2qjJF2G + 2aAFG - 2paF2 + 2pPF). 

After extremely laborious computation and skill, we ob
tain 

(6.16) 

To sum up, the functions A,B,C, p," and A;B,c, p,;5 sat
isfy the same linear equation (2.8). From (6.6) and (2.9), 
we find 
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a" = - 20", 
lih" 

b"+1 = -2--, 
lir 

lih" lih" 
P,,+I = - liP' li"+1 = lia ' 

using (4.4), we conclude 

Y. Li and L. Zhang 
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l>h,. 

l>r 
l>h,. 

l>q 
l>h,. 

l>f3 
l>hn 

l>a 

(6.18) 

This is the super-Hamiltonian form of the evolution equa
tion (of motion), where the supersymplectic operator J had 
the form as expressed in Eq. (4.2). 
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The free motion of a nonrelativistic superparticle on the super Riemann surface (SRS) of 
genus h>2 is investigated. Geodesics or classical paths are given explicitly on the super 
Poincare upper half-plane SH, a universal covering space of the SRS, and the paths with some 
suitable initial conditions yield periodic orbits on the SRS. The periodic orbits are unstable and 
the system is chaotic. Quantum mechanics is solved on the universal covering space SH and 
the heat kernel is given on the SRS. This leads to a superanalog of the Selberg trace formula. 
The Selberg super zeta function is introduced whose zero points and poles determine the 
energy spectrum on the SRS. 

I. INTRODUCTION 

The purpose of this paper is to examine a supersymme
tric extension of the Hadamard model I that represents the 
free motion of a nonrelativistic particle on a compact Rie
mann surface of constant negative curvature. That is, we 
investigate the system of a superparticle moving freely on a 
compact super Riemann surface (SRS) of genus h>2. The 
former is known as one of the typical models of chaotic sys
tems.2 The Riemann surface is represented by a fundamental 
domain H /r in the complex upper half-plane H, the univer
sal covering space of the Riemann surface, with r being a 
Fuchsian group that is a discrete subgroup of PSL(2,lR). 
The r -invariant Lagrangian is made of the line element d~ 
= IdzI 2/(Imz)2, 

(1) 

The classical motions on Hare integrable, however, those on 
the compact Riemann surface are chaotic and the energy is 
the only conserved quantity. The quantized energy sum rule 
is actually the Selberg trace formula. 3

,4 The energy spectrum 
is complicated, however, it is given by examining the Selberg 
zeta function. The Selberg trace formula or zeta function 
appears in the Polyakov partition function for a closed bo
sonic string.5 The notion of the super Riemann surfaces 
comes naturally in the superspace approach of superstrings. 6 

Superanalogs of the trace formula and the zeta function are 
important for the theory. 

Some part of the results here will be seen in our recent 
papers, 7-10 however, for self-containedness, we shall present 
those results here again. This paper is organized as follows. 
Section II is devoted to the notations and conventions of the 
basic facts on super Riemann surfaces. We give a super Mo
bius-invariant Lagrangian for a superparticle on a super Rie
mann surface of genus h > 2. Classical mechanics for the sys
tem is developed in Sec. III. We discuss chaos in this system 
there. Quantization is carried out in Sec. IV. The eigenvalue 
problem in the universal covering space SH is developed 
there and the kernel function is given. In Sec. V a superana-

log of the Selberg trace formula is given and a superanalog of 
the Selberg zeta function is introduced. The final section is 
devoted to summary and discussions. Some of the detailed 
calculations are presented in the Appendices. 

II. PRELIMINARIES 

A. Super Riemann surfaces 

A super Riemann surface having a compact body with 
h>2 holes is represented by a homogeneous space 
sH/sr ll ,12 with a superanalog of the Poincare geometry. 
The universal covering space of the SRS is the super complex 
upper half-plane SH with one even and one odd complex 
coordinate z and (), respectively. 

SH = {Z = (z,() 11m z> O}. (2) 

Note that Imz>O means that Imzo>O with Zo being the 
body part of z. We shall use such a convention for inequal
ities throughout this paper for simplicity. sr is called a super 
Fuchsian group that is a discrete subgroup of superconfor
mal automorphisms· SPL(2,lR) of SH. The supergroup 
SPL ( 2,R) consists of such transformations as, 

z-+z=az+b+() az+{3 , 
cz+d (ez+d)2 

()-+O=az+{3+()I+Jj3a, (3) 
cz+d cz+d 

where a, b, e, and d are Grassmann even and a and {3 are 
Grassmann odd parameters withl3 

ad - be = 1, a,b,c,dER, 

a = ia, 1J = i{3. 
(4) 

Note that the above transformation (3) is, of course, super
analytic and is also a superconformal transformation, 

a a 
D=-+()-. a() az 

(5) 

(6) 
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If we introduce homogeneous coordinates (ZI,z2'S) of com
plex projective lines, we can rewrite (3) as a linear transfor
mation with z = z lZ2- 1, 0 = Sz; I, 

ba-ap ) 
da - cp , sdet A = 1. 

1 +~pa 
(7) 

The super Fuchsian group sr is generated by 2h elements 
{A;,BiO i = 1, ... ,h} that satisfy the condition 

h II (A;B;A;- IB ;- I) = 1. (8) 
;=1 

sr properly acts discontinuously on SH and all its elements 
are hyperbolic, i.e., the reduced subgroup, where odd pa
rameters are put to zero, consists of the hyperbolic elements, 
la+dl>2. 

B. Conjugacy classes In sr 
An element k =1= 1 ofSr causes such a transformation as 

(3) with (4). sr acts effectively on SH, however, keSr has 
fixed points on the "super" real axis, 
Rs ={Z = (z,O) 11m z = 0, 0 = ;O}. In fact, the fixed points 
(u ± ,J-t ± ) are given by 

a - d ± ..jr;-(a-+-d'"'"')2..--_-----..,.4 au ± + P 
u± = , J.l± = 

~ w±+d-1 
(9) 

We can easily see that u ± = u ± ' ji ± = iJ-t ± .14 Using the 
fixed points, (u ± ,J-t ± ) = (u,J-t) and (v, v), we can rewrite 
the transformation as a magnification, 

w-+w=Nw, 

'I]-+i!=XN I
/2'1], N>l, 

where 

( 10) 

X(NI/2+N-1/2) =a+d- [(a+d +2)12]pa 

= str A + 1, 

{
I, 

X= -1, 
if str A + 1 > 2, 

if str A + 1 < - 2, 
(11) 

(
1 )z-u-OJ-t w= -- , 

u-v z-v-Ov 

_(_1_) (u-v+~vJ-t){) + (v-J-t)z+J-tv-vu 
'I] - . 

u-v z-v+vO 
(12) 

It is easy to see thatthe two fixed points (u,J-t) and (v, v) are 
repelling and attractive points, respectively, 

k - n: (z,O) -+ (u,J-t), 
( 13) 

k n: (z,O)-+(v,v), forn-+co. 

Since the transformation j: (z,O) -+ (w,'I]) in (12) is an ele
ment of SPL(2,lR), we see that any element =1= 1 of sr is 
conjugate in SPL(2,lR) to magnification, 
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Apparently, the magnification depends on the conjugacy 
class of kin sr, {k} = {gkg-llgeSr}, 

(15) 

C. Decomposition of sr 
The element p =1= 1 is called "primitive" if it is not a pow

er of any other element of sr. The centralizer Z(q) of an 
element q in sr is given by 

Z(q) ={glgqg-I = q, geSr}. (16) 

Due to the fact that 

AAmag = AmagA<::>A = (~ a~ I 
o 0 

(17) 

with A and Amag being given in (7) and (14), respectively, 
we see that if k =1= 1 is a magnification, then any element ofthe 
centralizer of the k is a magnification. This implies that there 
exists such a primitive element p that k is expressed uniquely 
as a positive power of the element p and hence the centralizer 
Z (k) is, in fact, the cyclic group (p> generated by the primi
tive element p. 

Let us consider the following set; 

Q={gpng-llgeSr/Z(p)}. (18) 

The above arguments lead that (i) Q runs once through the 
nontrivial conjugacy classes of sr when p runs through in
conjugate primitive elements of sr and n through positive 
integers and (ii) for fixedp and n, qpn q-I runs once through 
Q as q runs through sr IZ (p). Then for a function 1 of ele
ments ofSr, we get 

00 

L j(g) =/(1) + L L L I(gpng-I). 
gesr inconjugate n = I geSr/Z(p) 

primitivep 

(19) 

D. Metric on SH 

In this subsection we will introduce a SPL(2,R)-invar
iant metric on SH that is a superanalog of the Poincare met
ric on H. The latter, 

d~ = IdzI 2/(1mz)2, (20) 

is invariant under PSL(2,R) and gives a constant negative 
curvature R = - 2. The corresponding volume element is 

(dxdy)lj2 (Rez=x,Imz=y). (21) 

For the purpose of giving a SPL(2,R)-invariant metric, 
we first comment on SPL(2,R)-covariant quantities. Let 
Za, Zb' and Zc be three points in superspace. Then the fol
lowing quantities are SPL(2,R)-covariant I5 : 
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Zab = Za - Zb - fJafJb 

Zab = Za - Zb - fJafJb,···,etc., 

fJabc = fJazbe + fJbzca + fJczab + fJa fJb fJc' 

fJabe = fJazbe + fJbzca + fJczab + fJafJbfJc, ... ,etc., (22) 

where coordinates with barred suffixes are defined by 

Za == Z:, fJa == - i fJa , ... ,etc., (23) 

and hence 

Zab = Zab' fJabc = - i fJabe , ... ,etc. (24) 

In fact, we see 

zab ==za - Zb -B/Jb = 0aObZab' Zab = OaObZab, .. ·,etc., 

Babe = 0aObOcfJabe' Babe = OaObOcfJabe, ... ,etc., (25) 

where the transition function ° is 

Oa = (DB)a' Oa = (Oa ), ... ,etc. (26) 

Taking ZI = (z,fJ), and its infinitesimally neighboring point 
Z2 = (z + dz, fJ + dfJ), we have the following covariant 
quantities: 

Z21=dz+fJdfJ, (27) 

(20 -IZI1 = 1m Z + ~ fJO== Y, 

which are superanalogs of dz and y, respectively; 

iZ=02dZ, y= IOI2y. 

We also see that 

Idz + fJ dfJ 1
2/y2 

(28) 

(29) 

(30) 

is a SPL(2,R)-invariant quantity whose body part is (21). 
On the other hand, the geometry of a 2 + 2-dimensional 

superspace was developed in supergravity theory. The basic 
quantities are the super vielbein E t- which, however, are not 
completely independent superfields. It was shown that 

0 
2y2 

0 

2 + 2-dimensional supersp'ace is superconformally ftat l6 

where the basis one-forms EA are 

E + + = dz + fJ dfJ, E - - = dZ - 0 dO, 

E + = dfJ, E - = dO. (31 ) 

By the super Weyl transformation l6 with the parameter 
A 

y-I, EA become 

E++ = y-1E++ = y-I(dz+ fJdfJ), (32) 

(33) 

E+ = y-I/2E+ + 2(Dy-1/2)E++ 

= y-3/2[(y +!fJO)dfJ +! (ifJ-O)dz], (34) 

E - = y-3/2[ (Y + ~ fJO)dO - !(fJ + iO)dz]( = E +). 

(35) 

We see that (30) is (E + + E - -) and moreover, taking 
ZI = (z,fJ) andZ2 = (z + dz,fJ + dfJ) as before, we find that 

fJ21T = 2i[ (Y +! fJO)dfJ + !(ifJ - O)dz] 

= (20- 1/2 (zIT ) 3/2E+, 

and hence 

jj;+ = ol/2n- 1/2E+. 

(36) 

(37) 

Then, (E + E -) is also SPL(2,R)-invariant, which is nilpo
tent and vanishes when the odd coordinate fJ is put to zero. 

We now introduce a SPL(2,R)-invariant metric on SH 
given by lO,I7 

d!?=E++E-- -2aE+E-, 

==dt/ gAB dqB, (q',qz,q6,q7J) = (z;Z,fJ,O), (38) 

o + a(ifJ - 0) 
2y2 

1 
0 

fJ - a(fJ + iO) 
0 

2y2 2y2 
(gAB) = 

a(fJ + iO) - fJ fJO - 2a( Y + fJO) 
0 

2y2 
0 

2y2 

o + a(ifJ - 0) 
0 

2a ( Y + fJO) - fJO 
0 

2y2 2y2 

(a: arbitrary real Grassmann even number#O). 

Geometrical quantities such as the Riemann tensor, the 
Ricci tensor, etc. are given in Appendix A. The correspond
ing volume element is given by 

dV= (l12aY)dxdydfJdO. (40) 

E. lagrangian 

Since we have now a SPL(2,R)-invariant line element 
(38), we give the Lagrangain of a superparticle with mass m 
on SH,IO 

478 J. Math. Phys., Vol. 31, No.2, February 1990 

(39) 

L = ;(~;r = ; i/gABqB. (41) 

This is SPL( 2,R)-invariant and hence, of course, sr -invar
iant, thus it is also the Lagrangian for a superparticle on the 
SRS. 

III. CLASSICAL MECHANICS 

In this section we examine the classical dynamics of a 
superparticle on the SRS. We first develop the canonical 
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theory with the Lagrangian ( 41). The canonical momentum 
is given by 

or 

pz = (m/2y2)[:i + {(i + ia(O + i6)}O], 

Pe = (m/2y2) [{a(O + i6) - o}:i 

(42) 

+ {06 - 2a( Y + (6)}O], (43) 

Pz = (Pz)' Pe = - Pe' 
with the Hamiltonian given by 

H = i/PA - L = (l/2m)gBApAPB , (44) 

where gAB is the inverse metric to gAB (see Appendix A). 
The Poisson bracket is defined by, '8.'9 

{F,G}p=( _ )AF aF aG _ (_ )A(F+') aF aG, 
art apA apA art 

so that 

{PA,qB}p = -15!, 
and the Hamilton equations are 

{rt,H}p = it, {PA,H}p =FA' 

(45) 

(46) 

(47) 

The Lagrangian (41) is SPL (2,R) -invariant. The con
served charges are given by 

L_, =pz +Pz, 

Lo = ZPz + zPz + !OPe + !6Pe' 

L, = rpz + rPz + zOPe + z6Pe' 

G_'/2 = Opz - i6Pz - Pe - ipe, 

G'/2 = zOpz - iz6Pz - ZPe - iZPe' 

The Poisson brackets between them yield, 

{Lm,Ln}p = (m - n)Lm+ n' 

{Lm,G,}p = (m/2-r)Gm+rJ 

{Gr ,G.}p=2Lr +s (m,n=O,±I,r,s= ±!>. 

(48) 

(49) 

Next, we study the classical motion on the covering 
space SH. The Euler-Lagrange equations from L in (41) are 
geodesic equations, 

~ + r;cqc;/ = 0, (50) 

where the Cristoffel's symbol is given in Appendix A, or 
more explicitly, 10 

.. 1 (''-.2 ·nLi) l-a( i £1-0..... 2 '£I~) 0 Z+- 1Z--ZI717 +-- -17 'ZZ--ZI717 = , 
Y 2a y2 Y 

(51) 

and their complex conjugated ones. The body part of Eqs. 
(51) is 
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(52) 

which is the geodesic equation on H with the Poincare met
ric.' The solutions of (52) are given by,2° 

sinhXo + i..x zo(t) = c, + c2, or it:-O + c2, 
. coshXo 

(53) 

where 

Xo=m(t + to), c"c2,m,toE R. (54) 

The classical motion is determined uniquely with the bound
ary conditions that are positions and velocities at the initial 
point. Thus the constants of the integration for the Euler
Lagrange equation (50) or (51) are four real Grassmann 
even and also four odd constants. Expanding Z and 0 in the 
Grassmann odd constants, say, E'" €I> E'2' €2' we have a set of 
differential equations for the coefficients of the Grassmann 
even functions. However, it is not easy to solve those equa
tions. So instead of solving (51) directly, we will take a roun
dabout route. Due to (44), the Hamilton-Jacobi equation is 
given by 

as + _1_gBA as as = O. (55) 
at 2m art aqB 

Since the action which the classicl solutions are plugged into 
satisfies the above equation (55), we express S as 

where rt (t) is a solution of the geodesic equation (50) con
necting the initial point qj = q(t,) and the final point 
ql = q(t2)·1t can be easily shown that the integrand is time
independent and its body part is non-negative. Taking them 
into account, we set 

i/(t)gAB (t)qB(t) = (const) =m2, 

and define a superanalog of the hyperbolic distance, 

d(q"q2) = i" dt ~ i/(t)gAB (t)qB(t) 
I, 

From (56), (57), and (58), we get 

S(q"q2;t) = (m/2) ([d(q"q2) ]2/t). 

(57) 

(58) 

(59) 

Note that the hyperbolic distance dO(q"q2) between 
«q,)o) = (zo,zo) and «q2)0) = (wo,u;o), which should be 
the body part of d(q"q2)' is given by 

Iz W 12 
cosh do = 1 + 0 - 0 1 + !Ro, (60) 

2 Imzolm Wo 

and is PSL(2,R)-invariant. Hence d(q"q2) should by sym
metric under the exchange of ql and q2 and be SPL(2,R)
invariant. There exist two basic functions on SH X SH with 
such properties,21 

(61) 
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0122 Bu.2 021T ~TI 
= 

ZIT (Z22 )2 (ZiT )2Z22 

(62) 

Here, R is the superanalog of Ro in (60) and r is nilpotent, 
and hence we can expect that, in general, d(qlq2) takes the 
following form: 

cosh d =/(R) + k(R)r. (63) 

The calculation for determining the so far unknown func
tions I and k is given in Appendix B. We find that the "su
per" hyperbolic distance d(ql,q2) is given bylO 

where 

k(R) = cosh(l) - 1 - sinh (l)coth (l 12a), 

1=I(ql,q2) = cosh-I (1 +~R). (65) 

Here we have the solution (59) of the Hamilton-Jacobi 
equation. 

The next step is to solve ql =.q in terms of q2 and its 
canonical conjugated quantity, say, P<2). This can be done by 
solving the following algebraic equations with respect to q: 

as _ (2) 

aq1- -PA , (66) 

where the q2'S and P<2),S actually correspond to the constants 
of integration for the differential equations (51), 

q = Q(Q2,p<2),t). (67) 

The calculation is cumbersome but rather straightfor
ward, which is shown in Appendix C. The solution of the 
Euler-Lagrange equations (51) is (z( I) (t) ,0(1) (t», 
(z(ll) (t),0(1l) (t» or (Z(lII) (t),0(1II) (t»,22 

z(l)(t) = [CI ___ 2-{jS.S2e-XIO-iS3S4~/O 
cosh X 

- S.S4e(l - 1/0)X + ~~3e(l10 - 1lX}] 
sinhX+i + 

X hX C2, cos 

O(1)(t) = (sinh X + i + 1){s.e- xlo _ iS2e-x 
cosh X 

+ is3e(1/0- IlX + S4}' 

z(t+ n - u - O(t + nft = Nz(t) - u - O(t)ft , 

z(t + n - v- O(t+ nv z(t) - v - O(t)v 

(68) 

z(II)(t) = i~ + C2 + is.S
2
e(l-1/0)X - iS

3
S4e(l + l/a)X 

- S.S4e (2 - 1/0)X + S~3~ 10, (69) 

o (1I)(t) = is.e(l-1/0)X + S2 - S3~/O + iS4~' 

z(lll) (t) = iCI + C2 - 2ac. wst - Ws {2ia2c. Ws - aE2E. 

+ (1 - a)E2E.}t 2 - !E.Elwst 3
, (70) 

o (1II)(t) = E2 + E.t + [{jaE. + (1 - a)E.}ws 

- [(1 - a)/(2ac.) )E.EIE2)t 2, 

where 

and 

X=.w(t + to)' (71) 

w,to,C.,C2: real Grassmann even constants, CI > 0, 

S k (k = 1,2,3,4): Grassmann odd constants with 

tk = iSk, (72) 

E.,E2 : complex Grassmann odd constants, 

Ws: Grassmann even constant with no body part, 

that is, Ws can be written by, 

WS =/.EIEI + h E•E2 + hE. E2 + ~EIE2 + /sE.E2 

+ 16E2E2 + hE.E.E2E2, (73) 

with the I's being arbitrary complex constants. The first 
(z(l) ,0(1) ) and the second (z(1I) ,0(11) ) solutions correspond 
to the first and the second solutions in (53), respectively 
with the third (Z(lII) ,0(111) ) corresponding to the solution 
with w = 0 in (53). Actually, (z(ll) ,0(11) ) is obtained by 
taking a proper limit of (z(l) ,0(1) ) (see Appendix C). 

We now examine the classical motion on the SRS. Since 
we have obtained the classical paths (68), (69), (70) on the 
universal covering space SH of the SRS, we can deduce the 
classical motion on the SRS by projecting the paths on SH 
onto the fundamental domain SH/Sr. We study closed or
bits on the SRS first. A path Z(t) = (z(t),O(t» on SH gives 
a closed loop on the SRS if it satisfies the condition that there 
exists an element k =1= 1 in sr and a time interval Tsuch that 

Z(t + n = k(Z(t». (74) 

Since k is characterized by the two fixed points, (u,ft) and 
(v, v), the sign factor X and the norm function N (see Sec. 
n B),23 the above condition gives a necessary condition, 

8(t + n + [( v - ft)/(u - v) ]z(t + n + (vft - uv)/(u - v) 

z(t+ n - v- 8(t+ nv 
(75) 

480 

N 
./2 8(t) + [( v - ft)/(u - v) )z(t) + (vft - uv)/(u - v) 

=X 
z(t) - v - 8(t)v 
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We find that the classical motions z<1I) (t) (69) and 
Z(lII) (t) (70) do not satisfy the above condition (75) and 
only the motions Z(I) (t) (68) with the parameters having 
values,25,25 

CI = (v - u)/2, C2 = (u + v)/2, 52 = v/2, 

54 = 1''/2, 51 = 53 = 0, (76) 

satisfy the original condition (74) and the time interval Tis 

T=logN/w, (77) 

Note that it is better to examine the limit t -+ ± 00 first in 
order to getthe condition (76). The path Z(I) (t) with (76), 

which we denote Zk (t) associated with the element k, is the 
geodesic curve connecting the two fixed points of the ele
ment k =/- 1 in sr; 

Z (I) (t -+ + (0) -+ (v, v), 

Z(l)(t-+ - oo)-+(u,p), w>O. (78) 

A segment [Zk (t),Zk (t + n] of the geodesic curve be
comes a closed loop on the SRS and the length of the loop 
l(k) is given by 

l(k) =d(Zk (t),zk (t + n) = d(Zk (t),k(Zk (t») = 10gN, 
(79) 

which in fact depends only on the element keSr. Equation 
(79) yields 

d(Zdt),Zdt + nn) = d(Zdt),k n(Zk (t))) = Inllog N, 
(80) 

or, 

l(k n) = Inll(k). (81) 

The geodesic segment [Zk (t),Zk (t + nn] becomes a 
closed loop lying In I-fold exactly on the closed loop coming 
from the segment [Zdt),Zk (t + n]. So 
[Zk (t),Zk (t + nn]' and [Zk (t),Zk (t + n] determine 
the same periodic orbit, and we conclude that two elements 
k m and kn =/-1 (m,n: integers) in sr are associated with the 
same periodic orbit on the SRS. Furthermore, due to 
SPL(2,R) invariance of d(QI,q2)' 

d(l/t,(/z) = d(QI,Q2)' 

we get 

l(k) = d(gZk (t),gZk (t + n) 

(82) 

= d(gZk (t),gkg-I(g Zk (t»), geSr. (83) 

This implies that gZk (t) is the geodesic curve connecting 
the two fixed points of the element gkg- leSr. Since gZk (t) 

and Zk (t) become the same trajectory on the SRS, we con
clude that every geodesic curve connecting the fixed points 
of each elements of a conjugacy class {k} in sr becomes the 
same orbit on the SRS. Thus we find that each pair of incon
jugate primitive elements (p,p-I) is associated with a peri
odic orbit on the SRS with its length given by 

l(p) = log Np = log Np-" (84) 

where Np is the norm function associated with p. Converse
ly, any periodic orbit can be lifted to a geodesic segment 
[Z(t),k(Z(t»] on SH with some element k =/-1 in sr. Since 
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there exists a unique geodesic curve connecting the two 
points Z(t) and k(Z(t» = Z(t + n, the geodesic curve is 
in fact a solution Zm (t) connecting the two fixed points of 
k. Then we conclude that there exists a one-to-one corre
spondence between periodic orbits on the SRS and pairs of 
inconjugate primitive elements (p,p- I). Any geodesic curve 
z< I) (t) not connecting two fixed points of any element in sr 
becomes a nonperiodic orbit on the SRS and such geodesic 
curves are dense on SH. Hence, the classical motion on the 
SRS is chaotic, which we will discuss below. 

The Lagrangian (41) is SPL(2,R)-invariant, however, 
after projecting out onto the SRS, we find that the symmetry 
generators on SH no longer become those on the SRS and 
only two Grassmann even quantities are conserved, which 
are the Hamiltonian Hand a nilpotent quantities H(2l essen
tially corresponding to EJ JiB .26 The fact that there are two 
kinds of conversed quantities has been already presented in 
constructing the Lagrangain which consists of two 
SPL(2,R)-invariant pieces. However, the dimension of the 
hypersurface determined by H = E and H(2l = E(2l(E,E(2l: 
constants) in the total supers pace becomes less by one bo
sonic degree than that of total space according to the (super) 
implicit function theorem.27 

We will study the Anosov property28 that describes the 
behavior at large times of initially neighboring trajectories 
and is suitable to study strongly chaotic systems.29 Let us 
take two geodesic curves Z(l) (t) (w > O,to = 0) with the 
conditions (76) and other ones, respectively, 

C I = (v + lJv - u)/2, c2 = (u + v + lJv)/2, 

52 = (v + lJv)/2, 

54 =p/2, 51 = 53 = O. 
(85) 

These two trajectories start from the same point (u,p) at 
t-+ - 00, however, arrive at slightly different points (v,v) 
and (v + lJv,v + lJv) when t-+ 00. At t = 0 the value ofsepa
ration is 

dt=o -lJv + [(p + v)/2]lJp. (86) 

However, as t-+ 00 the trajectories separate exponentially, 

(87) 

The velocity w is the Liapunov exponent. This implies that 
trajectories are unstable, which is characteristic of classical 
chaos. Here the Liapunov exponent is in fact the Kolmogo
lov-Sinai entropy30 h which, roughly speaking, measures 
unpredictability of the motions. This number comes out in 
the asymptotic formula for the counting function of primi
tive orbits of period (or loop length) T(p)..; T, 

#{p,T(p) <1}_ehT /hT, T -+ + 00, (88) 

which indicates the exponential proliferation of the periodic 
orbits. This formula holds for Anosov systems in gen
eral. 31-33 We have seen the correspondence between periodic 
orbits and conjugacy classes ofSr, 

#{periodic orbitsh:::< #{conjugacy classes, Q}. (89) 

Then, the asymptotic formula (88) will be calculated 
through the properties of the super zeta function (see Sec. 
V) along the arguments in Refs. 34,35. It has not been exam-

Matsumoto, Uehara, and Yasui 481 



                                                                                                                                    

ined strictly due to the existence of Grassmann odd 
numbers, however, a naive consideration supports the fact. 

IV. QUANTUM MECHANICS 

In this section we develop quantization. We first give the 
quantum Hamiltonian. Our Langrangian (41) is nonlinear 
in a sense that gAB are functions of supercoordinates. Omote 
and Sat036 have developed a procedure to construct the 
Hamiltonian for a system with a (purely bosonic) nonlinear 
Lagrangian of a form LB = !Kij (q)i/il symmetry as a guid
ing principle (see also Ref. 37). We can follow their argu
ments paying attention to sign factors. We find the quantum 
Hamiltonian, 

HQ = [( - )A 12m ]g-I/4PAgI/ZgABpBg-I/4, (90) 

where 

g=lsdetgABI = (4aZyZ)-I, (91) 

with the canonical commutation relations, 

[p A ,qQ] ± = - ilit5! . (92) 

The Hamiltonian HQ is also SPL (2,R)-invariant. 
The scalar product for superfunctions on SH is 

('I1 I I'11z)= f d 4qgl/Z(q) ('I1dq) (ql'l1z) = f dViii l'l1z, 

(93) 

where Iq) is an eigenfunction of the coordinate operator ~ 
with an eigenvalue ~, which satisfies 

1= f d 4q gl/2(q) Iq) (ql, 

(qlq) = [g(q)g(q'» -1/4st(q _ q'), (94) 

with the volume element dV given in (40). In the q-represen
tation, the coordinates ~ and momenta P A are given by 

~=~, 

PA = _ilig-I/4~gl/4= -ilig-I/4aA gl/4, (95) 
a~ 

so that HQ is a super Laplace-Beltrami (SLB) operator, 

HQ = - (1f/2mH - )Ag-1/2aA (gl/zgABaB) 

= - (1f/2m)[ (2YD15)2 + (l - a)/a(2YD D)] 

= ( If 12m) lI.SLB , 

where D is given in (6) and 

15= - a7J + 7Ja'j' 

(96) 

(97) 

We will study the spectral properties of HQ on SH. In 
order to do so, we examine the eigenvalue problem of the 
operator Do, 

Do=2YD15. (98) 

First, we consider the Grassmann even eigenfunction e A' 

with eigenvalue A, 

DoeA = AeA , (99) 

where eA may be expanded with respect to the Grassmann 
odd coordinates 8 and 7J as, 
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(100) 

where A A and B A are function of Grassmann even coordi
nates z = x + iy and z. Equations (99) and (100) yield 

B A = (A 12y)A A' 

{f(a; +a;) -A(A-l)}AA =0. (l01) 

We find that A A is solved as,38 

AA = CJ.,k eikx"/yKJ._1/2 (Ik Iy), (l02) 

where CJ.,k is a normalization constant determined below 
and KJ. _ 112 (Ik Iy) is a modified Bessel function which 
damps exponentially as Iyl .... 00, 

{a; + (lIz) az - (1 + Ylr)} Kv(z) = O. (103) 

We shall examine the normalization condition. Since 
SH is noncompact and the spectrum, which is parametrized 
by A and k, is continuous, the normalization condition 
should be 

(eAleN )a:8(A-A'). (104) 

The above condition determines the region in which A runs. 
Details are given in Appendix D. We find that 

A =! + ip, pe( - 00, + 00). (105) 

Thus the Grassmann even eigenfunctions are given by 

e (Z)=(2iaSinh1TP )I12(1 1+2ip 87J) 
p,k r + 4y 

which satisfy, 

Doep,k = (ip + pep.k, 

(eq,/lep,k) = 8(p + q)8(k - /) , 

(106) 

(107) 

(108) 

where a point (p,k) = (0,0) is understood to be excluded. 
Hence ep,k (Z) is an eigenfunction of HQ with an eigenvalue 

E:'k' 

B If {( 1 - a)2 ( i )2} If Ep,k =- -- + p-- =-yB(p). 
2m 2a 2a 2m 

(109) 

Although H Q is a hermite operator, the eigenvalue is com
plex. This is because the space of eigenstates contains isovec
tors l5 as is seen in (108). 

Next, we will proceed to the Grassmann odd eigenfunc
tion tPA which may beiexpanded as, 

tPA = (1/"/y)(8pA + 7JCPA)' (110) 

The equation, 

DotPA=AtPA' (l11) 

yields 

CPA = - (2mIA)Jz(PAI../Y), 

{f(a; + a;) - iyax - (A 2 -1)}PA = O. (112) 

These differential equations can be solved as (see Appendix 
E), 

PA= CJ.,keikxW(Uk/2),J.{2Ik Iy), 

CPA = iCJ.,kA UkeikxW _ (u./2),J. (21k Iy), ( 113) 
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where 

Uk ==sign(k), k =l=fJ, (114) 

and WK,!, is a Whittaker function which satisfies 

{a2+(_~+~_Jl2-1/4)}W (z)=O. (115) 
z 4 z z2 K,!, 

The normalization condition determines the region where 
the parameter A. runs as in the Grassmann even case, We find 
(see Appendix E) surprisingly that in general the region 
does not coincide with the one for the Grassmann even ei
genfunctions (105), 

A. = C + ip, (116) 

where 

C: real constant, lei <!, 
p€( - 00, +00), 

and the eigenfunctions are 

t/Tn (Z) = (a cos [1T(C+iP »))112_1_ eikx . 
p,k 2~k(e + ip)"k- I ,fY 

X{OW"k12,C+iP(2Ik Iy) 

( 117) 

+ i(c + ip)"k8W _ "k12,c+ ip (21k Iy)}, (118) 

which satisfy 

Dot/!;,k = (c + ip) t/!;,k , 

<~,/It/!;,k) = l)(k - I)l)(p + q). 

The eigenvalues of H Q are 

E :'k,c = ! {C ~ a r 
( 

. . 1 - a)2} If .,1'( ) + p-le-l~ . ==2m fc P . 

K(ql,q2;t) == (q2le - (it/~)HQlql) 

(119) 

(120) 

Notice that except when C =! or (a - 2)/20 with a> 1, the 
energy spectra of the Grassmann even states and the odd 
ones do not coincide with,each other, 

{E:'k}=I={E:'/,J, e=l=! and (a - 2)/20 (a> 1 ). 
(121 ) 

A set of eigenfunctions for each c, 

{ep,k,t/!;,k}' (122) 

do satisfy the completeness relation (see Appendix F), 

roo 00 dp dk [ep,k (q2)e - p,k (ql) + t/!;,k (q2)~- p,k (ql)] 

= 2a( Y(1) Y(2) ) 1/2l)(XI - X2)l)(YI - Y2) 

X (01 - 82 ) (01 - ( 2 ) 

= [g(ql )g(q2)] -1/4l)(ql - Q2)' (123) 

For each c, we have a Hilbert space for the Grassmann odd 
states K~, and hence the total Hilbert space is 

Kc =KB®K~, (124) 

where KB is the Hilbert space for the Grassmann even 
states. 

Since we have gotten the eigenfunctions on SH we can 
get those on the SRS by the Poincare series, 

<l>SRS (q) = L <l>SH (g(q», (125) 
gesr 

: however, because the summation is complicated it is difficult 
to see the spectrum on the SRS from those eigenfunctions. 

We will construct the kernel function on SH. The kernel 
function is given by, 

= f: 00 dp dk{e - (itl*lE:k(q2 I ep,k He - p,k Iql) + e - (itlh)E~k'C<q21t/!;'k) (tf- p,k Iql)} 

= f: 00 dp dk {e- ry"(P)ep,dq2)Lp,k (q) + e - rYc(P)t/!;,k (q2)~-P,k (ql) }==K(ql,q2Ir) , (126) 

where 

r== (Hi/2m)t. (127) 

Plugging (106) and (118) into (126), we finally get (see 
Appendix G) 

K(q),q2Ir) = K(O)(i;r) + r(ql,q2)K w(i;r), (128) 

where 1 = l(q),q2) is given in (65) and, 

K(O)(i;r) 

= -20 e-«I-a)/2Q)'''ioodbe-b'/4''Sinh (b/2a) 

1T.J21Tr / (cosh b - cosh 1)1/2' 
(129) 
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K(J)(i;r) 

= -2a e-«I-Q)I2Q)'''ioodb 1 
1T.J21T'T , / (cosh b - cosh I) 1/2 

X [(COSh' - 1)~ (e- b'/4~inh(b /2a») 
db sinhb 

+e- T -cosh- + --smh- . b'/4 (b b a-I. b )] 
2r 20 2a 20 

(130) 

When a = 1, the above equations coincide with the corre
sponding ones of Ref. 14; So the time development for a wave 
function on SH is given by 
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'I1(q,t) = ( dV(q')K(q,q';t - t ')'I1(q',t '). 
JSH 

(131) 

As for a wave function on the SRS or F, a fundamental do
main ofSr, we should have, similarly, 

'I1SRS (q,t) = ( dV(q')KSRS (q,q';t - t ')'I1SRS (q',t '). 
JSRS 

(132) 

This implies that a kernel K on SH, or SH X SH, induces a 
kernel KSRS on the SRS, or SH/Sr X SH/Sr, 

K SRS (ql,q2IT) = L K(ql,g(q2) IT) . (133) 
sesr 

v. TRACE FORMULA AND ZETA FUNCTIONS 

In the preceding section, we have eventually solved the 
quantum mechanics on SH and obtained the heat kernel on 
SH, which yields that on the SRS. Here we concentrate on 
the quantum energy spectrum on the SRS. In the case of a 
particle on a Riemann surface of genus h>2, it is related to 
the length spectrum through the Selberg trace formula. 2 We 
may expect that a similar relation will exist in our model. 

First, we present a formula for the supertrace of a func
tion GSRS (ql,q2) on SH/Sr X SH/Sr which is made out of a 
SPL(2,R)-invariant function G(qlOq2) on SHXSH; 

GSRS (ql,q2) = L G(ql,g(q2», (134) 
sesr 

with 

G(ql,q2) = <I> (/(ql,q2» + r(ql,q2)'I1(/(ql,q2»' (135) 

where <I> and '11 are some functions and I and r are given in 
( 65) and (62), respectively. We find that the supertrace of 
GSRS defined by, 

str GSRS = L dV(q)GSRS (q,q) 

= ~ (dV(q)G(q,g(q», 
s3'rJF 

(136) 

where Fis a fundamental domain ofSr, is calculated as 

str GSRS = Area(SRS) <1>(0) 

+ inCO~gale n~,LpdV G (q,g(q», (137) 
primitive p 

where use has been made of (19) and Fp is a fundamental 
domain for the centralizer Z(p), 

( 138) 

We can assume that p is a magnification with a matrix 
Ap = diag (x(p)N;I2,X(p)N p-'/2,1) [see (14)] and we can 
choose a convenient domain for Fp,21 

L dV=} J.Npdy f: oo dx f d8d8(2ay + a88)-'. (139) 
P 

Then, we finally get 

str G
SRS 

= 1T(h - 1) <1>(0) _ ~ f I(p) {(I _ X(pn)cosh l(pn») 
a inconJugale " = 1 2a~ cosh I (pn) - 1 2 

primitive p 

X (OO ds sinh s 'I1(s) + (1 _ cosh I(p"» (OO ds 1 . dCP(s) }, (140) 
J/(pn) (cosh b - cosh l(pn»1/2 J/(pn) (cosh b - cosh l(p"»1/2 ds 

here h is the genus of the SRS and 

I(pn) = Inl/(p) = Inllog Np. (141) 

Now we apply the above formula to the heat kernel on 
the SRS (133) which can be written as 

K SRS (ql,q2IT) = L (qlle - T4SLB lg(q2». (142) 
sesr 

The spectrum of the operator aSLB on SH, {yB (p)} and 
{r (p)}, 39 will become discrete on the SRS and let {~} and 
{r,;} (n = 0,1,2, ... ) be the eigenvalues for Grassman even 
and odd functions, respectively. We then get 

strKsRS =str(e-TaSLB) = f (e-rr:_e-rY.:). (143) 
n=O 

PluggingK(O) (129) andK(J) (130), respectively, into <I> and 
'11 in (140) and integrating with respect to s, we finally ob
tain a superanalog of the Selberg trace formula, 
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f (e- rr: - e- rr:;o) =A(T) + 9(T) , 
n=O 

where 

A( T) = _1_(1 _ h)e- «I - a)/2a)'r 

{iii 

xiOOdbe- b '/4r sinh (bl2a) , 
o sinh (bI2) 

1 .. 
9( T) = -- ~ L str(K(pnla» 

4{iiT inconJugale " = 1 
primitive p 

X /(p) exp[ - J2(pn)/4T 
sinh (/ (p")/2) 

- «(1- a)I2a)2T ] , 
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K(pla) = diag(e/(P)/la,e- /(P)/2a,x(p)e[(I-a)12a)l(P). 

x(p)e- [(\ -a)12a]/(p». (147) 

Here, A ( T) is the contribution of "trivial motion" on the 
SRS (zero length term) and for T ..... 0 it can be expanded into 
a positive power series, 

A(T)-

with 

bo = 1, 

b
l 
= (a - 1)( 1 - 20) 

602 

(a - 1 )(2a - 1 )(2a2 - 2a + 1) b2 = -'------'--'------'--':----"'---'-, 
6004 

b _ (a - 1)(1 - 2a)(16a4 
- 18a3 + 21a2 - 12a + 3) 

3 - 252006 ' 

(149) 

This series approximates "str(e - T~SLD)" up to an exponen
tially small error and each coefficient b" is written by the 
Riemann curvature tensors (see Appendix H); 

bl =R/6 

b2 = (11360) (5R 2 - 2 RABR BA + 2RABCDR DCBA), 

b3 = (111128) (620R 3 + 16RRABR BA + 100RRABcoR DCBA 

+ 460RABR ~1>R DC - 285RABcDR i~R FEBA), 

(150) 

On the other hand, 9 ( T) is the contribution from the period
ic motions on the SRS and consistent with the semiclassical 
approximation.9 

Next we discuss super zeta functions associated with 
our model. Let us introduce two kinds of zeta functions 
Z(sla) 10 and Z~ (sla) with one parameter a corresponding 
to the Selberg zeta function and the Minakshisundaram
Pleijel zeta function40 in the theory of classical Riemann sur
faces. These functions are defined by, 

Z(sla) = II IT sdet(1 - K(pla)e - (s+ ,,)/(p», 
inconjugate n = 0 
primitive p 

(151) 

Z~(sla)= IT {(r!)-S- (rn)-s}. (152) 
,,=1 

First, we show that the zeta functions are related to the trace 
formula; 

I. !!.log Z(sla) = (2s - 1) 
ds 

x LOO dt exp[ - (s - 1I2)2t 

+ « 1 - a)/2a)2t ]9(t), 

(153) 

II. r(s)Z~(sla) = LOOdt{str(e-I~SLB) -M}ts-I, 

where 

M= lim str(e - I~SLB). (154) 
1- 00 

Proof (I) By introducing matrix components Z(s) and 
Z(S),21 

Z(s) = II IT (l-e-(s+,,)/(p», 
inconjupte n == 0 
primitive p 

Z(s) = II IT (1 - x(p)e- (s+ ,,)I(P», 
(155) 

inconjuple ,,= 0 
primitive p 

we can rewrite Z(sla) as 

Z(sla) = _ Z(s + 1I2a)~(s - 1120) 
Z(s + (1 - a)/2a)Z(s - (1 - a)/2a) 

(156) 

We then find4
•
34 

d 1 00 e - (s - 112)/(p") 

-logZ(s) =- L L l(p) . , 
ds 2 inconjuple" = 0 smh [I (p ) /2 ] 

primitive p 

d - 1 00 e - (s - 112)/(p") 
-logZ(s) =- ~ L l(p)X(p") -.---
ds 2 inconJuple" = 0 smh [I (p ) /2 ] 

primitive p 

(157) 

Combining (156) and (157) we can deduce the formula in 
question; 

!!.log Z(sla) = ~ '5" i. 1(P) str(K(p"la»e- (s- 1/2)/(p") 
ds 2 inco~ple ,,=0 smh [/(p)/2] 

485 

primitive p 

( 
1 ) 00 1 I() Loo 1 = s-- ~ L -str(K(p"la». p dt-exp[ -[2(p")/4t- (S-1I2)2t ] 
2 inconJuple" = 0 ..[4ii smh [I (p ) /2 ] 0 ,[i 

primitive p 

= (2s - 1) LOO dtexp[ - (S -112)21 + «(1- a)/2a)2t ]0(/). 

(II) The proof follows immediately due to the Mellin transformation. 
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(158) 

Q.E.D. 
Q.E.D. 
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Secondly, we point out that the zero-points and the poles of Z(s/a) directly give the eigenvalues of ~SLB (energy 
spectrum) on the SRS. More precisely, the zero points give the eigenvalues of the Grassmann even functions and the poles give 
those of the odd functions. Using the trace formula, we find 

!!.log Z(s/a) = (1$ - 1) roo dt exp[ - (s - 1I2)2t + «1 - a)/2o)2t ] {f (e -II.: - e -IYo) .....,. A(t)} 
ds Jo 11=0 

=(1$-1) L ---------00 [I 1 1 
11=0 (s - !)2 - «1 - a)/2a)2 + r! (s _!)2 - «1 - a)/2o»2 + Yn 

+ 2(h - 1) f L 1 _ 1 ). 
,,=0\';+n-1I2o s+n+ 1120 

(159) 

Note that the last term in (159) becomes a finite sum when 
/a/- I =,m (m: positive integers), 

m-I 1 
2(h - I)sign(a) L . (160) 

11=0 s+ n - m/2 
This formula implies that Z(s/a) has a meromorphic con
tinuation onto the whole complex plane C. The zero points 
(poles) of order 1 exist at 

s = ~ ± ~«1 - a)/2o)2 - ?n(F) . (161) 

Other trivial zero points (ZP) and poles (P) exist respec
tivelyat, 
I. a-I =1m (m: positive integers); 

ZP: s = n + 1I2a, 

P: s= -n-1I2o (n=0,1,2, ... ), (162) 

II. a-I = m; 

ZP: s = - n + m/2, 

P: none (n = O,I, ... ,m - 1), 

III. a-I = - m; 

ZP: none, 

P: s= -n- ml2 
(n = O,I, ... ,m - 1), 

where the order of each ZP and P is 2 (h - I). 

(163) 

(164) 

Zb. (s/a) may be continued analytically onto the whole 
complex plane C. In fact, we have 

r(s)Zb.(s/a) = f dt{str(e- Ib.SL8
) -Mh s

-
I 

+ 100 

dt{str(e -1b.SL8
) _ M hS-I. 

(165) 
The second integral converges for any SE C since the inte
grand damps exponentially for t ..... 00. The first term can be 
expanded according to (148) and (149) for t ..... O as, 

f dt {str(e - Ib.SL8
) - M h S - I 

= _ Area(SRS) t dt{botS- I + bItS 
11' Jo 

= I-h[bo+~+~+ ... ] _M. (166) 
a s s+1 s+2 s 
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Since res) has a simple pole at every nonpositive integer 
n..;;O, Zb. (s/a) is analytic. 

Finally we derive a functional equation for Z(s/a); 

Z(s/a) __ {Sin 11'(s - 1120) }2(h - I), 

Z(1 - s/a) sin 11'(s + 1I2a) 
(167) 

where h is the genus of the SRS. Note that when /a/- I = in
teger, the rhs becomes 1 and hence Z(s/a) is symmetric un
der the interchange of s++1 - s. 

Proof Let 

F(s,a) == 11(1$ - 1) !!.log Z(s/a). (168) 
ds 

Due to (159) we have 

F(s,a) - F( 1 - s,a) 

h-I 00 (I 1) 
= s -! II=~ 00 \.; + n - 1I2a - s + n + 1I2a 

= 11'(h-1){cot11'(s_1I2a) -cot11'(s+ 1I2a)}, 
s-! 

(169) 

which leads to 

d I Z(s/a) - og 
ds Z(1-s/a) 

= 211'(h - 1 ) {cot 11'(s - 1I2a) - cot 11'(s + 1I2o)}. 
(170) 

Note that when /a/- I = m, the rhs vanishes. The functional 
equation is obtained by integrating the above equa
tion. Q.E.D. 

VI. SUMMARY AND DISCUSSIONS 

We have examined a free motion of a superparticle on a 
SRS of genus h>2. We have taken SH, a superanalog ofthe 
complex upper half-plane, as a universal covering space of 
the SRS and hence the SRS is represented as a fundamental 
domain F of a super Fuchsian group sr. The classical peri
odic orbits on the SRS have a close relation with the sr. That 
is, we have seen that there exists a one-to-one correspon
dence between the periodic orbits and the pairs of inconju
gate primitive elements and their inverse elements, with the 
lengths of the periodic orbits given by the norm function of 
the sr. Classical motions have chaotic aspects and the 
asymptotic form ofthe number of primitive periodic orbits is 
expected. Due to the above correspondence between period
ic orbits and primitive elements, the asymptotic form yields 
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that of the number of inconjugate primitive elements of the 
sr. 

We have solved the quantum mechanics on the univer
sal covering space SH. Both Grassmann even and odd eigen
functions were given and the heat kernel was constructed by 
summing them up. The (Grassmann odd) eigenfunctions 
depend on a real parameter c,lcl.q, and hence there are infi
nite number of inequivalent total Hilbert spaces, parame
trized by the parameter c, however, the kernel function is 
unique, or independent of the parameter c. Although the 
classical energy spectrum is real and the quantum Hamilto
nian is a hermite operator, the quantum energy spectrum is 
complex. If E is an eigenvalue of the Hamiltonian, then It is 
also an eigenvalue. This is due to the existence of the isovec
tors. 

As for the quantum mechanics on the SRS, we have 
given the exact kernel function. It leads to a superanalog of 
the Selberg trace formula (144). The supertrace of the "su
per" Laplace-Beltrami operators aSLB (96) consists of two 
parts, AU) (145) and aU) (146). We see that AU) is the 
contribution of the zero-length "periodic orbits" and a (t) is 
of the nonzero classical periodic orbits. The latter is, in fact, 
given with the heat kernel in the semiclassical approxima
tion up to some overall factor depending on the parameters 
a.9

•
10 As for the former, it can also be calculated by the so

called heat kernel expansion (150) and the semiclassical 
kernel function gives the first term of the series. Further
more, a (1) takes the same form as the one in the trace for
mula of a super Laplace-Beltrami operator with spin 
(1 - a)/a/ I

•
15 

APPENDIX A 

a~~J = (2ym/2+ IDY -mJJym12)2 - [(1 - a)1loj,2 
(171) 

This is not the case for A (t) . 
The spectrum on the SRS is complicated, however, it 

can be investigated by the Selberg super zeta function ( 151 ) . 
The zero points and poles of the super zeta function gives the 
spectra for the Grassmann even and odd states, respectively. 
Although the energy spectrum on SH depends on the param
eter c and is different from each other for every value of c, we 
may expect that the spectrum on the SRS is independent of 
the parameter c and hence unique because the super zeta 
function is independent ofc. We see that when a ..... 00, yB (p) 
in (109) coincides with the eigenvalues ofthe Laplace-Bel
trami operator on H in the theory of Riemann surfaces. 
Hence we may expect that almost all the nontrivial zero
points and poles of the super zeta function will exist on the 
line of Re s = ~ when a ..... 00, however, it may not be the case 
for general values of a. The super zeta function itself may be 
complicated, however, it satisfies a simple functional rela
tion. 

The spectrum of aSLB on the SRS is characterized by the 
length spectrum of the classical periodic orbits. In the theory 
of Riemann surfaces it was shown that some lengths of 
6h - 6 can be chosen as coordinates of the Teichmiiller 
space and the measure of the Teichmiiller space was given in 
terms of the lengths.41 In the case ofSRS's similar situation 
may be expected and calculation of the differential of the 
lengths along the super Beltrami differentials was done.42 

Constructing a measure of the super Teichmiiller space is 
important for superstring. 

We give some geometrical quantities associated with our metric gAB (39). 
(a) Inverse metric gAB: 

o 

2Y + 1 - lo 00 
a 

o 

This satisfies 
gACgCB = gBcgCA = 8!. 
(b) Cristoffel symbol r~c: 

2Y + 1 - lo 00 
a 

o 

a- 1 0- '0 -- -I 
a 

o 

o 

a-l-0 '0 
-- -I o 

a 

o 
a 

o 
a 

(A2) 

r~c=!gAD[( - )B(I+DlaBgDc + (- )C(I+B+D)acgDB - (- )BaDgBC ]' 

(1 - a)iOO 0 (a - 1 )0 
Y 4ay2 2Y 2aY 

(1 - a)iOO 
0 0 0 

4ay 2 

(r~B) = 0 
0 0 0 

2Y 
(a - 1)0 

0 0 0 
loY 
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(Al) 

(A3) 

(A4) 
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0 
(a - l)ifJ8 

0 0 
4ay2 

(a - l)ifJ8 i (1-a)8 fJ 

(nB) = 
4ay2 Y 2aY 2Y 

(1- a)8 
0 0 0 

2aY 

0 
fJ 

0 0 
2Y 

0 
(a-l)(fJ+i8) i 

4ay 2 2Y 

(a - 1)( fJ + i 8) 
0 

(1 - a)ifJ 8 

(r~B) = 
4ay2 4ay2 

i (1 - a)ifJ 8 
0 

2Y 4ay2 

(1 - a)(2Y + fJ 8) 
0 

(1 - a)fJ 
4ay2 2aY 

0 
(1 - a)(ifJ - 8) 

0 
4ay2 

(1 - a)(ifJ - 8) 
0 (1 - a)(2Y + fJ 8) 

(r~B) = 
4ay 2 4ay 2 

(1 - a)(2Y + fJ8) 
0 

4ay2 
0 

(a - I )ifJ 8 i (1- a)8 
4ay 2 2Y 2aY 

The following relation is useful, 

r A =( - )A+Br~A =~aA(logg) = - y-1aAY. 

(c) Riemann tensor: 

R~CD=( - )C(A+B+I)acr~D - (- )D(A+B+C+l)aDr~C 

+ (- )C(B+E)r1cr~D - (- )D(B+C+E)r1Dr~C' 

( d) Ricci tensor: 

RAB =( - )C(A+I)R~CB 

(1 - a)(2Y + fJ 8) 
4ay2 

0 

(a - l)fJ 

2aY 

0 

(a - l)ifJ 8 
4ay2 

i 
2Y 

(a -1)8 
2aY 

o 

= (- )caCr~B - (- )AB+A+BaBrA + (- )crCr~B - (- )(A+I)Er!cr~B' 

0 
\-2a2 

0 
(3a - 2)a;8 - (\ - a)2 8 

4a2y2 4a2y2 

\_ 2a2 
0 

(\ - a)28 + (3a - 2)a;8 
0 

4a2y2 4a2y2 
(R AS ) = 

(\ _a)28+ (3a-2)a;8 2(2 - 3a) Y - (\ - 2a)8 8 
0 

4a2y2 
0 

4ay2 

(3a - 2)a;8- (\- a)2 8 
0 

(\ - 2a)8 8 - 2(2 - 3a) Y 
0 

4a2y2 4ay2 

( e) Scalar curvature: 

R=RABgBA= (- )caCr~B·gBA- (- )BaB(gBArA) -gABrBrA - (- )(A+I)Er!cr~BgBA 

= _ gAsr Br A - 2( - )AaA (gABr B) _ ( _ )A + BaAaBgBA + ( _ )C(A + I)r~Dr~BgBA = (I - a) ~2a - I) . 
a 
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(A5) 

(A6) 

(A7) 

(AS) 

(A9) 

(AW) 

(All) 

(AI2) 
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we also have, 

R ABCD = ( - )AgAER ~CD' 

r ABC = ( - )AgADr~c, 

R AB _ ( )(C+D)(B+E)R A ,.EB CD - - ECD lS • 

(g) Symmetries: 

gAB = (- )A+B+ABgBA , gAB = (_ )ABgBA, 

R ;CD = ( - ) CDR ;DC' RAB = ( - )ABRBAt 

R ABCD = - ( - )CDRABDC = - ( - )ABRBACD 

= (- )(A+B)(C+D)RcDAB · 

(h) When a = 1, we find 

gii = Bz Bz log y-2, gzo = - Bz Bo log Y -2, 

g(JZ = Be a.. log Y - 2, 

geo = Be Bo log Y - 2, others = 0, 

and 

rZe = r~ =~, 
z uZ 2Y 

r z _ i -- --, 
zz Y 

o 0 i rzo = r7Jz = - 2Y' 

others = o. 

APPENDIX B: "SUPER" HYPERBOLIC DISTANCE 
d(Q1,Qa) 

(AI4) 

(AI5) 

(AI6) 

(AI7) 

In this appendix we calculate the explicit form of the 
"super" hyperbolic distance d(ql,q2). Plugging (59) into 
(55), we get the differential equation for d(ql,q2)' 

gAB(BBd) (BAd) = 1. (Bl) 

Plugging (63) into the above equation we get 

/2 + 2fkr - 1 = gAB(BB R)(BA R){{/')2 + 2/'k'r} 

+ 2gAB(BB R)(BAr)(/,k + k 'kr) 

+gAB(BBr)(BAr)k 2, (B2) 

where/' = d/ /dR, and k' = dk /dR. Due to the identities, 

gAB(BB R)(BA R) = R 2 + 4R + 4 [(1 - a)/a]Rr, 

gAB(BB R)(BA r) = (l/a)Rr, (B3) 

gAB(BB r)(BA r) = - (1/a)r, 

(B2) is reduced to two equations, 
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(/')2(R 2 + 4R) =j2 - 1, 

4( (1 - a)/a] {/')2R + 2/,k '(R 2 + 4R) 

+ (2Ia)/,kR - (l/a)k 2 = 2fk. 

(A13) 

(B4) 

(B5) 

Equation d(q,q) = 0 induces a boundary condition for J, 
/(0) = 1. (B6) 

Under this condition, (B4) can be immediately solved as, 

/(R) = 1 +~. 

Plugging (B7) into (B5) we have 

k'(R 2 + 4R) 

(B7) 

= (1/a)k 2 + «a - l/a)R + 2)k + «a - 1 )/a)R. 
(B8) 

We require that infinitesimal distance, d 2(q,q + dq), is 
equal to the line element dil = dqA gABqB. This gives a 
boundary condition for k(R) such as 

k(O) = - 20. (B9) 

We can rewrite (B8) and (B9) as 

dy = a
2 

- 1 + y + r (BlO) 
dx a2 2(x2 

- x) 4(x2 
- x)' 

with 

y(O) = 0, 

where 

k(R) = - 20 - ay(x) + 2(a - 1 )x, 

(Bll ) 

R = - 4x(>0). (BI2) 

Equation (BlO) is known as the Riccati's type differential 
equation. In order to solve that, we introduce a new variable 
u(x) by, 

y(x) = _ 4(x
2 

- x) du . (B13) 
u dx 

Then, the equation for u(x) becomes a hypergeometric dif
ferential equation, 

d
2
u { } du 

x(1-x) dx2 + r- (a+p+ l)x dx -a{3u=O, 

(BI4) 

where 

a=!(1+l/lal), {3=I-a, r=~. (BI5) 

The solution of (B 14) consistent with the boundary condi
tion (Bll) is 

u(x) = (const) xF(a,1 - a;~; x), (BI6) 

so that 
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y(x) = - 4(x
2 

- x) dd
x 

F(a,I - a;~; x). 
F(a,I - a;~; x) 

(BI7) 

Due to formula (p. 1041 in Ref. 43), 

F(I + a 1 - a. 2.. sin2 z) _ sin a z (BI8) 
2 ' 2 '2' - (sin z) , 

we obtain the k(R) in (65), and hence, we get (64). 

APPENDIXC 

We will give an outline of solving (66) with respect to 
the coordinates q and get the solutions of the Euler-Lan
grange Eq. (51). 

Let us call 

q = (z,z,O,O), q2 = (w,w,v,v), 

as = _p as = _p- as = ie- as = i£-. (eI) 
aw 'iJfij 'av ~"Ov ~ 

Here q2' p, and S can be regarded as constants of integration. 
First we consider the case when p has a nonzero body part: 
We find that the equation, 

as law -e=k 2 (" = ki ), (C2) 
aSliJfij-p- , 

gives 

I
z - kw + ~w _ ikw _ _ wO 
. k+k k+k 

+ G + 2 {(v + w)O + iw}1 2 
= (2Y(2~ )2, (C3) 

2 k +k 

where 

G = G(d(Q,Q2» = cosh d - 1 - sinh d coth ( ~ ) . 

(C4) 

Setting 

·C1 -= I k2Y
+(2)" I : real constant, 

C2- kw + ~w + f(k - "~w 
k + k 2(k + k) 

real constant, (C5) 

we may rewrite (C3) as, 

z = C2 + (i/2)w + wO - [( G + 2)/2] 

(C6) 

where A. is a real function which will be determined later. The 
equation, 

as lav i~ '(_ _) 
aSlaw = p =1 l1+ v , (C7) 

yields 

0- (G + 2)(eiA - nO- - iG(eiA + i)u 
- G 2(eiA + i)(e- iA - i) - (G + 2)2(ei4 - i)(e- i4 + i) , 

(C8) 

where 

u= (e- iA - i)(eiA - 011 - 2i{(e- i4 - i) + [(G + 2)12](i4 - e-iA)}v. 
(C9) 

Here and hereafter we set k = " = 1 which corresponds to choosing an arbitrary constant of the initial time to properly and 
hence we can recover this degree offreedom by reintroducing to to the solution later. 

The above two equations (C6), (C8) yield, after some cumbersome calculations, 

2Ysinhd = C1(eiA + e- iA)[ 1- G(e
iA 

+ i)(e-
iA

- i) +2~~; 2)(e
iA 

- i)(e-
iA 

+ i) 117j 

+ G~~1~2) (eiA -e- iA )(l1-i7j)(V+W)] ' (ClO) 

where 

3O=2i(eiA - e- iA )(G 2 + 2G + 2) + 8(G + 1). 
(Cll) 

iA sinh d + i [1 2i sin. h d. ( G 1 h d) -e = - + -cos 1111 
cosh d C1 cosh2 d 

The third equation in (CI) yields 

d = [p/(2am) ]{4aC1 - 117j - i(a - 1) 

X (11 - i7j)(v+ w)}t=m(. (CI2) 

Here m is seen to be a real constant. Plugging (CI2) into 
(CIO), we get 
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~0=8(G + 1) - (4/cosh d)(G 2 + 2G + 2) 

= (4sinh2 dlcoshd)(1-coth [d/2a). (CI4) 

Hence from (C6), (C8), and (C 13) we finally getthe solu
tion (z(l) (t),0 (l)(t» in (68) where we have reintroduced a 
constant to or replaced d by X (71) and we have redefined 
the constants as, 

'T/ = 2(S3 - SI + iS2 - iS4) , 

v = (1 + i)(SI - iS2) - (1 - i)(S3 - iS4) , 

C1 = c1 - 2(SIS2 - SIS3 - SIS4 + S~3 - S~4 + S3S4) , 

C2 = C2 + 2SIS2. (CIS) 

We can get the second solution (z(ll)(t),O (1I)(t» (69) 
by redefining the constants as 

wto-+wto - n, SI-+ (S,/2)e[(a-')/a)n, 

S2-+S2/2, S3-+(S3/2)enla, S4-+(S4/2 )en, 

(CI6) 

and then taking the limit n -+ 00. 

Secondly, we consider the case when the body part of pis 
zero. In this case we cannot take such a ratio as in (C2), 
however, we find that the third equation in (Cl) yields 

z(t) = w + z(t), (CI7) 

whereZ(t) does not have a body part, or z(t) takes a similar 
form as Ws in (73) with thefk 's being functions of t and w. 
This simplifies Eqs. (66). For example, since 

R = Iz - w - Ovl 2/YYw ex: viist, (CI8) 

we have 

d 2 = -4ar+R, 

G(d) = - 20 - [(20 - l)(a - 1 )/6a)d 2
, (CI9) 

which means that d in this case does not have a body part 
either. The third equation in (Cl) then yields 

z=w+iV(O-v) - (1-a)(v+iV)(O-v) 

+ y2 t + Ywpt [(0- v)(O- v) 
wP 2 3a 

-iY~pt + (1-a){i(v+w)(O-v) 

+ (V+iV)(O-V)}]. (C20) 

The fifth one yields 

O=v+'T/t-{;a'T/+ (1-a)1j} 

Y~p+i(1-a)(v+iv)1j 2 
X t , (C21) 

2aYw 
where 

'T/= - (i/2a) Yw [S +{av-i(1-a)v}p). (C22) 

Then from (C20) and (C21), we finally get the third solu
tion (z(IlI) (t),O(IlI) (t» in (70) where we have redefined the 
constants as, 

w = ic, + C2' 

Ws = - (YwI2a)p + {(1 - a)v - iav}'T//(2aYw), 

EI = 'T/, E2 = v. (C23) 

APPENDIX D: DERIVATION OF GRASSMANN EVEN EIGENFUNCTIONS (106) 

We have found that the Grassmann even eigenfunctions for the operator Do (98) takes the form 

e(A.k)(Z) =CA.dl + (li/2y)08)ikx.J,YKA_ I (l k ly)· (01) 

We show in this appendix how the normalization constants CA•k are determined. The inner product of two eigenfunctions are 
calculated as, 

(e(p./) le(A,k) ) = Joo dx roo dyfdOfdO ( 1 _)e(P'/) (Z)e(A,k) (Z) 
- 00 Jo 2ay + aOO 

= Joo dx roo dy C(P./) C(A,k)ei(k-/)x 1 -Ii -p Kp_ 1I2 (1/Iy)KA- 1I2 (Ik Iy) 
- 00 Jo 4ay 

1T(1-li-p)- roo 
= 20 C(P,/) C(A.k) o(k -I) Jo dy( l/y)Kp - 112 (Ik ly)KA _ 112 (Ik Iy) 

17'(1 - Ii - p) -
= 20 C(p,/) C(A,k)O(k -l)lA,p' (02) 

where 

(03) 

Now we will evaluate l A,p' Oue to the asymptotic behavior ofa modified Bessel function Kv(z), 

K (Z)_{~1T12ze-Z(1 +0(1», Izl-+oo, 
v ~{(z12)'T( -v) + (z12)-vr(v)}(1 +0(1», z ..... O, 

(04) 

491 J. Math. Phys., Vol. 31, No.2, February 1990 Ma1sumoto, Uehara, and Yasui 491 



                                                                                                                                    

we find that the condition. 

1+ IRe(p - ~)I + IRe(A - PI < I, (D5) 

needs to be satisfied in order that the integral is well-defined. We then get ( 105) and the integral will give a 8 function. In fact, 
due to a formula (p. 693 in Ref. 43), 

i oo 

dx x-).K/1- (ax)Kv(bx) 

= aA-v-Ib
v 

r( I-A +IL + v)r( I-A -IL + v)r( I-A +IL - v)r( I-A -IL - v) 
22+).r(l-A) 2 2 2 2 

X2F{I-A;IL+V, I-A;IL+ V ; I-A;I_b 2/a2). [Re(a+b»I, ReA<I-IRelLl-IRevl], 

(D6) 

we have (pq> 0) 

(00 dx x-IK;p (x)K;q (x) = lim (OOdx x E- IK;p (x)K;q (x) 
)0 E-O)O 

= lim r( E + i(; + q) )r( E - i(; -q) )r( E + i(; -q) )r( E - i(; + q) ) 

E-O 23- Er(E) 

= I r( i(p + q) )r(1 + i(p - q) ) 12lim E 
2 2 E-O 2{~ + (p _ q)2} 

= IrC(P;q) )r(1 + (p;q»)1
2

(1T/2)8(P_q) 

:r 8(p - q). 
2psmh 1Tp 

(D7) 

From (D2), (D3), (D7) and due to symmetry, Kv(z) = K _ v(z), we finally gettheGrassmann even eigenfunctions (106). 

APPENDIX E: DERIVATION OF GRASSMANN ODD EIGENFUNCTIONS (118) 

The Grassmann odd eigenfunctions for the operator 00 (98) were found to be 

t/J().,k) (Z) = C).,k (flkx/.[y)«(JWu•12,). (21k Iy) + i OA u·W _ ui/2,). (21k Iy», 

where use has been made of a recursion formula of Whittaker functions (p. 1062 in Ref. 43), 

zaz WK,/1- (z) = (K - z/2) WK ,/1- (z) - [1L2 - (K - ~)2] WK - I,/1- (z) = (z/2 - K) WK,/1- (z) - WK+ 1,/1- (z). 

The normalization constants C).,k are determined as follows. The inner product of two eigenfunctions become 

<t/J(P'/) It/J().,k» = f~ 00 dx Loo dy f d(J f dO(2aY ~ a(Jo)~(P'/) (Z)t/J(..t.k) (Z) 

where 

= f~ 00 dx i oo 

dy C(P'~j..t'k) e;(k -/)x{ Wu•12,P (211 Iy) Wu•12,). (21k Iy) 

- p - ulA u·W _ u.12,p(211 Iy) W -u.12.). (21k Iy)} 

= (1T/a)C(p,k) C().,k) Ik 18(k - I)J~~, 

J;~ = 100 

dz (lIr){Wuk.l2,P (2z) Wu•12,..t (2z) - (pA)UkW -ui/2,p (2z) W _ u.I2,), (2z)}= i oo 

dz /;~. 
Due to the asymptotic behavior of a Whittaker function, 

(EI) 

(E2) 

(E3) 

(E4) 

{

e- z/2zK( 1+ 1L2 - (; - p2 + O(Z-l»), Izl- 00, 

WK,/1-(z)- ( ) r ( ) (E5) 
r( -21L) Zll2+/1- I __ K_Z+O(Z) + (21L) Z1l2-/1- I--K-z+o(z), Izl-O 

rq -IL - K) 2jL + I r(~ + IL - K) I - 21L 
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we find that of the integrand /;~p (z), 

e - 2z{(2z)Uk - (pA) uk(2z) - Uk}(1 + 0(1», Izl-- 00, 

[
(2z)P-;'-1 2r( - 2p)r(U) 

r«(1 - Uk )/2 - p)r«(l - Uk)/2 + A) 

+ (2z);'-p-1 2r(2,O)r( - U) 

r( (1 - Uk )/2 + p)r( (1 - ud/2 - A) 
_ ;. 2udl +p+A)r( -2p)r( -U) 

- (2z)P+ 
(1 + 2p)( 1 + 2A)r«(1 - Uk )/2 - p)r«(1 - Uk )/2 - A) 

_ 2(z) -p-;. 2uk (l-p - A)r(2p)r(U) ](1 + 0(1», Izl--O. 
(1 - 2p)( 1 - U)r«(1 - Uk )/2 + p)r«(1 - Uk )/2 + A) 

(E6) 

Thus A and p should satisfy 

1 + IRe(p -A)I < 1, and IRe(p +A)I < 1, (E7) 

in order thatthe integral be well-defined. We then get (116) and (117) and J ;~p will give a 15 function. 

To evaluate J;~ we point out a relation in special functions. First we find that z{K;. +! (z) + uK;. _! (z)} satisfies the 
same second-order differential equation as WuI2,;. (2z), where U = ± 1, 

{a; + (- 1 + u/z - (A 2 - 1/4)/r )}Wu /2,;. (2z) = 0, 

{a; + (- 1 + u/z - (A 2 - 1/4)/r )}[z{K;.+! (z) + uK;'_l (z)}] = 0, (E8) 

Comparing the asymptotic behavior for both Izl-- 00 and Izl--O of those two functions, we find that the following relation 
should exist; 

A (u- 1)/2 
WuI2,;.(2z)= [iT Z{K;'+I12(Z)+uK;'_1I2(Z)}, (u= ±l). (E9) 

Precisely speaking, the rhs should read 

(A + E)(U-I)/2 
lim z{K;.+ H 112 (z) + uK;. + E- 112 (z)}, 
E-O [iT 

(EIO) 

then, when u = - 1 and A = 0, we have 

2z aKv I W_ 1I2,O(2z) =--- , 
[iT av v= 112 

(Ell) 

which in fact holds. Due to another recursion formula of Whittaker functions (p. 1062 in Ref. 43), 

WK.Il(Z) =ZI12WK_1I2,1l±112(Z) + q-K±Jl)WK_I,Il(z), (EI2) 

we find that the integrand /;~p becomes 

/;~p = -4( -Ap)(Uk-I)/2[(2z)-IWo,P_1I2(2z)Wo,;'_I12(2z) 

- (2z) -3/2{ WI/2,;' (2z) Wo,p_ 112 (2z) + WII2,p (2z) Wo,;. _ 1/2 (2z)}] 

= (2111')( - Ap)(Uk- 1)/2{Kp+ 112 (Z)K;'_1/2 (z) + K P_ I12 (z)K;.+ 112 (z)}. (E13) 

Plugging (E13) into (E4), we get 

J;~ = (2111')( - A p) (Uk - 1)12 LX> dz{ Kp + 112 (z)K;. _ 112 (z) + Kp _ 1/2 (z)K;. + 112 (z)} 

== (2111') ( - A p) (Uk - 1)12 lim i"" dz zE{Kp+ 112 (z)K;. _ 1/2 (z) + Kp_ 1/2 (z)K;. + 112 (z)} 
E-O 0 

= (_Ai?>(Uk-I)12lim 2
E

-

I 
r(1 +E+p+A)r(1 +E-p-A) 

E-O 1Tr(1 + E) 2 2 

x{r( E-~ -A )re + E;P ~A) + re + E;P +A)r( E+~ -A)} 
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where use has been made of the formula (02). According to (116) we will rewrite the variables as 

A = c + ip, p = c + iq. (E15) 

Then we finally get 

JUk. . = 21TUdc+ip)Uk-
1 

I) (E16) 
C+'P.c+'q [(.)] (p+q). cos 1T C + lp 

Hence, from (E3) and (E 16) we get the Grassmann odd eigenfunctions (118). 

APPENDIX F: DERIVATION OF THE COMPLETENESS RELATION (123) 
First we evaluate the contribution of the Grassmann even eigenfunctions, 

I B
(ql,q2) == f: "" dp dk ep,k (q2)e -p,k (ql)' 

Plugging (106) into (F1), we get 

(Ft) 

I B(ql,q2) = f"" dp dk 2~ blY2eik(X,- X')(l + 1 + 2ip O/JI) (1 + 1 + 2ip OiJ2)sinh 1Tp KiP ( Ik IYI)KiP (Ik IY2) 
-"" ~ ~I ~ 

= - f"" dp dk 2a~(O/JI + OiJ2 + O/JIOi J2) e'"k(x, - x,) Kip (Ik IYI )KiP (Ik IY2)' (F2) 
- "" t? 2YI 2Y2 4YtY2 

Differentiating a formula (p. 510 in Ref. 43), 

L"" dx cosh [ (1T - cp )x]Kix (a)Kix (b) = (1T12)Ko( ~a2 + b 2 - 2ab cos cp) 

with respect to cp, we get44 

L"" . 1Tab sin cp 
dx x smh[ (1T - cp)x]Kix (a)KiX (b) = KI(,Jaz + b Z - 2ab cos cp). 

o 2~a2 + b 2 - 2ab cos cp 
Considering that KI-x- I + o( 1), x-+O, we take the limit of cp-+O,44 

r"" dxx sinh 1TX K ix (a)Kix (b) = lim 2 1T~bsincp = (r/2),jiiiiI)(a-b). Jo ",-02(a + b - 2ab cos cp) 
Then I B(ql,q2) is obtained, 

I B(ql,q2) = - 2aYI(O/JI + OiJ2 + o/JIOiJ2 )I)(XI - X2)I)(YI - Y2)' 
2YI 

Next we consider the contribution of the Grassmann odd part, 

I :(ql,q2) == f: 00 dp dk I/fp,k (q2) "if c_ p,k (ql) 

f"" acos[1T(c+ip)] eik(X,-x,) - . I-Uk 
= dpdk r [0201(C + lp) WUk12,C+iP(2IkIYI)WUk/2,C+iP(2IkIY2)] 

- "" 2 k ~YtY2 

+ 0201 (c + ip) I + Uk W _ u';2,c + ip (21k IYI) W _ Uk12,C + ip (21k IY2) 

- iOI02(C + ip) WUk12,C+ ip (21k IYI) W _ u.12,c+ ip (21k IY2) 

+ iOI02(C + ip) W _ Uk12,c+ ip (21k IYI) WUk/ 2,C+ ip (21k IY2)] 

(F3) 

(F4) 

(F5) 

(F6) 

= {OO "" dk at;J2 keik(x, - x,) [020If / + (k) + 0201f c- - (k) - iOIO~/ - (k) + iOIO~c- + (k)], (F7) 
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where 

J~,E'(k) == I: 00 dp cos ['IT(e + ip) HKc+ ip+ 112 (Ik IYI) + EI UkKc+ ip- 112 (Ik IYI)} 

X{Kc+iP+1/2(lkIY2) +E2UkKC+iP-I12(lkIY2)}' (EI,E2= ±). (F8) 

Here use has been made of (E9). Due to the symmetry 
Kv (z) = K _ v (z), J~,E'(k) satisfies 

J~E~ (k) = EIE2J~,E'(k). (F9) 

We will evaluate J~'E'(k) at e = 0 first. Equation (F9) 
yields 

J o+ - (k) = J o- + (k) = O. (FlO) 

Consider a formula (p.771 in Ref. 43),45 

{10
00 

dx eipXKv+ ix (a)Kv_ ix ({3) 

= 'IT(ae P + I!'\ vK2V (~a2 + {32 + 2a{3 coshp), 
a + {3ePj 

X [larg al + larg{31 + IImpl <'IT]. (F1l) 

Using recursion formulas of modified Bessel functions (pp. 
267,968 in Ref. 43), 

zaz Kv (z) + vKv (z) = - zKv_ I (z), 
(F12) 

we have 

LOO 00 dx cosh [( 'IT - ~)x ]Kl + ix (a)KI/2 _ ix (b) 

= 'IT(a+b)sin(~/2) KI(~a2+b2-2abcos~), 
~a2 + b 2 - 2ab cos ~ 

LOO 00 dx cosh [ ('IT - ~)x]KI + ix (a)KI + ix (b) 

= 'IT sin(~/2) Ko( ~a2 + b 2 - 2ab cos ~), 

LOO 00 dx cosh [ ('IT - ~)x]KI_ ix (a)KI _ ix (b) 

= 'IT sin(~/2)Ko( ~a2 + b 2 - 2ab cos ~). 

Due to the asymptotic behaviors of Ko and K I , 

Ko(z) - - log z + 0(1), 

KI (z) -liz + o( 1), 

we get 

(F13) 

(F14) 

I:oo dx cosh ('lTx) KI/2+ ix (a)KI/2_ ix (b) = ro(a - b), 

Loooo dxcosh ('lTx) KI/2+iX(a)KI12 + ix (b) (F15) 

= I_oooo dxcosh ('lTx) Kl/2-ix (a)KI/2_ix (b) =0. 

Hence we have 

495 

J~'E'(k) = r(EI + E2) O(YI - 12) . 
k 
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(F16) 

Next we will evaluate J~'E'(k) at e = !. Due to (F11), 
Jfii (k) is rewritten as 

Jfii(k) ={~(~+ E2)_~(~~+~~)} 
k Y2 YI k YI aY2 Y2 a.vl 

X I: 00 dp p sinh ('lTp) KiP (Ik IYI)KiP (Ik IY2)' 

(F17) 

Plugging (F5), we finally get 

J~ii(k) = [r(EI + E2)/k ]O(YI - Y2)' (F18) 

Equations (F16) and (F18) implies 

J~'E'(k) = [r(EI + E2)/k ]O(YI - Y2), O<e<!. 
(F19) 

In fact, a relation (p. 970 in Ref. 43), ~ 

K 'IT I_v - Iv [ . ] F20 v(z) =-. , v: notanmteger , ( ) 
2 sm( V1T) 

implies that Kip (z) is analytic in p where IImpl < 1, and 
hence we may change the path of integration in J~,E'(k) 
from (- 00,00) to (- 00 -ie,oo -ie), which gives 
J~'E'(k). Due to (F8) we conclude, 

J~,E'(k) = [r(EI + E2)/k ]O(YI - Y2)' lel<!. 
(F2l) 

We then get 

I~(ql,q2) = 2a ~YJY2«(JIB2 - BI(J2)0(X I - X2)0(YI - Y2)' 
(F22) 

APPENDIX G: DERIVATION OF THE HEAT KERNEL 
(128) 

First, we evaluate the contribution of the Grassmann 
even part, 

K B(ql,q2IT) == Loooo dp dk e- r/'(P)ep,dQ2)"ep,dQI)' 

(Gl) 

Plugging ( 106) and (109) we get [cf. (F2)] 

K B(QI,Q2IT) 

foo 2ia 
= -00 dp7bJY2exp[ -T(p-i/2a) 

where 

_ 1'((1 - a)/2a)2] (1 + 1 + 2ip (JIBI) 
4YI 

X 1 + OlJ2 Y(p), ( 
1+2iP -) 

4Y2 

Matsumoto. Uehara, and Yasui 

(G2) 

495 



                                                                                                                                    

Qv(cosha) =- db----------:-:-::-
1 1"" e-(v+1I2)b 

v1 a (cosh b - cosh a) 1/2 
Y(p)=- F>O"" dksinh (Trp) e;k(X,-Xo)K;p(lkIYI)K;p(lklyz) 

= 2 sinh (Trp) i"" dk cos [k(xz - XI)] [a>O, Re v> - 1], (G8) 

XK;p(kYI)K;p (kYz). 

Due to a formula (p. 732 in Ref. 43), 

i"" dx cos (ex) Kv (ax)Kv (bx) 

(G3) 

leads to, 

Tr tanh (Trp) PiP _ 112 (cosh a) 

= v1 r"" db sinpb , 
L (cosh b - cosh a)1/2 

(G9) 

and hence we get 

rr (aZ + b 2 + e2
) = --sec (VTr) Pv- 112 , 

~ 2ab 
Y( ) = _Tr_ f."" db sinpb (GlO) 

p ~2Y!Y2 /" (coshb-cosh/o)IIZ' 

[Re(a+b»O, e>O, IRevl<~], (G4) 

we find 

Y(p) = ~tanh (Trp) P;P-1I2 (cosh 10 ), (G5) 
2~Y!Y2 

where [see (60)] 

cosh 10 = 1 + (XI - X2)2 + (YI - Y2)2 

2YIY2 
1 + !RO(ql,q2)' 

(G6) 
A functionalrelation (p. 1020 in Ref. 43), 

Then KB (QI,q2I1') becomes 

"iia f."" e-«I-a)!2a)'T 
KB(Q Q 11') =_v"_ db-------:-= 

1'2 -2 (hb hl)1/2 11 /" cos - cos 0 

X f-"" "" dp e - (p - ;/2a)'T 

Xsin (pb) (1 + 1 + 2ip (}lJI) 
4YI 

X(1 + 1 + 2ip (}iJ2)' 
4Y2 

(G11) 
Qv (z) - Q _ v-I (z) = Tr cot (VTr) Pv (z) [sin (VTr) #0], 

(G7) 
and an integral representation of a Legendre function (p. 
1002 in Ref. 43), 

The integration with respect to p can be easily done and due 
to the identity, 

e- b'/4T[ (1 - a2)/a2 - 2/1' + b 2/r]sinh(b /2a) - (2b /a1') cosh(b /2a) 

(cosh b - cosh 10 ) 1/2 

8cosh/o (d /db)(e- b'/4T sinh q, /2a)/sinhb) + 4(cosh2/0 - 1) (d /db){( l/sinh?) (d /db)(e- b'/4Tsinh q, /2a)/sinhb)} 

(coshb - coshlo) 1/2 

+ ~ [(COSh b _ cosh 1
0

) 1/2 {4(COSh ~ + cosh 10 ) d (e-b'/4T sinh.(b/2a») + 6e- b'/4T sinh.(b12a)}], (GI2) 
db smh b db smh b smh b 

we finally obtain 

B 2ae-«(\ -a)/2a)'T f."" 1 [ -b'/4T' b 
K (QI,Q2I1') = - db 1/2 e smh-

Tr~2Tr1' I" (cosh b - cosh 10 ) 2a 

- b'/4T (a - 1 . h b + b h b) ((}181 + (}iJ2 + (}181(}iJ2) +e --sm - -cos - -- --
a 2a l' 2a 4YI 4Y2 8Y!Y2 

2 h I d ( - b'/4T sinh (b /2a») (}181(}282 + cos 0- e 
db sinh b 4YIY2 

+ (cosh21 _ 1) ~ {_1_~ (e-b'/4T sinh (b/2a»)} 
o db sinh b db sinh b 

Next we consider the Grassmann odd contribution, 

K~(QI,Q2I1')=-L"""" dpdke-rYc(P)""~.dQz)ifr_P.k(QI) 

(}181(}282] . 
4Y!Y2 

= f"" dp a..JY;Y; cos Tr(e + ip) exp[ - 1'(p - ie - i/2a)2 - r( 1 - a)/2af] 
_"" 2~ 

(G13) 

X [(82(}1 - 81(}2)G + (p) + i«(}1(}2 - 8182)G - (p) - (81(}2 + 82(}I)H + (p) + i«(}1(}2 + 8182)H -], (GI4) 

where 
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G ± (p):: f: co dk keik(x, - X,) [Kc+ ip+ 1/2 (Ik IYI )Kc+ ip+ 112 (Ik IY2) ± Kc+ ip- 112 (Ik ly,)Kc+ ip- 112 (Ik IY2)]' (GI5) 

H ± (p):: f: co dk ke ik(x,-XI)(h [Kc+ ip+ 112 (Ik IYI)kc+iP-1I2 (Ik IY2) ± Kc+iP-1I2 (Ik IYI)Kc+ ip+ 1/2 (Ik IYz)]· 

(GI6) 

Here use has been made of (E9) [cf. (F7)]. Due to a formula (p. 743 in Ref. 43), 

and recursion formulas (p. 126 in Ref. 46), 

P~_I (z) -zP~ + (v-p, + 1)~P~-'(z) =0, 

zP~ -P~+I (z) + (v+p,)~P~-I(Z) =0, 

we find 

(GI8) 

± _hr(x2-xl )r(1+c+ip)r(1-c-ip) { . -I hI . -I } 
G (p) - 3/2 2 1/2 (1 + c + Ip)P c+ ip (cos 0) ± (1 - c - lp) P c+ ip- I (cosh 10 ) 

2(YLY2) (cosh 10 - 1) 

itr(x2 - xl)(c + ip) {Pc + ip (cosh 10 ) ± P _ c- iP(cosh lo)} 

2(YLY2)3/2(cosh 10 ± 1 )sin[ 1T(C + ip)] 

where use has been made of a symmetry, P" (z) = P _ ,,_ I (z). 
Due to (G4) and recursion formulas (FI2) and (p. 1019 in Ref. 43), 

(Z2 -1)az Pv(z) = (v+ 1) {Pv+ I (z) -zP,,(z)}, 

we get similady47 

H ± (p) = tr(c + ip) (Y2 ±YI) {pc + ip (cosh 10 ) ± P - c- ip (cosh lo)} . 

2(YIY2)312( cosh 10 ± 1 )sin [1T(C + ip)] 

So far K~ (QI,q2Ir) has been calculated as 

K~(QI,Q2Ir) = ~exp[ - «(1-a)/2)2r ]{ i(z, -z2)8182 - i(z, -z2)8lJI %c+ (10) 
4~ Y~ 

(ZI -Z2)8182 - (Zl -Z2) 8182 %- (I)} + co' 
YLY2 

where 

f'" . . 2 1T( C + ip) cot [1T( C + zp)] { } 
%c±(lo):: dpexp[-r(p-IC-I/2a)] PC+iP(cosh/o)±P_c_iP(cosh/o)· 

- '" cos 10 ± 1 

Equation (G7) and a recursion formula (p. 1019 in Ref. 43), 

(2v + 1)zQv(z) = (v + 1) Qv+ I (z) + v Qv-I (z), 

yield 

1TV cot (1TV) P _" (z) = (2v + l)z Q" (z) - (v + 1) Q,,+ I (z) - v Q _" (z). 

Then using the integral representation (G8) we get 
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y ± (/0) = rE ioo 

dt 1 e - b'/4r [ebl20 - b {l!-.- _ 1 - 0 ± (20 - 1 + l!-.-) cosh I } 
c -V 21" I" cosh 10 ± 1 (cosh b - cosh 10 ) 1/2 21" 20 a 1" 0 

+ e-
bI20{(! + ! )COSh 10 ± C ~ 0 + :J} 

_e-bI2O-b(a+ 1 + l!-.-)+eb12o-2b(30-1 + l!-.-)] 
2a 21" 2a 21" 

= rEi 00 db . 2 [(COSh 10 + 1 )~(e- b'/4r sinh (b /20») -V 21" I" (cosh b - cosh 10 ) 1/2 db sinh b 

+ - b'/4r( b h b + a-I . h b )] e -cos - --sm - , 
21" 20 2a 2a 

where use has been made of identities, 

e - b'/4r[eb12~ - b«20 - 1 )/0 + b /1")cosh 10 - ebl20 - 2b( (3a - 1 )/20 + b /21") + e - b120( (1 - 0)/20 + b /21")] 
(cosh b - cosh/o) 1/2 

(G26) 

= e-
b
'/4r((bl1") cosh (b/2a) + [(0-1)/0] sinh (b/2a» +2~[(coshb-cosh/o)1/2e-b'/4r+b120-b],(G27) 

(cosh b - cosh/o) 1/2 db 

e-b'/4r[ebI20-b (b/21" - (1- a)/2a) - e- b/20-2b((0 + 1)/20 + b/21") + e- b/2°(1/o + bl1")cosh 1
0

] 

(cosh b - cosh 10)1/2 

2 (cosh2 I 1) d ( - b'/4r sinh (b /20) ) + hi - b'/4r ( b h b 0 - 1 . h b ) 
0- - e cos oe -cos -+--sm -

db sinh b 1" 20 a 2a 
(cosh b - cosh 10 ) 1/2 

+ 2 ~[(COSh b - cosh I) 1/2(cosh b + cosh I _ 1) e- b'/4r sinh(b /20)]. 
db 0 0 sinh b 

(G28) 

Plugging (G26) into (G22) we find 

20e - « I - o)/(2o»'r ioo 1 
K~(ql,qzl1") = - db lIZ 

1T~21T1" I" (cosh b - cosh 10 ) 

X [{l::.R + (cosh 1 _ 1)r _ cosh I (J.fJ/JlJz } ~ (e - b'/4r sinh (b /2a) ) 
2 2y LYz db sinh b 

+ { (
(J181 + (J282 + (J1 81(Jz8z )} - b'/4r (b h b + a-I . h b)] r- -- -- e -cos - --sm - , 
2YI 2Y2 4YLY2 21" 20 20 20 

(G29) 

where r = r(ql,qz) and 1= I(ql,qz) are given in (62) and (65), respectively, and 

l::.R=.R(ql,qz) _ R
O
(ql,q2) = - (ZI - ZZ)(JI(JZ + (ZI - zz) 818z - (J181(Jz8z _ 2(cosh 1- 1) ((J181 + (Jz8z + (J181(J282). 

YLYz 2YI 2Y2 4yLYz 
(G30) 

Note that 

(l::.R)z = 2 (coshz 10 - 1) (J181(J28Z = 2(coshzl- 1) (J181(Jz8z l::.R·r = O. (G31) 
YLYz YLYz 

Finally, we will sum up the Grassmann even (G13) and odd (G29) contributions. We get 

2ae - « 1- o)/(2o»'r ioo 1 [ _ b'/4r' b 
K(ql,qzl1") = - db lIZ e smh-

1T~21T1" I" (cosh b - cosh 10 ) 20 

+ l::.R ~ (e- b'/4r sinh (b /20») + (l::.R)2 ~ {_1_~ (e- b'/4r sinh(b /2a»)} 
2 db sinh b 8 db sinh b db sinh b 

+ {( hi 1) d (_b'/4r Sinh (b/2a»)+ -b'/4r(b h b 0-1. h b)}] r cos - - e e -cos -+--sm -
db sinh b 21" 20 20 2a' 

(G32) 

We will change the region of the integration from (/0,00 ) to (/,00) according to the relation, which holds for a nonsingular 
functionf(b) withf(b)e(const).b ..... o(1), b ..... 00, 
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feb) _ b.R ~ (f(b) ) + (b.R)2 ~ {_1_~ (f(b) )} 
r"" db feb) _ r"" db 2 db sinh b 8 db sinh b db sinh b 

J/" (cosh b - cosh 10)1/2 - JI (cosh b - cosh 1)1/2 ' 
(G33) 

Proof The lhs of the above equation is rewritten by 

r"" db feb) = r"" db feb) + t db feb) . 
J4, (cosh b - cosh 10 ) 1/2 JI (cosh b - cosh 10 ) 1/2 J/" (cosh b - cosh 10 ) 1/2 

(G34) 

The first term is calculated as 

(The first term) = lim r"" db { feb) _ ll.R feb) + 3(ll.R)2 feb) } 
E-O JI + E (cosh b - cosh I) 1/2 4 (cosh b - cosh 1)3/2 32 (cosh b - cosh 1)5/2 
= [therhsof(G33)] -f!Jt, (G35) 

where 

f!Jt ::lim { (ll.R 12)(f(b ) sinh b) - {(ll.R)2 18}( 1/ sinh b) (d Idb) (f(b)1 sinh b) _ [(ll.R)2 116] [feb )/sinh b ] } I . 
E-O (cosh b - cosh I) 1/2 (cosh b - cosh 1)3/2 b= 1+ E 

The second term can be evaluated as follows. Since 

1-/0 = (ll.R 12) (1/ sinh I) + [(ll.R)2/8] cosh 1 , 
sinh3 1 

we find 

(G36) 

(G37) 

(The second term) = lim [ (I-/o)f(b) _ (1_/0)2 d { feb) }] I 
E-O (cosh b - cosh 10 ) 1/2 2 db (cosh b - cosh 10 ) 1/2 b= 1 + E 

= f!Jt + lim [{cosh (I + €) - cosh l}1I2X (regular term)] 

= f!Jt. 

Summing up (G36) and (G38), we get the rhs of 
(G33). Q.E.D 
Applying the formula (G33) to (G32), we get the kernel 
function (128). 

APPENDIX H: HEAT KERNEL EXPANSION 

In this appendix we show the following statements: 
"" (1)K(q,qlt)- I Bn (q,ll.sLB)t n12

, t--+O+. 
n=O 

(2) Bn (q,ll.SLB) = o for odd n, and for even n, Bn can be 
computed inductively and the result coincides with those in 
(149) and (150). 

We will apply the method of the heat kernel expansion 
developed by Gilkey48 and give some notations here. Let 
pairs (qA,kA ) be the coordinates of the cotangent bundle 
T* (SH) and let a be a multi-index representing a set of non
negative integers, a = (ai' a 2 , a 3 , a 4 ). Let lal and a! be 
defined by 

4 4 

lal:: I an' a!:: II an!. (HI) 
n= 1 n= 1 

The derivative with respect to aA and k A are defined respec
tively by 
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(G38) 

~ote that we define a ~ as a left derivative as usual, however, 
a k as a right derivative. The Fourier transformation of a 
"nice" function on SH is given by 

J"(k) = J d 4q e- ;qkf(q), 

f(q) = J d 4ke;qkj(k), (H3) 

where 

(H4) 

We find immediately the following formula: 
~ A 

(a~)f(k) = k a f(k), ka::(ko)a«ko)a'(kz)a'(kz)a,. 
(H5) 

A linear differential operator p(q,a) of order m is 

p(q,a) = I aa (q)a~, (H6) 
lal';;m 
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where the aa (q)'s are certain functions of q. The symbol of 
the operator p(q,a), denoted by q(P), is defined by 

q(P) = L aa(q)k a, (H7) 
iai<m 

which is a polynomial in k. Due to (H5), the operation 
p(q,a) onf(q) is given by 

(Pj) (q) = f d 4k q(P)f(k). (H8) 

We can easily deduce the following formula for two linear 
differential operators P and Q, 

q(PQ) = L (lIa!) {q(p)a~}{a~q(Q)}. (H9) 
a 

We will apply the formula (H8) and (H9) to a wider class of 
functions q(P) than polynomials, and hence the corre
sponding operator P may not be a differential operator in 
general. Our method will be justified by the arguments in 
Ref. 48. 

The super Laplace-Beltrami operator aSLB in (96) can 
be written by 

a - - ,..AB( ) ~~ (HID) 
SLB - 5 q aqB art ' 

and hence its symbol becomes 

q(aSLB ) = gtB(q)kBkA' (HIl) 

Using (H8) we find 

(e - I~SLB j) (q) = f d 4k eiqkq(e - I~SLB)f(k) 

= f f d 4kd 4q' ei(q-q')kq(e-I~SLB)f(q')· 
(HI2) 

So the heat kernel associated with aSLB is given by 

K(q,q'lt) = f d4kei(q-q')kq(e-I~SL"), (H13) 

Our task has been reduced to calculating q(e - I~SL"). 
According to the Cauchy's integral formula, a holomorphic 
functionf(z) is represented as 

fez) = _I j dA f(A) , 
2rri Jc z - A 

(HI4) 

where the direction of the integration is clockwise around z. 
For the Laplace-Beltrami operator, we define 

e - I~SLll = _ dA e , I f -IA 

2rri c aSLB - A 
(HI5) 

which leads to 

(HI6) 

where BA is the inverse operator to aSLB - A. Here, q(BA ) 
will be expanded in some series of merom orphic functions of 
k-, 

(HI7) 

500 J, Math. Phys., Vol. 31, No.2, February 1990 

Here each13j is a sum of merom orphic functions of k and the 
order, which is defined as "(degree of numerator) - (de
gree of denominator)", of each of the meromorphic func
tions is - (2 + j). The 13j 's are determined inductively as is 
shown below. Due to (H9) we have 

I = o(BA -(aSLB - A» 

00 I ~ 

-L L -[(13jan{a~(q(aSLB)-A»]. 
n=O iai +j=n a! 

(HI8) 

Then we deduce that 

130 = {gtB(q)kBkA - A} -I, 

13n=-13o L (13jan(a~gtBkBkA) (n>I). 
iai+j=n 

iai>O 
(HI9) 

We see that each 13 n is expanded in terms of 130' Therefore we 
write 13n such as 

13n = L 13nJ(q,k)(13o)j, (H20) 
j<2n + 1 

where each 13 nJ ( q ,k) is a homogeneous polynomial of degree 
(2j - n - 2) in k. Thus we obtain 

q(e - I~SLB) _~ j dA (e - IA L 13n) 
2m Jc n 

Equations (H 13) and (H2l) yield 

K(q,qlt) 

- I Lfd4k . I ,13nJ(q,k)tj-le-,(g'BkBkA). 
n=O j (j-I). 

(H22) 

Let us change the coordinates k for 5 = t 1/2k. Then, 

13 nJ (q,k) = t n/2 + 1 -j 13nJ (q,s), 

so that 
00 

K(q,qlt) - L Bn (q,aSLB)t n12, 
n=O 

where 

Explicit calculation gives 

Bo = - gI/2/rr, 

B2 = - (gI/2/rr)(R /6), 

(H23) 

(H24) 

B4 = - (gI/2/rr) _1_ (5R 2 _ 2RABR BA + 2RABCDR DCBA) , 
360 

(H26) 
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In substitution for Dirac monopoles with string (and for topological monopoles), "monopoles 
without string" have recently been introduced on the basis of a generalized potential, the sum 
of a vector A, and a pseudovector rs B potential. By making recourse to the Clifford bundle 
'6'(rM,g) [(TxM,g) = R I

•
3

; '6'(TxM,g) = RI.3]' which just allows adding together for each 
xEM tensors of different ranks, in a previous paper a Lagrangian and Hamiltonian formalism 
was constructed for interacting monopoles and charges that can be regarded as satisfactory 
from various points of view. In the present article, after having "completed" the formalism, a 
purely geometrical interpretation of it is put forth within the Kahler-Clifford bundle 
%( r* M,g) of differential forms, essential ingredients being a generalized curvature and the 
Hodge decomposition theorem. Thus the way is paved for the extension of our "monopoles 
without string" to non-Abelian gauge groups. The analogy with supersymmetric theories is 
apparent. 

I. INTRODUCTION 

It is well known that, when describing the electromag
netic field F"v produced by a Dirac monopole I in terms of 
one single potential A" only, such a potential has to be singu
lar along an arbitrary line starting from the monopole and 
going to infinity. This "string" has been considered-for a 
long time2-as unphysical, because the singularity in A" 
does not correspond to any singularity in F"v' 

It is also well known that, in the U ( 1) gauge theory of 
electromagnetism, which has as a mathematical model a 
Principal Fiber Bundle (PFB) 1T:P --+ M with group U (1 ), 
monopoles appear only if we consider a nontrivial bundle. 
Here, M is, in general, a four-dimensional Lorentzian mani
fold modeling the space time. The standard model is ob
tained by taking M = R 1.3 and deleting from R 1.3 the world 
line of the monopole. We then have as a model the PFB 
1T:P--+R2 xS 2 with group U(1) and the monopole charges 
appear as the Chern-numbers characterizing the PFB. These 
observations show that the topological theory does not put 
on equal footing the electric charge and the monopole, since 
the former is introduced through the electric current and the 
latter is a hole moving in space-time.3

.4 Notice that the topol
ogy of space-time becomes even more exotic when general
ized monopoles are present. s 

A way out has been looked for by many authors2
•
6 via 

the introduction of a second potential B". They did not com
pletely succeed in dispensing with an exotic space-time 
whenever they wanted to stick to ordinary vector-tensor al
gebra. However, just on the basis of both a vector potential 
AEsec AlrMcsec'if (rM,g) [where Ctj (rM,g) is the Clif-

ford bundle constructed in the tangent bundle rM of the 
Lorentz manifold M equipped with the Lorentz metric g, 
and sec means a section of the bundle] and a pseudovector 
potential rsBE sec'if (rM,g) , we recently constructed7 a 
rather satisfactory formalism for magnetic monopoles with
out strings (i.e., living in the ordinary Minkowski space
time, R I

•
3
), by making recourse to the Clifford algebra R I•3 

or more precisely to the Clifford bundle 'if (rM,g) 
[where (TxM,g) = JRI.3]. Here, RI,3 is an algebra suffi
ciently powerful to allow adding together tensors of different 
ranks (grades). In Ref. 8, for example, both the electric and 
the magnetic current are vectorial, while in our approach 
they are represented by a vectorial and a pseudovectorial 
current, respectively (and nevertheless we can add them to
gether 7 ). Our formalism can be considered satisfactory for 
the reasons we shall see below. See also Ref. 9. Some analo
gous, but nonequivalent, results have been obtained in Refs. 
10,11. 

II. FROM CLIFFORD TO KAHLER 

In this paper we want, first of all, to pass from the 
'if (rM,g) language, used in Ref. 7, to the %(r*M,g) lan
guage, i.e., to the language of the differential forms in r*M, 
the cotangent bundle with metric g (equipped with the 
Kahler algebra). 12-14 This paves the way, incidentally, for a 
generalization of our "monopoles without string" to non
Abelian gauge groups. 

The new language will allow us to approach the question 
of a suitable formalism for interacting charges and mono-
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poles without string from a geometrical point of view in the 
space-time manifold. 15 

We recall that %(T~M,g) = 9t (TxM,g) = R I,3' the 
so-called space-time algebra. 16 Now % ( T ~ M,g) , as a linear 
space over the real field, can be written 

AO(T~M) + AI(T~M) + A2(T~M) 
+ A3(T~M) + A4(T~M), (1) 

where Ak(T-:M) is the (k)-dimensional space of the k
forms. Here, A(T~M) = ~Ak(T~M) is called the Cartan 
algebra, and the pair [A( T~M),gx] is called the Hodge 
algebra. An analogous terminology exists for the vector bun
dles associated with these algebras.9 

In % ( 1'* M,g) there is a particular differential operator 
a odd in the Z2-gradation of the algebra. 17 To introduce a, 
consider first, for any t *E sec 1'* M C sec % ( 1'* M,g) and any 
tESec 1'M, the bilinear tensorial map of type (1,1) given by 

'I'-t *V, '1', (2) 

where 'I' is any element of sec % ( 1'* M,g) and V, is the co
variant derivative of 'I' (considered as an element of the ten
sor bundle). Then a is defined as the tensorial trace of the 
map: 

a = TrCt *V,). (3) 

In terms of a local basis {r p} of one-form fields and its 
dual basis {e p} of vector fields, we can write 

a=rPV . (3') e" 
In particular, taking any local neighborhood UCM 

with a local basis {dxP}, so that a = rPV p' we can show9,13 
that for any 'l'E sec (A 1'* M,g) C sec % ( 1'* M,g): 

(4) 

where J is the usual contraction operator of the theory of 
differential forms. We have 

dxP A (VI-' '1') = d'I', 

ap J (Vp'l') = -15'1', 

(5) 

(6) 

where d is the usual differential, and 15 is the Hodge coderiva
tive operator, here defined as 

(7) 

where * is the Hodge star operator and 'I' k E sec % ( 1'* M,g). 
The power of the Kahler bundle formalism appears clearly, 
once we add to the fundamental formula 

a'I' = (d -15)'1' 

the result9,13,18,19 
(8) 

(9) 

where r = rPrl yy3 is the volume element,20 and where 
t = 1 for k = 1,2,3 and t = 2 for k = 0,4 in the particular 
case of the space time algebra R I,3 and with our conventions. 
We also have that a 2 = (d - 8)2 is the D' Alambertian oper
ator. 
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III. GENERALIZED POTENTIAL AND FIELD: 

A SATISFACTORY FORMALISM 

Before going on, observe that the "completed" Maxwell 
equations, I5F= - Je , dF= - *Jm , where F 
Esec (A 21'* M,g) C sec% ( 1'* M,g) is the electromagnetic 
field and Je , Jm Esec(A I1'*M,g)Csec%(1'*M,g) are, re
spectively, the electric and magnetic currents, can be written 
as21 

( to) 

With the introduction of the generalized potential21 

A=A + rB, whereA,BE sec(A I 1'*M,g) Csec %(1'*M,g), 
wegetF= a/i = aAA + a'(rB),onceweimposetheLor
entz gauge aoA = 0. 22 Then we can write Eq. (to) as: 

a2A = Je , a2B = Jm · (11) 

In our previous work 7 we wrote Eqs. (10) and (11) in 
9t ( 1'M,g) instead of % ( 1'* M,g). There we succeeded in in
troducing a noncoventional Lagrangian that yields the cor
rect field equations when varied with respect to the general
ized potential. Our approach, however, cannot overcome the 
"no-go theorems" by Rosenbaum et 01. 8

; for instance Rohr
lich8 showed that a single Lagrangian can yield both the field 
equations and the charge and pole motion equations only in 
the trivial case when J m = kJe , where k is a constant. Neuer
theless in our approach we need to apply the variational prin
ciple just once, since our Lagrangian 7 implies even the cor
rect coupling of the currents to the field. In fact, as shown in 
detail in Refs. 9 and 23, the "completed" Maxwell equations 
[Eq. (to)] imply, if SP= - !FrpF, that 

apsp = F'Je + (rF) 'Jm , (12) 

where S PrY = E pv is the symmetric energy-momentum of 
the electromagnetic field. Calling Ke = F' Jo and 
K m = - (r F) . J m' and by projecting on the Pauli algebra 
R3•0, one does consequently find the expected expressions for 
the forces (in particular the Lorentz forces) acting on a 
charge and a monopole: 

Ke =PeE+JeXH, 

Km = -PmE+JmXE. 

(13a) 

(13b) 

IV. GENERALIZED CONNECTION AND CURVATURE 

As is well known, in a gauge theory24 the potentials are 
pullbacks of connections in the PFB 1T:P-Mwith group G, 
and the associated field is the pullback of the connection 
curvature. In the case of standard electromagnetism, the 
field FE sec(A21'*M,g) is derived from a potential 
A Esec(A I1'*M,g), i.e., 

F=dA. (14) 

However the Hodge decomposition theorem25 (valid 
for compact spaces) assures us that more generally, 
if FE sec (A21'*M,g) , then there always exist 
A E sec(A 11'*M,g) , *B E sec (A31'*M,g) and 
CEsec(A21'*M,g), with dC= 15 C= 0, such that Fcan be 
uniquely decomposed into 

(15) 
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The Hodge decomposition naturally suggests naming 
generalized connection the quantity 

A = A - *B E sec(Air*M,g) + sec (A3r*M,g) (16) 

and generalized curvature26 the quantity 

F=aA=(d-o)A=dA+o*B-d*B-oA. (17) 

Then 

FE sec(Aor*M,g) + sec(A2r*M,g) + sec(A4r*M,g). 

If we want F to be still a two-form, then the last two addenda 
in Eq. (17) have to vanish, and we automatically end up 
with the Lorentz gauge condition 

d*B=oA =0, 

and are left with 

F=dA +o*B. 

(18) 

(17') 

The field equations are obtained by evaluating aF, with 
a=d-o: 

(d-o)(dA +o*B-d*B-oA) =a 2A -a 2*B, 
(19) 

which writes 

aF=Je - *Jm (20) 

once we identify a 2A =Je ; a 2B=Jm • Equations (19) are of 
course the "completed" Maxwell equations, now deduced 
within a geometrical context via a natural generalization of 
the definitions of connection and curvature: a generalization 
inspired by the "correspondences" a = d - 0 and 
* = ( - 1) 'r, and by the Hodge decomposition theorem. 

v. FURTHER REMARKS 

(i) A rather interesting consequence of the geometrical 
interpretation just presented is that Eq. (17) can be assumed 
as a new definition of F, without imposing any longer the 
Lorentz gauge, since even in this case we get the right "com
pleted" Maxwell equations [as it is clear from Eqs. (18) and 
(19)]. 

(ii) The introduction of our "monopoles without 
string" for the more general case of non-Abelian groups is 
discussed in Refs. 27 and 28. Here we want to emphasize 
once more that, for our aims, the ordinary tensoriallanguage 
is too poor, since-among the others-it does not satisfacto
rily distinguish between scalar and pseudoscalar quantities, 
as on the contrary it is strictly required by physics. For in
stance, it is an essential character of the Lagrangian density 
of Ref. 7 to be the sum of a scalar and a pseudoscalar part. 7,29 

(iii) At last, let us take advantage of the present oppor
tunity for pointing out some misprints that appeared in the 
previous paper,7 that might make it difficult for the interest
ed reader to rederive those results of ours: (1) at page 234, 
column 2, line 18: the two expressions a·] ought rather to 
read ao]; (2) at page 235, Eqs. (14) and (15): all three 

expressions should be written IoA; (3) at page 235: the last
term in the rhs of Eq. (17) ought to be eliminated; (4) at 
page 236, column 1, line 22: "pseudoscalars" should be cor
rected into "pseudovectors." Let us stress that the "ball 
product" 0 is not a new fundamental product since in terms 
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of the Clifford product we have, for A, BE sec ~ (rM,g) , 
that AOB=!(AB + BA). 
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A dissipative Benjamin-Ono equation is used to study fluid and plasma turbulence. The system 
is studied by an exact nonlinear mode truncation method in which a finite number of poles are 
used to present the solution. The justification of the pole expansion approach is discussed with 
the proof of a completeness theorem. The stability and spectrum analysis show that asymptotic 
behavior of the system is completely represented by a finite number of nonlinear modes. The 
behavior ofthose nonlinear modes resembles solitons, and exhibits a wide range of bifurcation 
phenomena and routes to turbulence. 

I. INTRODUCTION 

Solitons have been widely studied in the last decade 
since the discovery of the integrability of the Korteweg
de Vries (KdV) equation. Many nonlinear evolution equa
tions have been solved by the inverse scattering method 
(1ST), including the KdV equation, the nonlinear Schro
dinger equation, etc. 

A particular system of interest to us is the Benjamin
Ono (BO) equation 1

•
2 

~ + 2u ~ +,7('.a 2U = 0, (1) 
at ax ax2 

where the Hilbert transform JY'is defined as 

JY' /(x) = ~ go foc ~(X') dx'. 
1T -ocx-x 

It describes the internal waves in a fluid or plasma two-fluid 
system. Its Lax pairs have been constructed and the related 
inverse scattering transform for infinite boundary condi
tions has been solved. 

It is interesting to ask whether the solitonlike behavior 
also exists in nonintegrable systems. Despite the power of 
1ST methods for integrable equations, they are of little assis
tance in tackling problems related to nonintegrable systems, 
which are usually characterized by randomness and nonpre
dictability. 

In this paper, we introduce such a system-the dissipa
tive BO (DBO) equation, 

au au a 2u a 2u au - + ftJY' - + 13JY' -- - v --+ 2u - = o. 
at ax ax2 ax2 ax 

(2) 

It allows an exact truncation in nonlinear normal modes that 
behave like solitons in the integrable system. These nonlin
ear normal modes are localized pulses. They preserve their 
identities while interacting strongly with each other. How
ever, their motion could be highly random and unpredicta
ble. 

The powerful 1ST method that deals with the integrable 
system is not effective for the current system. We apply in
stead the pole expansion method to represent the solution 

.) Present address: Center for Nonlinear Studies, Los Alamos National Lab
oratory, Los Alamos, New Mexico 87545. 

analytically. This method is presented in Sec. II. In Sec. III, 
the pole expansion solutions are analyzed. We study both the 
linear and nonlinear structural stabilities of the pole expan
sion solutions, and conclude that the number of poles in the 
asymptotic state is determined by growth and damping. Sec
tion IV starts with a discussion of the completeness of the 
pole representation. We found that a variant of the scattering 
equation derived from those of the BO equation could be 
especially useful in exhibiting the pole solutions of this non
integrable equation. These analyses suggest that the pole 
representation is complete. A proof of the completeness for 
the pole expansion method is also presented in this section. 
Dynamics of the poles are examined in Sec. V. The soliton 
behavior, bifurcations of soliton orbits, and the chaotic mo
tions of poles are discussed. We conclude with a summary in 
Sec. VI. 

II. THE POLE EXPANSION METHOD 

The idea of using the pole expansion method to analyze 
solutions of nonlinear wave equations was initiated by Krus
kal. He used the pole representation to study the soliton solu
tions of the KdV equation. 3 Subsequently, Moser,4 Airault et 
al.,5 and the Choodnovsky brothers6 studied it for other 
equations. Later, Chen and Lee applied it to solve the BO 
equation and the nonintegrable DBO equation. 7•8 It was 
shown that the solution of the BO equation can be expressed 
as a linear superposition of simple poles moving on the com
plex plane. With infinite boundary conditions, we have 

-; 
u(x,t) = I + C.c. 

j x - xj(t) 

The poles are always complex conjugate pairs for real solu
tions. Later in the paper, only the poles in the upper half 
complex plane are mentioned. The solution with one pole is a 
permanent pulse traveling with uniform speed 

u(x - vt) = 2v/[ 4v2(x - vt)2 + 1]. 

It is therefore a soliton. 
A dissipative version of BO was introduced to describe 

turbulent flows in Ref. 8: 

au au a 2u a 2u au - + ftJY' - + 13JY' - - v --+ 2u - = o. 
at ax ax2 ax2 ax 

(2) 
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This equation embodies all the essential characteristics of 
fluid and plasma turbulence: namely, dispersion, nonlinear
ity, dissipation, and growth. What distinguishes this model 
from other turbulence models is that the present model can 
be solved exactly by pole expansion. 

In the more realistic periodic boundary conditions, the 
pole expansion solution ofEq. (2) is 

i/3+v n (X-Xj(t») u(x,t) = --- L cot +c.c., 
2 j= 1 2 

(3) 

where the period is normalized to 21T and the Xj move in the 
upper half plane. The cotangent function can be expanded as 

(

X - y) 00 2 
cot -- = L 

2 1= - 00 x - y + 211T 
It has a single pole in each period. To derive the dynamical 
equation for the poles, we Fourier transform Eq. (3) to ob
tain 

ak = (/3 + iv) ± e - ikx!, for k> 1, 
j= 1 

where 
00 

u(x,t) = L ak eikx, 
k= - 00 

with a _ k = at. The equation for the k th Fourier compo
nent becomes 

n {dX~ n (x~ - XT) L -'- - iJ.L + ( - i/3 + v) L cot -=''---
j=1 dt I#-j 2 

+ U/3 + v) ± cot(XI - x; )}e -Ikx! = O. 
1=1 2 

Since this is true for all k, we arrive at the equation of poles 

~x.(1) = -iJ.L- U/3+v)f cot('!"(x. -XI») 
dt ' ftj 2' 

+ U/3-v) ± cot('!"(Xj ~XT»). (4) 
1=1 2 

In the infinite period limit, where 

u( ± oo,t) = 0, 

we have 

n 1 
u(x,t) = - U/3 + v) L --+ C.c. (5) 

j= 1 X -Xj 

and 

dXj __ n 2 
- iJ.L - U/3+ v) ')--

dt ftj Xj - XI 

n 2 
+ U/3-v) L • . (6) 

1=IXj-XI 
We note that Eqs. (5) and (6) approach the BO limit when 
J.L and v approach zero. 

An interpretation of Eq. (3) is to consider each cotan
gent term with its complex conjugate as a nonlinear normal 
mode. The expansion resembles superposition in a linear sys
tem. These nonlinear modes are coupled with each other by 
Eq. (4). The nonlinear mode decompositions are exact, and 
assume great advantage over the usual linear mode decom
position method to study turbulence models since the latter 
involves an infinite degree of freedom while the former in
volve only a finite number of them. 

The nonlinear modes are solitonlike wave pulses. They 
preserve their identities in the dynamics, very much like soli
tons in the ordinary integrable KdV equation. In Fig. 1 we 
present a numerical obtained four-pole periodic solution. 
However, solitons in this dissipative system are not the same 
as solitons in a conservative system. For instance, the DBO 
solitons may grow or damp by receiving energy from other 
solitons, and after a collision both speeds and amplitudes can 
change in contrast to the elastic collision between solitons in 
the BO equation. In Fig. 2 the collision of two solitons in the 
DBO equation is plotted. 

III. ASYMPTOTIC STATE 

If the motion of the poles is measured in a frame moving 
with velocity vo, Eq. (4) becomes 

dXj (1) 
---= 

dt 
n (x.-X) - iJ.L - Vo - U/3 + v) L cot _, __ I 

I #-j 2 

n (X X*) + U/3 - v) L cot j - I • 

1=1 2 
(7) 

The center of poles on the complex plane is defined as 

FIG. 2. Collision of two DBO solitons in a two-pole case. Both pulses 
change height during the collision. The pulse at right before the collision 

FIG. 1. A periodic solution of a four-pole with YI = 0.07, Y2 = 0.18. slows down and the other pulse gains speed during the collision. 
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n 

X= ReX + ilmX= I X j • 

j= I 

(8) 

Summing over all indices j in Eq. (7), we have center veloc
ity 

dX = _ (i/L + vo)n + (iP - v) I cot(xj 
- XT). 

dt j.1 2 
(9) 

Choosing Vo = /LPI v, Eq. (9) gives 

Re X - (Plv)lm X = const. (10) 

Therefore, in the frame that moves with velocity 
Vo = /LPlv, the center of poles moves on a straight line which 
makes an angle () to the real axis: 

() = arctan ( viP). 

When the center shifts on the real axis, it also shifts on the 
imaginary axis. 

Equation (7) gives us some general idea about how 
poles move in the complex plane. First, no pole can move 
across the real axis. When a pole Xj moves close to the real 
axis in the upper half complex plane, its image, x;, moves to 
the real axis in the lower half plane simultaneously. The in
teraction between them becomes very large and Eq. (7) be
comes 

dx· (x. - X~) P + iv _1 ~ (iP _ v)cot 1 1 ~ ___ , 

dt 2 Imxj 

so that 

1m Xj (t) ~..J(lm Xj (OW + 2vt . 

When the imaginary part of Xj approaches zero, an infinitely 
larger repelling velocity prohibits any pole from moving 
across the real axis. 

We now tum to the case when two poles collide. When 
XI is very close to X 2, Eq. (7) is approximated by 

dx I ( f3 + ) t( x I - X 2 ) -~ - I V co , 
dt 2 

dX2 ( f3 + ) t( X 2 - x I ) -~ - I V co , 
dt 2 

and 

!!...(X
I 

_ x
2

) ~ _ 4(iP + v) . 
dt X I -X2 

(11 ) 

Assume X 12 = XI - X2' we have the solution 

Xi2 (t) = Xi2 (0) - 8(iP + v)t. 

In the above approximation, the trajectory is not time rever
sible if the damping v is nonzero, which shows that the tra
jectory x 12 is not symmetric to the imaginary axis. As a con
sequence of the asymmetric trajectory, the pulse velocities 
and amplitudes are changed in the collision. That is obvious 
because energy is not conserved in the inelastic collision. In 
an elastic collision (v = 0), two solitons will resume their 
speeds and heights. That has been the case in the BO equa
tion. Since collisions in the DBO equation are inelastic, both 
velocities of the solitons and their heights are changed, as 
shown in Fig. 2. 

In the case of the n-soliton solution, the general behav
ior of solitons is analytically intractable. However, we can 
investigate their structural stability. The analysis reveals 
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that only a finite number of poles survive in the time asymp
totic limit. If the system is nonlinearly stable, i.e., all poles 
are confined in a finite region, then the time averaged center 
velocity should be zero. The imaginary part of the center 
velocity of poles has9 

d v 
-lmX=n(2nv-/L) + 2 y2 «U-(U»2), 
dt 4(P + ) 

where angle brackets indicate a spatial average. This gives us 
the following theorem.9 

Theorem I: The n pole solution cannot be nonlinearly 
stable if 

2nv - /L>O. 

Assume a wave approximated by n poles is perturbated 
by a small perturbation represented by m poles with very 
large imaginary part, the center velocity oX of m poles has9 

d 
-lmoX~2m(2n+m)v-/L. (12) 
dt 

The center oX will shift to imaginary infinity if 

2m(2n + m)v - /L > O. 

None of the m poles can come down to joint the finite config
uration of an n pole, we then obtained9 the following 
theorem. 

Theorem II: The n pole solution is linearly stable, i.e., 
the pole at infinity would not move into the finite region, if 

n>/L/4v - !. 
Combining Theorems I and II, we obtain the condition 

for the number of stable nonlinear modes, 

/L/2v>n>/L/4v-~. (13) 

Ifwe call/Llvthe Reynold's number, we see that the number 
of stable nonlinear modes is finite and linearly increases with 
the Reynold's number. Since Theorem II gives only the con
dition for a solution to be nonlinearly unstable, a nonlinearly 
stable solution requries a stronger condition. In the numeri
cal simulations, a stable solution always prefers the smallest 
n (nmin ) which satisfies Eq. (13). If a solution is represented 
by n poles with n > nmin , numerical solutions show that those 
extra poles will move to imaginary infinity and the related 
nonlinear modes will decay. On the other hand, a solution 
truncated at n with n < nmin is structurally unstable. If one 
more pole is added to the system, it will stay in the finite 
region. Therefore, an n-pole solution is stable if 

/L 1 ------>->------
2(2n - 1) v 2(2n + 1) 

(14) 

In the next section, we will show that dynamic behavior 
of a smooth initial wave function can be represented com
pletely by the dynamics of poles. According to the above two 
stability theorems, the number of poles that will remain in 
the finite region is determined by the ratio of growth to 
damping. Therefore, in the asymptotic state, it is sufficient to 
study n-pole dynamics with n = nmin . 

IV. COMPLETENESS THEOREM 

We have shown that pole expansion can be exactly trun
cated for the dissipative BO equation. However, it is impor-
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tant to know whether the pole representation is complete 
and converges to a solution of the DBO equation. We would 
like to study this problem before we go on to discuss the 
general properties of the solutions. 

For a given periodic wave function u, we want to know 
under what conditions the function can be represented by 
pole expansion, 

U(X,t) = I I/lj(x,t), 
j 

where 

{ (
X - Xj (t») 'J I/lj (X,t) = 'I] cot 2 - I + C.c., 

(15) 

(16) 

Xj is in the upper half plane, and 'I] = - U/3 + v) is a com
plex number. A constant has been subtracted from each 
mode so that I/lj --+ 0 as Xj --+ i 00 and the series could be conver
gent. 

We start with the finite-pole approximation of u: 
m 

Um (x,t) = I I/lj (X,t). 
j=1 

Its Fourier components are 

m • * ~ -ikx'-ak = -1'1] ~ e J, 

j=1 

(17) 

(18) 

Suppose U has a uniformly convergent Fourier expansion, 
00 

u(x,t) = I ake;kx. (19) 
k= - 00 

If U m (x,t) and U are identical, we must have 

m . * ~ -;kx· ak = -1'1] ~ e J, (20) 
j=1 

The equations for negative k are determined by the complex 
conjugate ofEq. (20) because U is real. Equation (20) can be 
rewritten as 

m 

Ck = I wt, k = 1,2, ... ,00, 
j=1 

(21) 

where Ck = iakl'l]* and Wj = e - ix!. Obviously, 0 < IWj 1< 1, 
and Wj are located within the unit circle since the poles Xj are 
in the upper half plane. To determine the poles for a given u, 
we need to solve Eq. (21), which consists of an infinite num
ber of polynomial equations. Approximately, we solve only 
the first set of n equations, 

m 

Ck = I wt, k = 1,2, ... ,n. 
j= 1 

(22) 

If we assume m = n, the Wj are uniquely determined by a 
corresponding nth-order polynomial, 

n n 

Pn (w) = II (w + wj ) = I ajw
n

- j
, 

j= 1 j=O 

where 

a; = I Wj, Wj, •. 'Wj,' 
n>j. >i1.> ... >j;> 1 

(23) 

(24) 

To relate a; and Ck , we use induction to find the recursion 
relation 
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1 n+1 

a o = 1, a l =c1, a n+ 1 =-- I (-l);+lan +I_;c;, 
n + 1 ;=1 

(25) 

From Eq. (24), an +; equals zero if U has only n poles, be
cause we have at most n different Wj to choose. We assume 
that the polynomial Pn (w) does not have zero roots, because 
zero roots do not contribute to U in the pole expansion. 

A new polynomial Qn (z) which has roots Z; = l/w; is 
defined as 

n 

Qn (z) = I a;z;. (26) 
;=0 

Now let n go to infinity; then 
00 

Q(z) = I a;z;. (27) 
;=0 

For the function with one Fourier component, 
U = ake;kx + C.c., Q(z) can be solved easily: 

Q(z) = exp( - iak ( - z) k 1'I]*k). (28) 

Assuming U = Ua + Ub, the two power series Qa (z) and 
Qb (z) can be formulated separately from the Fourier coeffi
cients of Ua and Ub . One can prove that the power series Q, 
for u, is exactly the product Qa (z) Qb (z). Therefore, the 
power series Q(z) has the general form 

Q(z) = exp( - R(z», (29) 

where 

R(z) = - /3 + ~v i ~( - Z)I. 
v-/3 1=1 I 

An n-pole approximation is obtained by solving for the 
zeros of the partial sum Qn numerically. When n approaches 
infinity, poles may have no limit or all poles tend to imagi
nary infinity. As an example, considering the single mode 
case, the partial sum ofEq. (28) has n zeros located on the 
annulus 10 

0.2k Int(nlk) 1'1]1 < lak Ilzlk < (Int(nlk) + ~)k 1'1]1, 

where Int means integer part. When n approaches infinity, 
all poles approach infinity. Although each nonlinear normal 
mode contributes infinitesimally, their total contribution is 
finite. It is important to point out that the pole expansion is 
not unique. If m > n in Eq. (22), we can have many m-pole 
approximations that exactly represent the first n Fourier 
modes. We have discussed a m = 2n expansion when U is 
decomposed into two parts (u=u a +ub ). Similarly, an 
(n X n )-pole expansion can be found by solving Eq. (28) for 
each Fourier mode. This leads to the following theorem. 

Theorem III: If a function u, which is periodic in X, is 
bounded and piecewise smooth, then, for any E at given t, 
there is an N such that, for any n > N, 

IU n (x,t) - u(x,t) I <E, 
where Un (X,t) is the n-pole approximation of u. 

A detailed proof is given in Appendix A. 
Theorem III shows that the pole expansion is a complete 

representation, like the Fourier series, and that any 
piecewise smooth periodic function can be approximated by 
finite number of poles. A special propertity of the DBO 
equation is that the finite pole expansion is an exact solution 
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and evolution of poles is simply obtained from Eq. (4). To 
show that pole expansion is complete for the solutions of the 
DBO equation, we need to prove that a small difference 
€ = U - Un at t = 0 remains small for any t> 0, where Un is 
an n-pole expansion. If the true solution U is assumed to be 
piecewise smooth, then € is piecewise smooth and can be 
approximated by m poles Yj' In Theorem II we have shown 
that the center velocity of poles Yj will move to imaginary 
infinity when n is larger than or equal to J,l/4v - 0.5. Assum
ing the imaginary parts of Yj are very large, they satisfy the 
equations 

d 
dt ImYj = 2v(2n + 1) - J,l 

-21m (i/3+v) L "j "I . { 
m; exp(;11 -;11) } 

1 #j exp(iYj - iYI) - 1 

As a result of the redundancy of the pole expansion, it is 
always possible to represent € with poles near imaginary in
finity. Whether a pole Yj moves to infinity depends on the 
interaction with all other poles. While the interaction with 
poles in the finite region (Xi) apparently forces Yj to move 
away from the real axis, the interaction with other poles in 
the perturbation could push Yj down to the real axis when 
some YI are very close to Yj' However, when Yj is pushed 
down, it separates from the other pole and the interaction is 
weakened. Eventually, Yj will move to imaginary infinity 
again. We have tested many cases where a finite pole config
uration is perturbated by m poles whose imaginary part is 
greater than any pole in the finite configuration. In all cases, 
poles in the perturbation move sooner or later to infinity, no 
matter how the poles are distributed. Therefore, it seems that 
€ will eventually decay when n is very large, because not only 
does the center of the m poles move to infinity, but so does 
every pole. We conjecture that the finite-pole expansion is a 
complete set of solutions. 

We further examine the completeness by comparing the 

2 •• 
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t 

FIG. 3. Comparison of the pole expansion method and the split operator 
method. Both cases are integrated from the same initial condition with 
ro = 0.07 and rz = 0.25. In the pole expansion case, solution is represented 
by 120 poles. The solution in the split operator method is truncated at the 
128th Fourier mode. The..'f 2 norm of the difference between die two solu
tions from t = 0 to 6 is plotted in the figure. In this period, 110 poles move 
away from the real axis to the region where the imaginary part is greater 
than 20. 
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pole expansion solutions with the solutions integrated by 
other methods. The DBO equation can be numerically inte
grated by either the pole expansion or the split Fourier meth
od. II If the solution is well behaved and the numerical 
scheme is stable, then the approximate solution of the split 
Fourier method can be arbitrarily close to the exact solution. 
On the other hand, if the pole expansion solution is not com
plete, one could expect solutions from the split Fourier 
method that do not agree with that obtained from the pole 
expansion. 

We carried out a large number of numerical studies in 
which solutions of the pole expansion are compared with the 
solutions of the split Fourier method. Cases studied cover a 
wide region of parameters (damping, dispersion, and dissi
pation) and initial conditions. In Fig. 3, a pole expansion 
solution and a solution from the split Fourier method with 
the same initial condition are compared. The initial condi
tion is randomly chosen and is approximated by 120 poles. 
In the numerical integrations, only poles with imaginary 
part less than 20 are kept. There are only ten poles left when 
the pole equation is integrated to t = 6 in this example. The 
.!t' 2 [0,21T] norm of the difference of the two solutions is 

€ = f1T Iup (x,t) - uf(x,t) Idx, 

where up is the pole expansion solution and uf is the solution 
from the split Fourier method, which is on the order of 10-5, 

very small compared to the order unity .!t' 2 norm of Up. Both 
up and uf converge to the same asymptotic state when they 
are integrated for a longer period of time. In the region where 
the asymptotic states are stationary or periodic (Fig. 4), the 
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FIG. 4. Comparison of the asymptotic state of the pole expansion method 
and the split operator method in a periodic case with ro = 0.07 and 
r2 = 0.185. (a) and (b) are trajectories of the first two Fourier coefficients 
from the pole expansion solution, which are exactly the same as (c) and (d) 
from the split Fourier method. 
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results show that both methods give identical asymptotic 
solutions. In the cases for which the asymptotic solutions are 
chaotic in the pole expansion method, the split Fourier 
method also obtains chaotic solutions, although it is difficult 
to determine if they are really identical. The numerical stud
ies show that the solutions of the pole expansion and the 
solutions of the split Fourier method converge to the same 
solutions in all cases studied. 

An initial m-pole wave will converge to an n-pole time
asymptotic solution (m > n) with n satisfying relation (6). 
All m - n poles move rapidly to imaginary infinity and re
lated nonlinear mode decay. How an initial wave evolves to 
the time-asymptotic solution in the split Fourier method can 
be studied in the scattering data analysis used to determined 
the number of poles (number of eigenvalues) of any wave. 
The scattering equation is derived from the scattering equa
tion for the BO equation. 12 The Lax pair for the BO equation 
is the following: 

iat/J+ +P+ut/J+ -~[t/J+(ioo) 
ax 2 

+t/J-( -ioo)] = -At/J+, (30a) 

i at/J+ + a 2
t/J+ + 2iA at/J+ _ 2it/J+ P +!!!.. = 0, (30b) 

at ax2 ax ax 

where + ( - ) means t/J± are analytic in the upper (lower) 
half plane, and 

P ± =!(1 ± JIt"') 

is the projection operator. In the BO equation, the scattering 
data reveal many properties of the pole expansion solutions. 
For example, there is a connection between eigenvalUes and 
the poles in the solution u. Here we apply the first scattering 
equation, Eq. (30a), to the DBO equation to find the num
ber of poles from the eigenvalues. 

When u is an n-pole expansion, Eq. (30a) with a period
ic boundary condition can be reduced to an equation of n X n 
matrices 

l..ff +A..FI =0, 

where..F is the unit matrix and the matrix elements of..ff are 
given in Appendix B. Hence the number of eigenvalues in 
Eq. (30a) equals the number of poles in the function u. Us
ing the pole equation of the DBO equation, we can calculate 
the time dependence of eigenvalues. 

Numerical calculation of the scattering equation for any 
function is more conveniently done in Fourier space. The 
scattering equation (30a) with the same boundary condi
tions is transferred to 

00 

- kak + Aak + L Uk _Ial = 0, k = 1,2, ... ,00, 
1=1 

f u_lal=~[t/J+(ioo)+t/J-(-ioo)], 
1=1 2 

where ao = 0 and 

511 

00 

t/J+ (x) = L ak eikx, 
k=1 

00 

u(x) = L uleilx. 
1= - 00 
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(3Ia) 

(3Ib) 

Note that Eq. (3Ib) merely gives the relation between t/J+ 
and t/J-, Eq. (3Ia) is sufficient to solve for the eigenvalues 
A'S. Since Eqs. (3Ia) and (30a) are solved in the upper half 
plane with the same boundary values, the two equations 
must have exactly the same eigenvalUes. However, when Eq. 
(3Ia) is truncated at kmax and solved numerically, in addi
tion to n eigenvalues very close to those solved in Eq. (30a), 
we also obtain many eigenvalues close to integer n + I, 
n + 2, ... , because of truncation. Therefore, the number of 
noninteger eigenvalues in Eq. (3Ia) equals the number of 
poles when u has the pole expansion. 

Numerically, we integrate the wave function u by the 
split Fourier method, and use that to determine the time 
evolution of the eigenvalues. The time evolution of A 's are 
plotted in Fig. 5. Figure 5 (a) shows a solution asymptotic to 
a peroidic orbit. In the beginning, all 128 A'S are noninteger. 
A large number of these noninteger eigenvalues decay rapid
ly to integers and leave us with only four noninteger A 's oscil
lating with the same frequency. In Fig. 5(c), we show an
other solution that converges to a chaotic orbit. Starting 
with a large number of noninteger eigenvalues, the system 
quickly reduces the number of noninteger eigenvalues to 
only 4 that vary chaotically. For the same parameters used in 
the above two cases, a four-pole periodic and a chaotic 
asymptotic solution are obtained in the pole expansion. As 
shown in the above examples and all other cases studied, the 
solutions in the split Fourier method approach an asympto
tic solution just like the pole expansion solution: they con
verge to an n-pole solution and many poles move to imagi
nary infinity. 

The numerical results confirm that the pole expansion 
solution is complete. Although an initial wave may need a lot 
of poles to approximate, many poles move to the imaginary 
infinity rapidly and the solution asymptotes to an n-pole so
lution with n determined by the Reynold's number. In the 
following section, the n-pole dynamics is studied. 

v. DYNAMICS OF POLES 

In studying the pole dynamics, it is convenient to re
write the equations in dimensionless form, 

au au a 2u a 2u au - + JIt"'- + Y2J1t"'-- - YI-- + 2u - = 0 
at ax ax2 ax2 ax 

(32) 

and 

dxj(t) 
---= 

dt 
Y2 ~ (Xj -XI) - i --- 2(iY2 + YI) ~ cot ---
YI I#j 2 

n (x. -xr) 
+ 2(iY2 - YI) L cot J , 

1=1 2 
(33) 

where 2YI = vlll and 2Y2 = f3 Ill. In the dimensionless sys
tem, the number of poles in the asymptotic state is deter
mined solely by Y I' 

Before presenting our numerical result of the pole dy
namics, we would like to discuss first an analytic solution of 
the system. A nonlinear traveling wave solution can be con
structed in the general n-pole case, in which 

Re Xj = 2j1Tln, 1m Xj = XI' 
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FIG. 5. Scattering data for two cases. In both cases, the parameters predict 
four poles in the asymptotic states. The number of nonintegral eigenvalues 
decreases t04 rapidly in the case with Yo = 0.07 and Y2 = 0.18. The first ten 
eigenvalues are shown in (a). Finally only four nonintegral eigenvalues os
cillate periodically and all others are integers. The first six eigenvalues are 
plotted in (b). In another case with Yo = 0.07 and Y2 = 0.08, only four non
integral eigenvalues remain and oscillate stochastically (c). 

The poles are distributed uniformly along the real axis with 
the same imaginary value. The equations of poles become 

dXj = _ i _ YI _ 2(iY2 + YI) nil cot(hT) 
dt Y2 1= I n 

+ 2(iY2 - YI) ± cot(hT + iX/), 
1=1 n 
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or 

.!!...- Re Xj = Y2 + 2nY2 coth(nx/), 
dt YI 

d 
- 1m Xj = - 1 + 2nYI coth(nx/), 
dt 

where x/could be solved from 

coth(nx/) = 1!2nYI' 

(34a) 

(34b) 

The numerical simulation shows that when Y2 is large, the 
traveling wave is stable [Fig. 6(a)]. Another stationary 
wave is observed when Y2 is very small; in this case, poles are 
not evenly distributed and the solution is not tractable ana
lytically [Fig. 6(b)]. 

The dimensionless equation (33) is integrated numeri
cally by a variable-order variable-step predictor-corrector 
method. Since we are interested in asymptotic behavior in 
the majority of cases, the equation has been integrated for a 
sufficiently long time to let the system settle down to an 
asymptotic state. In the rest of this paper, all solutions dis
cussed are time-asymptotic solutions. 

Since Theorems I and II predict the number of poles in 
the asymptotoic state from parameter YI' we proceed to 
study n-pole cases with Y I satisfying Eq. (14). The first case 
is the simplest case, namely, the case with one pole. The one
pole solution asymptotes to a traveling wave. The cases with 
two poles are more complicated. They exhibit both traveling 
waves and periodic waves. We did not find any chaotic solu
tions in the two-pole cases in our numerical studies. The 
three-pole cases start to show chaotic behavior. When Y2 is 
very large or very small, the solutions are asymptotically 
stationary. When Y2 is varied, the fixed point orbit changes 
to a perodic orbit; then period doubling bifurcations lead to a 
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FIG. 6. Stationary waves. (a) A stationary wave of ten poles at 
Y2 = 0.00122 and Yo = 0.001, in which poles are evenly distributed along 
the real axis; (b) a stationary wave of ten poles when Y2 is changed to 0.1. 

Qian, Chen, and Lee 512 



                                                                                                                                    

chaotic orbit. There are usually several chaotic regions in 
parameter space. 

The bifurcations of the four-pole solutions are illustrat
ed in a Y l-Y2 phase diagram in Fig. 7. Beginning with a fixed 
point with Y2 > 0.3, the attractor bifurcates to a limit cycle 
through Hopf bifurcation when Y2 is decreased. The limit 
cycle doubles its period and then bifurcates to a two-torus. In 
Fig. 8(a), one such two-torus is plotted on the complex 
plane. Figure 8(b) shows in the Poincare return map that 
the two-torus has two fundamental frequencies. We notice 
that a part of the period-2 region and entire two-torus region 
are overlapped with another period-l region, as shown in 
areas 01 and 02 in Fig. 7. In those regions, the DBO equa
tion has two different asymptotic solutions for the same pa
rameters but different initial conditions. Figure 8 is an exam
ple of a four-pole case with two different asymptotic states, a 
periodic and a quasiperiodic orbit with different basins of 
attraction. 

As Y2 decreases, the system has only one attractor again, 
the period-! orbit. The period-l orbits double their period's 
infinity many times to become chaotic orbits. In Fig. 9, an 
attractor starts with a period-2 orbit at Yl = 0.07 and 
Y2 = 0.1899; then when Y2 is changed to 0.178, the attractor 
becomes a period-4 orbit. As parameter Y2 is varied, the at
tractor goes through an infintiy period doubling cascade un
til it becomes a chaotic orbit. Period doubling bifurcations 
have been found in the five-pole case and all other n-pole 
cases with n > 5 that we have studied. The period doubling 
bifurcation to chaos is the most frequent route to chaos in 
this dynamical system. 

Next to the chaotic region is the region of a period-l 
limit cycle and then another two-torus region mixed with 
many chaotic, periodic orbits. Bifurcations in the two-torus 
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FIG. 7. Bifurcations of the four-pole case in the Y'-Y2 plane. Chain-dotted 
lines denote period doubling bifurcation and dashed lines mark Hopfbifur
cation. Attractors are period-n limit cycles in area Pn. In the shaded region 
01, attractors can be a period-2 or a period-1 orbit. The period-2 orbits 
bifurcate to two-tori, and period-1 orbits remain the same in the other 
shaded area 02. In region T, attractors are two-tori, most times, mixed with 
periodic orbits and chaos. Chaotic orbits in the upper left comer are un
bounded. 
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(0) REAL (h) REAL 

FIG. 8. Two four-pole orbits for the same parameter. (a) A periodic orbit 
(dashed line) and a two-torus (dotted line) coexist for the same Y, = 0.07 
and Y2 = 0.194, but different initial conditions. Only one pole is plotted; (b) 
same as (a). Re x2 vs 1m x2 when 1m X, = 0.13. The surface of section plot 
shows that the attractor is a two-torus. 

region, like phase locking, period doubling to chaos, and 
intermittency, were studied, in detail, in our early paper.9 

There are many periodic, two-torus, and chaotic regions 
when Y2 is further decreased. It eventually becomes a simple 
fixed point again for very small Y2. 

We often found that an attractor is chaotic but poles still 
oscillate irregularly around the previous nonchaotic orbit. 
For instance, chaotic orbits in the chaos regions between PI 
and P2 in Fig. 7 are bounded. Chaos in the other chaos re
gion, in the left upper comer of Fig. 7, are unbounded. In 
unbounded chaos, the poles stay close to the previous attrac
tor for a long time, then they move on to another attractor, 
and so on. The motion of a pole eventually covers a whole 

(h) REAL 

(e) REAL 
(d) REAL 

FIG. 9. The period doubling cascade in a four-pole case. Y, is fixed at 0.07. 
Only one pole is plotted on the complex plane. (a) A period-1 orbit for 
r2 = 0.1899; (b) a period-2 orbit at Y2 = 0.178; (c) a period-4 orbit at 
r2 = 0.175; (d) a chaotic orbit for Y2 = 0.170. 
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FIG. 10. Time evolution ofa four-pole unbounded chaos for y, = 0.07 and 
Y2 = 0.08. The chaotic motion of poles covers the entire period and poles 
move from one period to the next. 

period. The time evolution of a unbounded chaotic solution 
in the four-pole case is illustrated in Fig. 10. The bifurcation 
to the unbounded chaos is a chaotic transient. The present 
example of the chaotic transient is caused by a boundary 
crisis. 13 A period-2 saddle point located on the basin bound
ary of the two-torus is observed to collide with the two-torus. 
Crises are considered to be the major causes of chaotic tran
sients in high-dimensional dynamical systems. 

The numerical integration was performed for cases of 
up to 100 poles. Similar attractors ate found in these cases, 
but the pole behavior is more complex and the chaotic region 
seems broader. For example, in the 20-pole case we noticed a 
quasiperiodic orbit with three fundamental frequencies. 
Both the correlation functions and the characteristic expo
nents suggest that the most chaotic state in the system is the 
unbounded chaos with a larger number of poles, which is a 
homogeneous turbulence with very short coherent scale.9 

Therefore, the larger the number of poles, the more turbu
lent a system is likely to become. These are also the cases of 
very large Reynold's number. Detailed analysis on bifurca
tions and chaotic behavior in the DBO equation is presented 
in a separate paper.9 

VI. SUMMARY 

The DBO equation, as a one-dimensional wave equation 
of a magnetized plasma with an intemallayer, has been stud
ied by a solitonlike nonlinear mode expansion. The poles 
could completely represent the solution and the pole expan
sion solution converges to a true solution if we assume the 
solution is piecewise smooth. The nonlinear mode decompo
sition is different from the linear mode decomposition, or 
Fourier expansion, in that the former gives an exact solution. 
In the time-asymptotic states, the nonlinear degrees of free
dom are always finite and are determined by the Reynold's 
number. To study the turbulent behavior, we only need to 
study the system of a finite number of poles. 

The n-pole systems are studied numerically. The nonlin
ear modes behave like solitons in an integrable system; how
ever, these solitons move irregularly because of the driving 
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and the dissipation in our turbulent system. Most kinds of 
bifurcations observed in simple nonlinear mappings or low
er-dimensional dynamical systems are observed. When the 
number of solitons is large, the system may display highly 
chaotic motion, which is reminiscent of strongly developed 
turbulence. The studies on bifurcations in the system are far 
from complete, mainly because of the complexity of systems 
with a larger number of poles and the enormous amount of 
computation needed for studying those systems. 
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APPENDIX A: PROOF OF THEOREM III 

Suppose that an n X n pole expansion is solved from Eq. 
(28) for the first n Fourier modes. The zeros Zj satisfy 

IZj I> IZmin I = min{ (0.2k(Int(nlk»/la k I) 11k; h;;n}. 

Without loss of generality, the zeros are assumed to be 
bounded by 

IZmin I = (n/la n I) \/n. 

We then Can prove Theorem III. 
Proof Assume U has period 21T and is a bounded and 

piecewise smooth. Then U(X,t)E2'2[0,21T] and has a uni
formly convergent Fourier series [Eq. (19)]. The trunca
tion error of the Fourier series 

approaches zero as n goes to infinity. Because the n X n pole 
expansion approximation matches the first n Fourier com
ponents exactly, we have 

Iun(x,t) - U(X,t) I 

= 117 i: f Zj- ke
ikx 

- i: aki
kx 

1 k=lj=1 k=1 

'117lk=t+lj~1 Izj-kl + Ik=t+1 akeikXI 

n2 1z 1- n ,1171 min + E~ 
IZmin I - I 

One can show that 

lim [n2lzmin 1- nl( IZmin I - 1)] = 0, 
n-oo 

(AI) 

because Ian 1< O( lIn2
) for a piecewise smooth function. 14 

Therefore, 

n- QO 

and there is an N such that EN'E. Q.E.D. 
The partial sum of Eq. (28) is not easy to solve numeri

cally. We propose the following numerical scheme to solve 
Eq. (22). The first pole is solved from WI = CI' In the next 
step, the C i (i> I) are redefined as 
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Ci = Ci - W~. 

To match C2, we find W 2.1 and W 2,2' 

W2,I =~, W2,2 = - W2,1' 

and redefine Ci U> 2) again. Repeating this proce<iure, we 
have 

Wn,j = (cnln)exp( - ij21Tln), j= O,l, ... ,n - 1. 

If all Wi,j are inside the unit circle, a pole expansion is found 
for a given function. In the case where W k,j are not inside unit 
circle, we can use more poles to represent Ck , 

Wk,j = (cklki )exp( - ij21Tln), j = O,l, ... ,nXi-:- I, 

where I is an integer larger than ICk Ilk. Using this scheme, 
poles can be outside any disk Izl > r, although a larger r 
means a lot more poles in the expansion. 

APPENDIX B: MATRIX ELEMENTS OF J( 

Suppose u' is a pole expansion function 

a n (X-x.) u' (x,t) = - I cot ---' + c.c., 
2 j= I 2 

(Bl ) 

where a = - UP + v). If we can map the function to a pole 
expansion solution of the BO equation, we can calculate 

scattering data from Eq. (30a). As we discussed before, in a 
pole expansion solution of the BO equation, all terms must 
have the same residue - i. Therefore, we need the following 
operator to map the function (36) to the function with resi
due - i: 

u = O/2a)(Jlru' - iu') + (l/2a*)(Jlru'* + iu'*). 

If u has a pole expansion, t/J+ is periodic and satisfies the 
boundary condition t/J+ (i 00 ) = 0, the eigenvalues in Eq. 
(30a) can be solved for as follows. 15 Equation (30a) is re
duced to 

at/J+ 1 n [(X-X.)] -- = i(u -}.,)t/J+ - - I t/J+(Xj ) cot --' + i . 
ax . 2 j= I 2 

The equation has the solution 

t/J+ (x)J(x) I~" 

1 IX n [(X' - x.) ] = - - dx' J(x').~ t/J+(xj ) cot -2-' + i , 
2 x" ,-I 

where the Xj are poles and 

J(x) = eiAx J\ [i coth(lm xj ) _ cot( x ~ Xj )]. 

If u has only one pole, t/J+ satisfies 

{it/J+ (x)coth(lm XI) - {t/J+ (x) - t/J+ (XI »cot(x - XI) - i t/J+ (XI) {1 _ coth(Im XI »}eiAXI x 

2 2}" x" 

= - ~ t/J+(xl)[coth(Im XI) - 1 + u ]Ix 

dx' eiAX' cot(X' - XI). 
2 x" 2 

Since all terms on the left-hand side are analytic in the upper half plane and the integration on the right side is not, we have 

}.,=Hl-coth(lmxl». 
For the two-pole case, similar analytic condition requires coefficients before integrations 

Ix (X' -x.) 
dx' eiAX' cot --2-' , j = 1,2, 

x" 

to be zero, which gives 

t/J+(X
I
){1 +coth(lmx

2
) +i 1-2coth(Imxl)coth(lmx2 ) +cot

2
{(X I -x2 )/2) +u} 

2(cot{(xl - x 2 )12) + i coth(lm XI» 

+ t/J+ (X2 )( 1 - i cot( XI ; X2 )) = 0, 

t/J+(X
2

) {I + coth(Imxl ) + i 1- 2 coth(lmxl)coth(lmx2 ) + cot2{(x2 - x l )12) + u} 
2(cot{(x2 - x l )/2) + i coth(lm x 2 » 

+ t/J+(X I )( 1 - i cot( X2; XI )) = 0. 

Because X I and X 2 are independent, the above equation is equivalent to an equation of matrices 

IJ( +}.,/I =0, 

where / is the unit matrix and the matrix elements of J( are 

J(i,i =.!{1 +coth(lmx
2

) +i 1-2coth(lmxl)coth(lmx2 ) +cot2{(X I -X2)/2)}, i= 1,2, 
2 2( cot{ (x I - x 2)/2) + i coth(lm XI» 

J(i,j =f{l-icotCi ~Xj)}, i#j. 
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In general, Eq. (30a) with a periodic boundary condi
tion can be reduced to an equation of n X n matrices if u has 
an n-pole expansion. Hence the number of eigenvalues in Eq. 
(30a) equals the number of poles in function u. Using the 
pole equation of the DBO equation, we can calculate the 
eigenvalues at any time t, and they are usually time depen
dent, in contrast to the eigenvalues of the BO equation, 
which are constant in time. 
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The evolution of the Bel-Robinson (BR) energy in Gowdy T3 X R space-times is studied. It is 
found that a quantity closely related to the BR energy decreases monotonically as the space
time evolves toward the final singularity, except in the special case of Kasner data where this 
quantity is constant. 

I. INTRODUCTION 

Since its introduction in 1959,1,2 the Bel-Robinson ten
sor has found wide application, including many uses involv
ing the BR energy.3,4 In this paper, we calculate the BR 
energy for Gowdy T3 X R space-times.s We then examine its 
evolution and find that, for Gowdy space-times which are 
not Kasner (Le., no third Killing field), a closely related 
quantity decreases monotonically as the space-time evolves 
toward the singularity. In the case of Gowdy metrics which 
are Kasner,6 this quantity is constant. The quantity differs 
from the BR energy only by a conformal factor in the inte
grand. Our interest in this result stems from the possibility of 
using the BR energy as an energy-type norm to control cer
tain Sobolev norms in looking at global existence problems. 

In Sec .. II of this paper, we review the parametrization of 
the Gowdy T3 X R metrics and display, in an orthonormal 
basis, the components of the Riemann curvature tensor. 
These Riemann components are expressed in terms of a con
venient set of functions. In Sec. III, the BR energy is calcu
lated and expressed in terms of this set of functions, as is the 
derivative with respect to the time parameter of the quantity 
mentioned above. We then show that this derivative is nega
tive semidefinite, and zero only for Kasner data. Finally, in 
Sec. IV, we discuss how the BR energy might be used in 
global existence problems. 

II. GOWDY T3XR SPACE-TIMES 

The Gowdy metrics with topology T3 X R are character
ized by an Abelian two-dimensional spacelike isometry 
group. Following Gowdy,S one can parametrize these met
rics in the form 

d~ = e2Q( - e- 2T dr + d( 2) + e- T(cosh W 

+ cos <I> sinh W)dx2 + 2e - T sin <I> sinh W dx dy 

+ e - T(cosh W - cos <I> sinh W)dy, (1) 

where a, W, and <I> are functions of 1" and 0 only. The coordi
nates (O,x,y) are periodic coordinates on each spatial T3 
with a I ax and a lay as Killing fields. The time coordinate 1"is 
related to the usual Gowdy time coordinate t by the relation 
e - T = t. Hence 1" runs from - 00 to + 00, and the space
time singularity occurs at 1" = + 00. 

Working in terms of the time-compatible orthonormal 
basis 

0 0 = eQ 
- T d1", 

0 1 = eQ dO, 

0 2 = e1l2( -T+ W)(cos(<I>/2)dx + sin(<I>/2)dy) 

0 3 = el12(-T- Wl( - sin(<I>/2)dx + cos(<I>/2)dy), 

we find the components of the Riemann curvature tensor 
and from them, the Einstein equations. With the notation 
i: = at la1" and/,: = at lao, the Einstein equations are 

a= _HW2+ W,2e-2T 

+ (<i>2 + <I>'2e -2T)sinh2 W - 1] =: -1M, (2a) 

a' = -!( WW' + <i><I>' sinh2 W) =: - !N, (2b) 

ii + a _a"e- 2T 

= _![ w2 _ W,2e-2T 

+ (<i>2 - <I>,2e -2T)sinh2 W - 1], (2c) 

W - W"e- 2T = !(<i>2 - <I>'2e- 2T)sinh 2W, (2d) 

(<I>-<I>"e- 2T)sinh W= -2(W<i>- W'<I>'e- 2T)cosh W. 
(2e) 

We use Eqs. (2a)-(2c) to eliminate a, ii, a', and a" from the 
Riemann components. To simplify the resulting expressions, 
we define the following set of functions: 

A: = W2 - W'2e-2T + (<i>2 - <I>'2e -2T)sinh2 W - 1, (3a) 

B: = 2W + !WM + W'Ne- 2T - 4>2 sinh 2W, (3b) 

C: = 2W' + !W'M + WN - W' - <i><I>' sinh 2W, (3c) 

D: = 2( W<I>' - W'<i»sinh W, (3d) 

E: = (2<i>' + !<I>'M + <i>N - <I>')sinh W 

+ 2( W<I>' + W'<i»cosh W, (3e) 

F: = (2<1> + !<i>M + <I>'Ne - 2T)sinh W + 4W<i> cosh W. 
(3f) 

The Riemann components in the time-compatible orthonor
mal basis can then be written as 
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R ?Ol = R ;23- = le2T- 2a( - A), 

R ~02 = R j13 = le2T - 2a(!A + B), 

R ~03 = R 112 = le2T - 2a(!A - B), 

R~21 = -R~31 =leT- 2a( -C), 

R?23 = leT- 2a(D), 

R~13 = leT - 2aqD + E), 

R~12 =leT- 2a(!D-E), 

R ~03 = R 113 = le2T - 2a(F). 

In the next section, we will calculate the BR energy and its T 

derivative in terms of this set of functions. 

III. THE BEL-ROBINSON ENERGY 

In four dimensions, the Bel-Robinson tensor is defined 
as 

where 

R • . -1& Ref 
abed· - 2""ab4' cd 

is the left dual of the Riemann curvature. For a spatial hyper
surface 1: with unit normal na the Bel-Robinson energy is 
defined to be 

where r is the three metric on 1: and rr is its volume ele
ment. 

Here, in the time compatible orthonormal basis, we take 
na = (1,0,0,0) and calculate: 

= _1_ r [R °IOlR °\01 + R °202R °202 + R °303R °303 + 2R °203R °203 
811' JT' 

+ R °123R ° 123 + R °213R ° 213 + R0312R ° 312 + R 2021R 2021 + R 3031R 303 tlea- T d 3x 

= _1_ r [iA 2 + B2 + C 2e- 2T + ~D2e-2T + E 2e- 2T + F2]e3T-3a d 3x. 

6411'JT' r----------------------------------------
To study the evolution of E DR with respect to T, we turn to 
the closely related quantity Q defined as 

Q = L [iA 2 +B2 + C 2e- 2T + ~D2e-2T 

+ E 2e- 2T + F2]d 3x. 
Note that the integrands of Q and E DR differ only by a con
formal factor. 

Taking the derivative of Q with respect to T, we get 

Q= 2 r [aAA +BB+ CCe- 2T - C 2e- 2T + ~DDe-2T 
JT' 

_ ~D2e-2T + EEe- 2T _ E 2e- 2,.. + FF]d 3x. (4) 

We proceed by calculating the T derivative of A, B, C, D, E, 
and F, expressing the derivative in terms of the functions 
themselves. The resulting expressions are 

A = WB - W'Ce- 2T - !A(M + I) + ci>Fsinh W 

- <1>' Ee - 2,.. sinh W, 

B = C'e- 2T - ~B + ~WA + ci>Fcosh W 

- <1>' Ee - 2T cosh W - ~<I>' De - 2T sinh W, 

C = B' - !C + ~ W'A + ci>E cosh W 

- <I>'Fcosh W - ~ci>D sinh W, 

D=<I>'B sinh w-ci>Csinh W+ WE- W'F+!D(1-M), 

E = F' -!E - ci>c cosh W + <I>'B cosh W 

+ ~<I>'A sinh W + ~WD, 
F= E'e- 2T - ~F- ci>Bcosh W + <I>'Ce- 2T cosh W 

+ ~ci>A sinh W + ~W'De-2T. 

518 J. Math. Phys., Vol. 31, No.2, February 1990 

I 
Substituting these into Eq. (4) gives 

Q= L .• [3WAB- iA 2(M + 1) + 3ci>AFsinh W 

+ 2(BC)'e- 2T - 3B 2 - 3C2e- 2,.. - 3ci>CDe- 2T sinh W 

+ 3WDEe- 2T - ~D2(M + l)e- 2T + 2(EF)'e- 2T 

_ 3E2e- 2T _ 3F2]d 3x. 

After using the compactness of T 3 to drop the exact differen
tial terms, we use the definition of M, given by Eq. (2a), and 
then rearrange to get 

Q= - 3 L,[(!WA - B)2 + (!ci>A sinh W - F)2 

+ (! WD - E)2e - 2T + (!ci>D sinh W + C)2e - 2T 

+ l(A 2 + D2) (W,2 + <1>'2 sinh2 W)e- 2T]d 3x. 
(5) 

From this expression, it is easy to see that Q is negative semi
definite. 

We now explore the conditions for Q = 0. To do this, we 
rewrite Band F, using the Einstein equations, as 

B = 2W"e- 2T + !WA + 2W'Ne- 2,.. 

+ !<I>' De - 2,.. sinh W - <I>,2e - 2,.. sinh 2 W 

and 

F = 2<1>" e - 2,.. sinh W + !ci>A sinh W + 2<1>' Ne - 2,.. sinh W 

- !W'De- 2,.. + 4W'<I>'e- 2,.. cosh W. 

Substituting these into Eq. (5) gives 
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12= - 3 L5e-4T[2W" + 2W'N + ~$'Dsinh W - $'2 sinh 2W]2 + e- 412$" sinh W + 2$'Nsinh W - ~W'D 

+ 4W'$' cosh W]2 + [PVD - E j2e- 2T + [!<i>Dsinh W + C ]2e- 2T 

+ ![A 2 + D2] [W,2 + $'2 sinh 2W]e- 2T}d 3x. 

We now show that 12 = 0 if and only if a lao is a Killing 
vector field; that is, if and only if one has data for a Kasner 
space-time. 

Let us assume that a lao is a Killing field. It follows from 
expression (1) for the metric and from Killing's equation 
that we must have, for all time r, 

W' = 0 and $' sinh W = o. (7) 

Using the definition of N given in Eq. (2b), we then see from 
(3) that C = 0, D = 0, and E = O. Plugging these results 
into (6), we find that (7) implies that 12 = O. 

Conversely, let us now assume that 12 = O. The five 
terms in the integrand of (6) are positive semidefinite and so 
must vanish individually. By examining the last term in the 
integrand, we see that for each value of 0, we must have 
either 

(a) A(O) =O=D(O) 

or 

(b) W'(O) = 0 = $'(0) sinh W(O). 

As noted above, condition (b) implies that D vanishes so we 
must have D( 0) = 0 for all (}eS 1. Ifwe now examine the first 
term in the integrand of (6), we see that W and $ must 
satisfy 

W" + W'N = !$,2 sinh 2W. 

Using a' = - ~ N, we may write this as 

e20 ( W'e- 20), = ~$'2 sinh 2W. 

Then multiplying by We - 20 and integrating over the circle 
gives (after an integration by parts) 

0= i [W,2 + !W$,2 sinh 2W]e- 20 dO. 
s' 

Both terms are positive semidefinite and hence we must have 
W' =:= 0 and $' sinh W = 0, which we recall are the condi
tions for a lao to be a Killing field. 

IV. CONCLUSIONS 

For all Gowdy r 3 X R space-times, except for the speci~l 
case of Kasner data, we have shown monotonic decay to
ward the singularity for a quantity which differs from the 
Bel - Robinson energy only by a conformal factor in the 
integrand. In the Kasner case, this quantity is constant. 

It is our hope that this quantity could serve as an energy
type norm to control the evolution of certain Soblev norms 
on initial data-in particular the H ~ norm. It is reasonable 
to expect that the Bel-Robinson energy will be related to the 
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(6) 

I 
H ~ norm because both involve terms such as f W,2 d 3X and 
f W"2 d 3X • The monotonic decay of Q could very well pro
vide good control on the H ~ norm. Control of this norm is 
crucial in the type of global existence arguments Moncrief 
and Eardley have advocated as an approach to the cosmic 
censorship conjectures.7

•
8 

We note that the global existence problem for Gowdy 
r 3 XR space-times has already been solved by Moncrief.8 

Moncriers proof of global existence uses a "pseudoenergy" 
to control the H ~ norm. This pseudoenergy E is defined as 

E:=J... r [e-TI5AB(VA'VB' +XA"XB">]d 3x, 
2 JT' 

where {XA}: = {X 1,x2} = {W cos $, W sin $} and 
VA: = - eT (aXA lar). However, the control one has on the 
evolution of E is not adequate to control the H~ norm; one 
also needs to use an a priori estimate on certain L 00 norms to 
fully control the Hi norm. The derivation of this a priori 
estimate involves some analysis on portions oflight cones. It 
is possible that one might avoid the light cone analysis in an 
alternate proof by using Q since one has better control of the 
evolution of Q than on the evolution of E. Such an alternate 
proof would demonstrate the usefulness of the BR energy 
and could provide clues for its use in studying global proper
ties of more general space-times. Weare currently studying 
the relationship between Q and the Hi norm in the Gowdy 
r 3 XR space-times. We are also examining the behavior of 
the BR energy and related quantities in larger families of 
space-times. 
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